Archiv der Kategorie: Physik u.Kosmos

Quantenphysik, Raum und Zeit, Kosmologie

Lebensbausteine um sonnenähnlichen Stern entdeckt

ALMA entdeckt Methylisocyanat um junge sonnenähnliche Sterne Bild: ESO/Digitized Sky Survey 2/L. Calçada
ALMA entdeckt Methylisocyanat um junge sonnenähnliche Sterne
Bild: ESO/Digitized Sky Survey 2/L. Calçada

(idw) Bei der Beobachtung von sonnenähnlichen Sternen, die sich noch in sehr frühen Entwicklungsstadien befinden, haben Forscher mit ALMA Spuren von Methylisocyanat gefunden – einem chemischen Bestandteil für die Entwicklung von Leben. Es handelt sich um die erste Entdeckung dieses präbiotischen Moleküls um sonnenähnliche Protosterne, bei denen die Bedingungen, die dort herrschen, mit jenen vergleichbar sind, als unser Sonnensystem entstand. Die Entdeckung könnte Astronomen deshalb helfen, zu verstehen, wie das Leben auf der Erde seinen Anfang nahm. Lebensbausteine um sonnenähnlichen Stern entdeckt weiterlesen

Buchmesse: Giganten der Physik

Aus den Lebensbeschreibungen geistig großer Männer wissen wir, dass sich in ihnen das Ideal dramatischer Spannung nur selten verwirklicht. Sie sind keine Romanhelden mit verwickelten Erlebnissen und abenteuerlichen Daseinsproblemen, welche die Fantasie der Betrachter sonderlich beschäftigen können. Wer ihre Entwicklung verfolgt, der bemerkt bei den meisten das Vorwalten der inneren Linie, deren Verlauf sich nur aus dem Studium ihrer Werke erschließt, nicht im Gewirr äußerlich bewegter Gestaltungen. Der geistig Bedeutende, auf gedankliche Innenarbeit konzentriert, behält nur selten die Zeit übrig, um daneben eine im epischen Sinne interessante Figur zu werden. Der nachschaffende Dichter findet in ihm kein Modell, und nur in Ausnahmefällen ist es geglückt, sein Leben als ein Kunstwerk darzustellen.
Es wäre ein vergebliches Bemühen, Einsteins Leben als einen solchen Ausnahmefall zu behandeln. Man kann die Phasen seiner Entwicklung nachzeichnen, allein weder der Beschreiber, noch der Leser werden es sich verhehlen dürfen, dass diese Aufzeichnungen das Bild des Mannes nur äußerlich, chronologisch vervollständigen können. Immerhin wird eine Schrift, die sich mit ihm beschäftigt, nicht an der Aufgabe vorbeikönnen, sein Curriculum vitae zu liefern. Und wenn es teilweise etwas aphoristisch, ungegliedert ausfällt, so möge man im Auge behalten, dass es auf dem Boden der Konversation zwischen Alexander Moszkowski und Einstein entstanden ist, in Einzelheiten der Gespräche, die je nach Anlass verschiedene Episoden seines Daseins berührten. Hier nun seine Beschreibung:
Einsteins Lebensgeschichte beginnt in Ulm, der Stadt, die das höchste Bauwerk in Deutschland besitzt. Gern würde ich mich auf die Warte des Ulmer Münsters stellen, um von ihm aus eine Rundsicht über Alberts Jugend zu gewinnen; allein der Ausblick versagt, es zeigt sich nichts am Horizont, und alles beschränkt sich auf die dürftige Wahrnehmung, dass er hier im März 1879 zur Welt kam. Zu erwähnen bliebe nur die schon an anderer Stelle genannte Einzelheit, dass es etwas Physikalisches war, das zuerst die Aufmerksamkeit des Kindes in Anspruch nahm. Sein Vater zeigte ihm einmal, als er im Bettchen lag, einen Kompass, lediglich in der Absicht, ihn spielerisch zu beschäftigen. Und in dem fünfjährigen Knaben weckte die schwingende Metallnadel zum ersten Mal das große Erstaunen über unbekannte Zusammenhänge, das den im Unterbewusstsein schlummernden Erkenntnistrieb ankündigte. Für den erwachsenen Einstein besitzt die Rückerinnerung an jenes psychische Erlebnis offenbar eine starke Bedeutung. In ihm scheinen sich alle Eindrücke der frühen Kindheit zu verlebendigen, umso stärker, als die übrigen physikalischen Gegebenheiten, wie etwa der freie Fall eines nicht unterstützten Körpers, gar keinen Eindruck auf ihn hervorbrachten. Der Kompass und immer nur der Kompass! Dies Instrument redete zu ihm in einer stummen Orakelsprache, wies ihn auf ein elektromagnetisches Feld, das sich ihm Jahrzehnte später zu fruchtbaren Studien erschließen sollte. …

Bibliographische Angaben:
Buchtitel: Giganten der Physik: Die Top10-Physiker der Menschheitsgeschichte
Autor(en): Klaus-Dieter Sedlacek;
Taschenbuch: 216 Seiten
Verlag: Books on Demand
ISBN 978-3-7431-3800-1
Ebook: ISBN 978-3-7431-2224-6
Bezug über alle relevanten Buchhandlungen, Online-Shops und Großhändler – z. B. Amazon, Apple iBooks, Tolino, Google Play, Thalia, Hugendubel uvm.

Rezensionsexemplar: presse(at)bod.de

Merken

Merken

Merken

Merken

Neues Buch – Einsteins Relativitätstheorie ganz ohne Mathematik

Der Herausgeber Klaus-Dieter Sedlacek stellt seine neue Buchveröffentlichung über ‘Spezielle und allgemeine Relativitätstheorie’ vor. Es geht unter Anderem auch um das Relativitätsprinzip, krumme Lichtstrahlen und kosmologische Folgerungen. Neues Buch — Einsteins Relativitätstheorie ganz ohne Mathematik weiterlesen

Erstmals klassisches Objekt teleportiert

Foto: Sedlacek
Teleportation. Foto: Sedlacek

Star Trek-Vision wird Wirklichkeit

(idw) „Beam me up, Scotty“, auch wenn Captain Kirk diesen Satz so nie gesagt haben soll, hält er sich als geflügeltes Wort bis heute. Wann immer der Chef des TV-Serien-Raumschiffs Enterprise zurück in seine Steuerzentrale wollte, genügte dieses Kommando und im selben Augenblick schon war er dort – ohne Zeitverlust durch die unendlichen Weiten des Weltraums.

Alles Science Fiction, erdacht in den 60er Jahren des vergangenen Jahrhunderts? Nicht ganz: Physiker sind tatsächlich in der Lage, zwar keine massiven Teilchen, so aber doch deren Eigenschaften zu beamen bzw. zu „teleportieren“, wie es in der Fachsprache heißt. Erstmals klassisches Objekt teleportiert weiterlesen

Neuerscheinung: “Die letzten Ursachen”

Die letzten Ursachen - Buchcover ISBN 978-3-7392-1823-6
Die letzten Ursachen – Buchcover ISBN 978-3-7392-1823-6

Die Säulen naturwissenschaftlicher Welterkenntnis, Quantenphysik oder Relativitätstheorie basieren auf für Uneingeweihte viel zu abstrakten Formeln. Deshalb bedarf es der Naturphilosophie. Sie versucht die Strukturen der Natur mit Worten zu beschreiben, anschaulich zu erklären und zu deuten. Neue Erkenntnisse über Bewusstsein, Information und einen physikalischen Bereich jenseits von Raum und Zeit werden in „Die letzten Ursachen“ gemeinverständlich dargestellt. Neuerscheinung: “Die letzten Ursachen” weiterlesen

Wie Exoplaneten entdeckt werden können

Das bunte Spektrum des Lichts trifft auf einen Frequenzkamm, der durch ein gelbes Band mit weißen Linien dargestellt ist.

Frequenzkämme

Um hochfrequente Schwingungen zu messen, nutzen Forscher ein ganz spezielles Lineal – den sogenannten Frequenzkamm, für den es 2005 den Nobelpreis für Physik gab. Inzwischen kommt das Laserlineal in vielen Gebieten zum Einsatz.

Sichtbares Licht besitzt Frequenzen im Bereich von Hunderten von Terahertz. Diese Frequenzen lassen sich elektronisch nicht direkt messen oder zählen. Man muss also ein Hilfsmittel erfinden, das diese Frequenzen der elektronischen Messtechnik zugänglich macht. Dieses Hilfsmittel ist der Frequenzkamm, eine besondere Art von Laser. Ein handelsüblicher roter Laser sendet eben nur rotes Licht aus – der Laser des Frequenzkamms hingegen strahlt weiß, ähnlich wie Sonnenlicht. Zerlegt man das weiße Sonnenlicht mit einem Prisma in seine Einzelteile, wird man alle Farben des Regenbogens beobachten. Dies ist das Spektrum des Sonnenlichts. Auch der Frequenzkamm deckt den gesamten Wellenbereich des sichtbaren Lichts ab, allerdings ist sein Spektrum nicht kontinuierlich. Er sendet nur bestimmte Frequenzen aus.

Tobias Wilken: „Das Fantastische am Frequenzkamm ist, dass der Abstand zwischen jeder einzelnen dieser Frequenzen exakt gleich ist, wobei der Abstand im Radiofrequenzbereich liegt. Das heißt, auch wenn jede Frequenz, die dieser Laser emittiert, im optischen Bereich liegt, also bei Hunderten von Terahertz, so liegt der Abstand zwischen den Frequenzen im Radiofrequenzbereich, also bei unter einem Gigahertz.“

Mit dem Frequenzkamm lassen sich optische Frequenzen deshalb mit äußerster Präzision vermessen, weshalb man ihn auch als Laserlineal für Licht bezeichnet. Zum Einsatz kommt dieses Lineal zum Beispiel bei Lasern, die kontinuierlich Licht abstrahlen – sogenannte Continuous-Wave- oder kurz CW-Laser. Wie Exoplaneten entdeckt werden können weiterlesen

Geheimnisvolle Signale aus einer fernen quantenkosmologischen Vergangenheit

Was passierte bei der Geburt des Weltalls? Wie konnten sich Sterne, Planeten und ganze Galaxien überhaupt bilden? Das sind die Fragen, die Viatcheslav Mukhanov mit seinen Berechnungen zu beantworten versucht. Mukhanov ist Physik-Ordinarius an der LMU und Experte für Theoretische Quantenkosmologie. Und es ist seine Idee der Quantenfluktuationen, die ein entscheidendes Moment in der Startphase des Universums beschreibt: Ohne die Dichteschwankungen, die aus den minimalen Fluktuationen entstehen, lässt sich die spätere Verteilung der Materie und die Bildung von Sternen, Planeten und Galaxien schwerlich erklären.

Jetzt hat das Planck-Konsortium neue Auswertungen von Messergebnissen veröffentlicht. Das Weltraumteleskop hat die kosmische Hintergrundstrahlung vermessen und damit ein Abbild des frühen Universums geliefert. Diese neuen Planck-Daten decken sich exakt mit den Berechnungen des LMU-Kosmologen, etwa für die entscheidende Größe des sogenannten Spektralindexes. „Die Planck-Daten haben die grundlegende Voraussage bestätigt, dass Quantenfluktuationen am Anfang aller Strukturen im Universum stehen“, bekräftigt Jean-Loup Puget, der leitende Wissenschaftler des HFI-Instruments der Planck-Mission. „Besser könnte meine Theorie nicht bestätigt werden“, sagt Mukhanov. Schon 1981 hatte der Wissenschaftler, seit 1997 an der LMU, seinen Ansatz erstmals publiziert.

Spuren aus ferner Vergangenheit

Dass auch die Quanten im frühen Universum gewissen Fluktuationen unterlegen haben müssen, ergibt sich für Mukhanov aus der Heisenbergschen Unschärferelation. Sie besagt, dass sich Ort und Impuls eines Teilchens nicht exakt angeben lassen. Aus den submikroskopisch winzigen Fluktuationen entstanden makroskopische Dichteschwankungen. Ohne diesen Mechanismus, dessen genaue Ausprägung und Größenordnung Mukhanov berechnet, ließe sich die Verteilung von Materie im heutigen Universum nicht vorhersagen.

Die neuen Planck-Datensätze sind noch detaillierter und aussagekräftiger als die ersten Auswertungen, die vor knapp zwei Jahren veröffentlicht wurden. Mit niemals zuvor erreichter Präzision zeigen sie die Muster, mit denen sich die Fluktuationen in die Strahlung des jungen Universums eingebrannt haben. Als eine Botschaft aus ferner Vergangenheit können Teleskope wie Planck sie heute – 13,8 Milliarden Jahre später – als Mikrowellenstrahlung einfangen. So geben die Planck-Messungen Aufschluss über die Geburt des Weltalls.

Gravitationswellen nicht beglaubigt

Die Existenz von sogenannten primordialen Gravitationswellen konnten die Planck-Daten indes nicht zeigen. Diese weiteren lange gesuchten Signale des fernen Urknalls meinte das BICEP2-Team aus seinen Daten herauslesen zu können, das Teleskop vermisst von der Antarktis aus die kosmische Hintergrundstrahlung. Im März 2014 meldete das Team seine sensationelle Entdeckung – vorschnell, wie sich bald herausstellte. Und soeben veröffentlichten Planck- und BICEP2-Forscher gemeinsam einen Abgleich ihrer Daten, der keinen Nachweis der Gravitationswellen erbrachte. LMU-Forscher Mukhanov hatte schon im Frühjahr 2014 erklärt, dass die Ergebnisse von BICEP2 und Planck nicht gleichzeitig stimmen können. „Gravitationswellen mag es trotzdem geben“, sagt der LMU-Wissenschaftler. „Aber unsere Messgeräte sind offenbar noch nicht genau genug.“ Doch unabhängig davon, ob ein tatsächlicher Nachweis der Gravitationswellen gelingt: Ohne den Mechanismus der Quantenfluktuation, ergänzt Mukhanov, kommt kein Modell aus, das erklären soll, was unmittelbar nach dem Urknall geschah. (Quelle: idw)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Was ist eigentlich Entropie?

Entropie

Die Entropie wird oft missverständlich als eine Art „Unordnung“ bezeichnet. Doch das greift viel zu kurz. Einst eingeführt, um den begrenzten Wirkungsgrad von Dampfmaschinen zu erklären, wird der Begriff heute auch in vielen anderen Disziplinen genutzt.

Kaum ein Begriff der Physik wird so gerne außerhalb der Physik benutzt – und so oft abweichend von seiner eigentlichen Bedeutung – wie der der Entropie. Dabei hat der Begriff durchaus eine eng umrissene Bedeutung. Eine konkrete Definition dieser physikalischen Größe stellte der österreichische Physiker Ludwig Boltzmann in der zweiten Hälfte des 19. Jahrhunderts auf. Er konzentrierte sich auf das mikroskopische Verhalten eines Fluids, also eines Gases oder einer Flüssigkeit. Die ungeordnete Bewegung von Atomen oder Molekülen darin verstand er dabei als Wärme, was für seine Definition entscheidend war.

Entropie in der Badewanne

In einem abgeschlossenen System mit festem Volumen und fixer Teilchenzahl, so legte Boltzmann fest, ist die Entropie proportional zum Logarithmus der Anzahl von Mikrozuständen in dem System. Unter Mikrozuständen verstand er alle Möglichkeiten, wie sich die Moleküle oder Atome des eingesperrten Fluids anordnen können. Seine Formel definiert die Entropie somit als ein Maß für die „Anordnungsfreiheit“ der Moleküle und Atome: Steigt die Zahl der einnehmbaren Mikrozustände, dann wächst die Entropie. Gibt es weniger Möglichkeiten, wie sich die Teilchen des Fluids anordnen können, ist die Entropie kleiner.

Boltzmanns Formel wird oft so interpretiert, als sei die Entropie gleichbedeutend mit „Unordnung“. Dieses vereinfachte Bild führt allerdings leicht in die Irre. Ein Beispiel dafür ist der Schaum in einer Badewanne: Wenn die Bläschen zerplatzen und die Wasseroberfläche glatt wird, hat es den Anschein, als nehme die Unordnung ab. Die Entropie tut das aber nicht! Tatsächlich nimmt sie sogar zu, denn nach dem Zerplatzen des Schaums ist der mögliche Aufenthaltsraum für die Moleküle der Flüssigkeit nicht mehr auf die Außenhäute der Bläschen beschränkt – die Zahl der einnehmbaren Mikrozustände hat sich also vergrößert. Die Entropie ist gewachsen.

Mithilfe der Boltzmannschen Definition lässt sich eine Seite des Begriffs verstehen – doch die Entropie hat auch eine andere, makroskopische Seite, die der deutsche Physiker Rudolf Clausius bereits einige Jahre zuvor aufgedeckt hatte. Zu Beginn des 18. Jahrhunderts wurde die Dampfmaschine erfunden, eine klassische Wärmekraftmaschine. Wärmekraftmaschinen wandeln einen Temperaturunterschied in mechanische Arbeit um. Physiker versuchten damals zu begreifen, welchen Prinzipien diese Maschinen gehorchen. Die Forscher stellten nämlich irritiert fest, dass sich nur ein paar Prozent der thermischen Energie in mechanische Energie umwandeln ließen. Der Rest ging irgendwie verloren – ohne dass sie den Grund verstanden.

Wertigkeit der Energie

Der Theorie der Thermodynamik schien ein physikalisches Konzept zu fehlen, das die unterschiedliche Wertigkeit der Energie berücksichtigt und die Fähigkeit begrenzt, thermische Energie in mechanische Energie umzuwandeln. In Gestalt der Entropie kam die Lösung. Mitte des 19. Jahrhunderts führte Clausius den Begriff als thermodynamische Größe ein und definierte ihn als makroskopisches Maß für eine Eigenschaft, die die Nutzbarkeit von Energie begrenzt.

Clausius zufolge hängt die Entropieänderung eines Systems von der zugeführten Wärme und der dabei herrschenden Temperatur ab. Zusammen mit Wärme wird immer Entropie übertragen, so sein Fazit. Darüber hinaus stellte Clausius fest, dass die Entropie in geschlossenen Systemen, anders als die Energie, keine Erhaltungsgröße ist. Diese Erkenntnis ging als der zweite Hauptsatz der Thermodynamik in die Physik ein:

„In einem geschlossenen System nimmt die Entropie niemals ab.“

Die Entropie nimmt demnach immer zu oder bleibt konstant. Damit wird in die Physik geschlossener Systeme ein Zeitpfeil eingeführt, denn bei wachsender Entropie sind thermodynamische Prozesse in geschlossenen Systemen unumkehrbar (oder irreversibel).

Reversibel (umkehrbar) wäre ein Prozess nur dann, wenn die Entropie konstant bliebe. Das ist aber bloß theoretisch möglich. Alle realen Prozesse sind irreversibel. Frei nach Boltzmann kann man auch sagen: Die Zahl der möglichen Mikrozustände nimmt jederzeit zu. Diese mikroskopische Interpretation erweitert die thermodynamisch-makroskopische Interpretation durch Clausius. Durch die Entropie ließ sich das Rätsel um die verschwundene Energie in Wärmekraftmaschinen endlich auflösen (siehe Kasten). Ständig entzieht sich ein Teil der Wärmeenergie der mechanischen Nutzbarkeit und wird wieder abgegeben, weil die Entropie in geschlossenen Systemen nicht abnehmen darf.

Vielseitiger Einsatz

Seit den Erkenntnissen von Clausius und Boltzmann ist die Entropie auch in andere Bereiche der Physik eingezogen. Sogar außerhalb der Physik griff man sie auf, jedenfalls als mathematisches Konzept. Beispielsweise führte der US-amerikanische Mathematiker und Elektrotechniker Claude Shannon im Jahr 1948 die sogenannte Informationsentropie ein. Mit dieser Größe charakterisierte er den Informationsverlust in Übertragungen per Telefonleitung.

Auch in der Chemie und Biologie spielt die Entropie eine Rolle: In bestimmten offenen Systemen können sich neue Strukturen bilden, sofern Entropie nach außen abgegeben wird. Es muss sich dabei um sogenannte dissipative Systeme handeln, bei denen also Energie in thermische Energie umgewandelt wird. Diese Theorie der Strukturbildung stammt vom belgischen Physikochemiker Ilya Prigogine. Bis heute werden Arbeiten veröffentlicht, in denen der physikalischen Tragweite des Konzepts neue Aspekte hinzugefügt werden.

Wirkungsgrad und Entropie

Warum ist der Wirkungsgrad von Wärmekraftmaschinen begrenzt? Rudolf Clausius löste dieses Rätsel, indem er den Begriff der Entropie einführte. Der Physiker betrachtete den Kreisprozess einer idealisierten Wärmekraftmaschine, bei dem sich Expansion und Kompression unter isothermen (konstante Temperatur) und isentropen (konstante Entropie) Bedingungen abwechseln. Durch Verknüpfung der Energieerhaltung mit dem zweiten Hauptsatz der Thermodynamik ergibt sich in diesem sogenannten Carnotprozess die folgende Ungleichung für den Wirkungsgrad:

η≤(T1T2)/T1

T1 und T2 sind die beiden Temperaturen, zwischen denen der Kreisprozess betrieben wird. Der maximal erreichbare Wirkungsgrad einer Wärmekraftmaschine ist also durch thermodynamische Gesetzmäßigkeiten begrenzt. Ein Beispiel: Wird die Maschine zwischen 100 und 200 Grad Celsius betrieben, dann liegt der maximal erreichbare Wirkungsgrad bei rund 27 Prozent (die Temperaturwerte müssen in der Einheit Kelvin in die Formel eingesetzt werden).

Aus der Energieerhaltung und dem zweiten Hauptsatz der Thermodynamik lassen sich auf mathematischem Weg auch noch zwei weitere nützliche Erkenntnisse ableiten: Wärme kann nur dann von einem kalten auf einen warmen Körper übergehen, wenn Arbeit aufgewendet wird – Kühlschränke und Wärmepumpen benötigen eine Energiezufuhr. Zweitens lässt sich mit einem Wärmereservoir konstanter Temperatur keine Arbeit verrichten. Dazu ist immer der Fluss von Wärme zwischen Reservoirs unterschiedlicher Temperatur notwendig.

Entropie in Formeln

Der Begriff Entropie ist eine Neubildung durch Rudolf Clausius aus griechischen Wörtern und bedeutet übersetzt ungefähr „Wandlungsgehalt“. Laut dem Physiker hängt die Entropieänderung ΔS eines Systems folgendermaßen mit der zugeführten Wärme und der Temperatur zusammen:

ΔS=ΔQ/T

Dabei bezeichnet ΔQ eine kleine, dem System reversibel zugeführte Wärmemenge und T die Temperatur, die bei dieser Übertragung herrscht. Die Formel besagt, dass zusammen mit Wärme immer Entropie übertragen wird. Boltzmanns Definition der Entropie beruht auf dem Verständnis der Wärme als ungeordnete Bewegung von Atomen oder Molekülen. Ihm zufolge ist die Entropie S durch folgende Formel gegeben:

S=k lnW

Die Entropie ist also proportional zum Logarithmus der Zahl W der „Mikrozustände“ eines Systems, wobei alle anderen Parameter – wie Volumen und Teilchenzahl – konstant sind. Mit den Mikrozuständen sind die Möglichkeiten gemeint, wie die Moleküle oder Atome eines eingesperrten Fluids angeordnet sein können. Die Konstante k ist die Boltzmann-Konstante.

Autor: Sven Titz; Quelle: Welt der Physik; Lizenz: CC by-nc-nd

Merken

Merken

Geistermaterie lauert in der Milchstraße

Eine mysteriöse Form von Materie durchzieht unser Universum. Sie ist etwa fünf Mal häufiger als die sichtbare Materie, jedoch von nach wie vor unbekannter, „dunkler“ Natur. Dass diese mysteriöse Entität, der man den Namen “Dunkle Materie” oder Geistermaterie gab, existieren muss, belegten Forschungsarbeiten bereits in den 1970er Jahren. Erstmals ist es nun einem internationalen Wissenschaftlerteam gelungen, Dunkle Materie auch im Inneren unserer Galaxie zu belegen. Woraus Dunkle Materie  besteht, konnte allerdings nicht herausgefunden werden.

Die allgegenwärtige Präsenz der Dunklen Materie im Universum ist heute ein zentraler Grundsatz der modernen Kosmologie und Astrophysik. In verschiedenen Galaxien wurde ihre Existenz seit den 1970er Jahren mit einer Reihe von Methoden belegt. Eine dieser Methoden ist die Messung der Drehgeschwindigkeit von Gas und Sternen. Wissenschaftler können so eine Galaxie „wiegen“ und ihre Gesamtmasse bestimmen. Dabei zeigt sich, dass die gewöhnliche Materie nur einen Bruchteil des Gesamtgewichts ausmacht, den überwiegenden Teil trägt die Dunkle Materie bei.

Auch in den äußeren Bereichen unserer eigenen Galaxie, die wir bei klarem Nachthimmel als „Milchstraße“ sehen können, wurden die Astronomen mit diese Methodik fündig. Doch im inneren Bereich unserer Galaxie war es bisher unmöglich, die Anwesenheit Dunkler Materie sicher zu belegen.

Der Durchmesser unserer Galaxie beträgt etwa 100.000 Lichtjahre. Unser Sonnensystem ist etwa 26.000 Lichtjahre vom Zentrum der Milchstraße entfernt. Je näher man der Mitte kommt, desto schwieriger wird es, die Rotation des Gases und der Sterne mit der benötigten Genauigkeit zu messen.

Auf Basis der Messung von Sternenbewegungen haben nun Wissenschaftler der Technischen Universität München (TUM), der Universität Stockholm, der Freien Universität Madrid, des Internationalen Zentrums für Theoretische Physik des Südamerikanischen Instituts für Grundlagenforschung (ICTP-SAIFR) in São Paulo und der Universität Amsterdam erstmalig einen Beweis für die Anwesenheit Dunkler Materie im Inneren der Milchstraße vorgelegt. Dunkle Materie existiert danach auch im Bereich unseres Sonnensystems und in unserer direkten „kosmischen Nachbarschaft“.

In einem ersten Schritt erstellten die Forscher die umfassendste Sammlung veröffentlichter Messungen der Bewegung von Gas und Sternen in der Milchstraße. Dann berechneten sie auf Basis aktuellster Forschungsergebnisse die Rotationsgeschwindigkeit, die die Milchstraße haben müsste, wenn sie nur aus sichtbarer Materie bestünde. Der Vergleich der gemessenen und der berechneten Geschwindigkeit zeigte eindeutig, dass hier die Dunkle Materie einen entscheidenden Beitrag leistet.

„Wir konnten mit unserer Arbeit belegen, dass sich das Gas und die Sterne in unserer Galaxie ohne den Beitrag von Dunkler Materie nicht mit den beobachteten Geschwindigkeiten drehen könnten“, sagt Dr. Miguel Pato, der die Analyse an der TU München durchführte. „Allerdings wissen wir immer noch nicht, aus was die Dunkle Materie besteht. Dies ist eine der wichtigsten Wissenschaftsfragen unserer Zeit“.

Auch für geringe Entfernung vom Zentrum der Milchstraße besitzen die Daten der Forschungsarbeit eine hohe Evidenz. Sie erschließen damit neue Wege zur Bestimmung der Verteilung Dunkler Materie in unserer Galaxie. Zukünftige astronomische Beobachtungen könnten damit die Verteilung der Dunklen Materie in unserer Galaxie mit bisher unerreichter Genauigkeit bestimmen.

„Damit können wir das Verständnis der Struktur und der Entwicklung unserer Galaxie wesentlich verbessern. Und es wird präzisere Vorhersagen für die vielen Experimente ermöglichen, die weltweit nach Teilchen der Dunklen Materie suchen“, sagt Miguel Pato, der inzwischen zum Oskar Klein-Zentrum für Astroteilchen-Physik an der Universität Stockholm gewechselt ist. (Quelle: idw)

Publikation:
Evidence for dark matter in the inner Milky Way
Fabio Iocco, Miguel Pato, Gianfranco Bertone
Nature Physics, advanced online publication, 9 February 2015
DOI: 10.1038/nphys3237 – Link: https://nature.com/articles/doi:10.1038/nphys3237
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Die Rätsel des Universums

München (ots) – Unser Wissen über das Universum ist enorm – doch viele Fragen sind noch unbeantwortet. Wie groß ist das Universum, woher kommen die Kometen und was hält die Galaxien zusammen – diesen und weiteren Rätseln des Universums geht das Weltraum-Magazin SPACE  nach.

Wie groß unser Universum ist – diese Frage ist nur teilweise gelöst. Seit dem Urknall konnte es sich “nur” 13,8 Milliarden Jahre lang ausdehnen. Das von weiter weg gelegenen Objekten abgestrahlte Licht hat uns einfach noch nicht erreicht. Das heißt also, das für uns von der Erde aus beobachtbare Universum ist eine kugelförmige Blase mit einem Radius von 13,8 Milliarden Lichtjahren. Wie weit es sich darüber hinaus ausdehnt, ist heiß umstritten.

Ebenfalls nur teilweise geklärt ist die Herkunft der Kometen. Ihren Ursprung erklären sich die Wissenschaftler mit Hilfe der sog. Oortschen Wolke, einer riesigen, das Sonnensystem in einer Entfernung von 20.000 Astronomischen Einheiten (1 AE entspricht etwa 149,6 Mio. km) umgebenden Wolke. Diese bildete sich wahrscheinlich, als die gerade entstandenen Planeten sonnennahe Kometen weiter “hinausbeförderten”. Und obwohl sie für uns (noch) nicht sichtbar ist, gilt diese Oortsche Wolke als Ursprung aller unserem Sonnensystem zugehörigen Kometen.

Ungelöst ist nach wie vor die Frage, was Galaxien zusammenhält. An die Gesetze der Physik halten sich manche von ihnen nicht, denn sie rotieren so schnell, dass die Gravitationswirkung ihrer sichtbaren Bestandteile nicht ausreicht, sie zusammenzuhalten. Sie müssten zerreißen, tun es aber nicht. Hier vermuten Wissenschaftler, dass eine mit modernen Instrumenten nicht messbare Materie für den Zusammenhalt der Galaxien verantwortlich sein muss – die sog. “Dunkle Materie”. Diese interagiert nicht mit der elektromagnetischen Wechselwirkung, das erschwert es, sie aufzuspüren. Die Lösung dieses Rätsels wäre eine der größten wissenschaftlichen Entdeckungen.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit