Archiv der Kategorie: Energie

Was ist eigentlich Entropie?

Entropie

Die Entropie wird oft missverständlich als eine Art „Unordnung“ bezeichnet. Doch das greift viel zu kurz. Einst eingeführt, um den begrenzten Wirkungsgrad von Dampfmaschinen zu erklären, wird der Begriff heute auch in vielen anderen Disziplinen genutzt.

Kaum ein Begriff der Physik wird so gerne außerhalb der Physik benutzt – und so oft abweichend von seiner eigentlichen Bedeutung – wie der der Entropie. Dabei hat der Begriff durchaus eine eng umrissene Bedeutung. Eine konkrete Definition dieser physikalischen Größe stellte der österreichische Physiker Ludwig Boltzmann in der zweiten Hälfte des 19. Jahrhunderts auf. Er konzentrierte sich auf das mikroskopische Verhalten eines Fluids, also eines Gases oder einer Flüssigkeit. Die ungeordnete Bewegung von Atomen oder Molekülen darin verstand er dabei als Wärme, was für seine Definition entscheidend war.

Entropie in der Badewanne

In einem abgeschlossenen System mit festem Volumen und fixer Teilchenzahl, so legte Boltzmann fest, ist die Entropie proportional zum Logarithmus der Anzahl von Mikrozuständen in dem System. Unter Mikrozuständen verstand er alle Möglichkeiten, wie sich die Moleküle oder Atome des eingesperrten Fluids anordnen können. Seine Formel definiert die Entropie somit als ein Maß für die „Anordnungsfreiheit“ der Moleküle und Atome: Steigt die Zahl der einnehmbaren Mikrozustände, dann wächst die Entropie. Gibt es weniger Möglichkeiten, wie sich die Teilchen des Fluids anordnen können, ist die Entropie kleiner.

Boltzmanns Formel wird oft so interpretiert, als sei die Entropie gleichbedeutend mit „Unordnung“. Dieses vereinfachte Bild führt allerdings leicht in die Irre. Ein Beispiel dafür ist der Schaum in einer Badewanne: Wenn die Bläschen zerplatzen und die Wasseroberfläche glatt wird, hat es den Anschein, als nehme die Unordnung ab. Die Entropie tut das aber nicht! Tatsächlich nimmt sie sogar zu, denn nach dem Zerplatzen des Schaums ist der mögliche Aufenthaltsraum für die Moleküle der Flüssigkeit nicht mehr auf die Außenhäute der Bläschen beschränkt – die Zahl der einnehmbaren Mikrozustände hat sich also vergrößert. Die Entropie ist gewachsen.

Mithilfe der Boltzmannschen Definition lässt sich eine Seite des Begriffs verstehen – doch die Entropie hat auch eine andere, makroskopische Seite, die der deutsche Physiker Rudolf Clausius bereits einige Jahre zuvor aufgedeckt hatte. Zu Beginn des 18. Jahrhunderts wurde die Dampfmaschine erfunden, eine klassische Wärmekraftmaschine. Wärmekraftmaschinen wandeln einen Temperaturunterschied in mechanische Arbeit um. Physiker versuchten damals zu begreifen, welchen Prinzipien diese Maschinen gehorchen. Die Forscher stellten nämlich irritiert fest, dass sich nur ein paar Prozent der thermischen Energie in mechanische Energie umwandeln ließen. Der Rest ging irgendwie verloren – ohne dass sie den Grund verstanden.

Wertigkeit der Energie

Der Theorie der Thermodynamik schien ein physikalisches Konzept zu fehlen, das die unterschiedliche Wertigkeit der Energie berücksichtigt und die Fähigkeit begrenzt, thermische Energie in mechanische Energie umzuwandeln. In Gestalt der Entropie kam die Lösung. Mitte des 19. Jahrhunderts führte Clausius den Begriff als thermodynamische Größe ein und definierte ihn als makroskopisches Maß für eine Eigenschaft, die die Nutzbarkeit von Energie begrenzt.

Clausius zufolge hängt die Entropieänderung eines Systems von der zugeführten Wärme und der dabei herrschenden Temperatur ab. Zusammen mit Wärme wird immer Entropie übertragen, so sein Fazit. Darüber hinaus stellte Clausius fest, dass die Entropie in geschlossenen Systemen, anders als die Energie, keine Erhaltungsgröße ist. Diese Erkenntnis ging als der zweite Hauptsatz der Thermodynamik in die Physik ein:

„In einem geschlossenen System nimmt die Entropie niemals ab.“

Die Entropie nimmt demnach immer zu oder bleibt konstant. Damit wird in die Physik geschlossener Systeme ein Zeitpfeil eingeführt, denn bei wachsender Entropie sind thermodynamische Prozesse in geschlossenen Systemen unumkehrbar (oder irreversibel).

Reversibel (umkehrbar) wäre ein Prozess nur dann, wenn die Entropie konstant bliebe. Das ist aber bloß theoretisch möglich. Alle realen Prozesse sind irreversibel. Frei nach Boltzmann kann man auch sagen: Die Zahl der möglichen Mikrozustände nimmt jederzeit zu. Diese mikroskopische Interpretation erweitert die thermodynamisch-makroskopische Interpretation durch Clausius. Durch die Entropie ließ sich das Rätsel um die verschwundene Energie in Wärmekraftmaschinen endlich auflösen (siehe Kasten). Ständig entzieht sich ein Teil der Wärmeenergie der mechanischen Nutzbarkeit und wird wieder abgegeben, weil die Entropie in geschlossenen Systemen nicht abnehmen darf.

Vielseitiger Einsatz

Seit den Erkenntnissen von Clausius und Boltzmann ist die Entropie auch in andere Bereiche der Physik eingezogen. Sogar außerhalb der Physik griff man sie auf, jedenfalls als mathematisches Konzept. Beispielsweise führte der US-amerikanische Mathematiker und Elektrotechniker Claude Shannon im Jahr 1948 die sogenannte Informationsentropie ein. Mit dieser Größe charakterisierte er den Informationsverlust in Übertragungen per Telefonleitung.

Auch in der Chemie und Biologie spielt die Entropie eine Rolle: In bestimmten offenen Systemen können sich neue Strukturen bilden, sofern Entropie nach außen abgegeben wird. Es muss sich dabei um sogenannte dissipative Systeme handeln, bei denen also Energie in thermische Energie umgewandelt wird. Diese Theorie der Strukturbildung stammt vom belgischen Physikochemiker Ilya Prigogine. Bis heute werden Arbeiten veröffentlicht, in denen der physikalischen Tragweite des Konzepts neue Aspekte hinzugefügt werden.

Wirkungsgrad und Entropie

Warum ist der Wirkungsgrad von Wärmekraftmaschinen begrenzt? Rudolf Clausius löste dieses Rätsel, indem er den Begriff der Entropie einführte. Der Physiker betrachtete den Kreisprozess einer idealisierten Wärmekraftmaschine, bei dem sich Expansion und Kompression unter isothermen (konstante Temperatur) und isentropen (konstante Entropie) Bedingungen abwechseln. Durch Verknüpfung der Energieerhaltung mit dem zweiten Hauptsatz der Thermodynamik ergibt sich in diesem sogenannten Carnotprozess die folgende Ungleichung für den Wirkungsgrad:

η≤(T1T2)/T1

T1 und T2 sind die beiden Temperaturen, zwischen denen der Kreisprozess betrieben wird. Der maximal erreichbare Wirkungsgrad einer Wärmekraftmaschine ist also durch thermodynamische Gesetzmäßigkeiten begrenzt. Ein Beispiel: Wird die Maschine zwischen 100 und 200 Grad Celsius betrieben, dann liegt der maximal erreichbare Wirkungsgrad bei rund 27 Prozent (die Temperaturwerte müssen in der Einheit Kelvin in die Formel eingesetzt werden).

Aus der Energieerhaltung und dem zweiten Hauptsatz der Thermodynamik lassen sich auf mathematischem Weg auch noch zwei weitere nützliche Erkenntnisse ableiten: Wärme kann nur dann von einem kalten auf einen warmen Körper übergehen, wenn Arbeit aufgewendet wird – Kühlschränke und Wärmepumpen benötigen eine Energiezufuhr. Zweitens lässt sich mit einem Wärmereservoir konstanter Temperatur keine Arbeit verrichten. Dazu ist immer der Fluss von Wärme zwischen Reservoirs unterschiedlicher Temperatur notwendig.

Entropie in Formeln

Der Begriff Entropie ist eine Neubildung durch Rudolf Clausius aus griechischen Wörtern und bedeutet übersetzt ungefähr „Wandlungsgehalt“. Laut dem Physiker hängt die Entropieänderung ΔS eines Systems folgendermaßen mit der zugeführten Wärme und der Temperatur zusammen:

ΔS=ΔQ/T

Dabei bezeichnet ΔQ eine kleine, dem System reversibel zugeführte Wärmemenge und T die Temperatur, die bei dieser Übertragung herrscht. Die Formel besagt, dass zusammen mit Wärme immer Entropie übertragen wird. Boltzmanns Definition der Entropie beruht auf dem Verständnis der Wärme als ungeordnete Bewegung von Atomen oder Molekülen. Ihm zufolge ist die Entropie S durch folgende Formel gegeben:

S=k lnW

Die Entropie ist also proportional zum Logarithmus der Zahl W der „Mikrozustände“ eines Systems, wobei alle anderen Parameter – wie Volumen und Teilchenzahl – konstant sind. Mit den Mikrozuständen sind die Möglichkeiten gemeint, wie die Moleküle oder Atome eines eingesperrten Fluids angeordnet sein können. Die Konstante k ist die Boltzmann-Konstante.

Autor: Sven Titz; Quelle: Welt der Physik; Lizenz: CC by-nc-nd

Merken

Merken

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Generalangriff der Philosophie auf die naturwissenschaftliche Weltsicht

Der amerikanische Philosoph Thomas Nagel bläst in seinem neuen Buch mit dem Titel „Geist und Kosmos“ (ISBN 978-3518586013 ) zum Generalangriff auf die etablierte naturwissenschaftliche Weltsicht. Ihr Problem, so seine These, ist grundsätzlicher Natur: Das, was den menschlichen Geist auszeichnet – Bewusstsein, Denken und Werte –, lässt sich nicht reduzieren, schon gar nicht auf überzeitliche physikalische Gesetze.

Hat Thomas Nagel recht oder passt seine eigene Weltsicht nicht zur Realität?

Zur Beantwortung der Frage möchte ich hier mein eigenes Weltbild als Naturwissenschaftler kurz skizzieren. Mein Weg zur Erklärung von Information, Bewusstsein, Sinn, Bedeutung, aber auch Dingen wie Krankheit oder die Phänomene der Quantenphysik, basiert auf einer strikten Trennung der abstrakten geistigen von der physikalischen Welt, da jede Vermischung beider Welten zu Ergebnissen führt, die weder real sind noch zur Naturwissenschaft gehören, sondern allein in der abstrakten geistigen Welt angesiedelt sind.

Beispielsweise gehören mathematische Formeln, exakte geometrische Formen, Gottheiten oder “unmögliche Dinge” wie eckige Kreise und eierlegende Wollmilchsäue zur abstrakten geistigen Welt. Ein Großteil der Objekte der Philosophie gehört dorthin. In der geistigen Welt existiert alles, was man nur denken kann.

Zum Bereich der realen physikalischen Welt gehört alles, was sich prinzipiell messen oder beobachten lässt, d. h. Wechselwirkungen mit anderen Objekten eingeht. Das Kriterium “Wechselwirkungen” hilft uns zu unterscheiden, was in die eine, was in die andere Welt gehört. Beispielsweise können eierlegende Wollmilchsäue in der freien Natur nicht fotografiert werden, d.h. sie können keine Photonen aussenden, die zu Wechselwirkungen mit dem Foto-Chip führen. Würde jemand mit einem Fotoapparat losziehen, um Bilder von der Wollmilchsau-Spezies zu schießen, würde man ihn zu Recht für dumm oder verrückt erklären, weil er die Realität nicht von der geistigen Welt zu unterscheiden vermag. Wenn es allerdings um die Anbetung von Gottheiten geht, dann ist die Gemeinschaft der Gläubigen geneigt, die Entitäten ihres eigenen Glaubens für real zu halten, die der Andersgläubigen aber für irreal.

Wie Schrödingers Katze die abstrakte mit der realen Welt vermischt

Die Vermischung von realer und geistiger Welt findet man nicht nur im geisteswissenschaftlichen oder theologischen Bereich, sondern genauso bei jenen Quantenphysikern, die Schrödingers Wellenfunktion als eine Beschreibung der Wirklichkeit ansehen. Zur Erinnerung: Schrödingers Wellenfunktion ist eine mathematische Formel zur Beschreibung des Zustands von Quanten vor ihrer Messung. Wäre die Wellenfunktion eine Beschreibung der Wirklichkeit, dann wäre Schrödingers Katze, die in einem Gedankenexperiment zusammen mit einem Mordinstrument in eine Kiste eingesperrt ist, vor dem Öffnen der Kiste gleichzeitig tot und lebendig.

Schrödingers Katze ist ein gutes Beispiel für die Vermischung der abstrakten Welt mit der realen physikalischen (siehe auch: „Der Widerhall des Urknalls“ ISBN 978-3848212255, S. 113). Die Wellenfunktion gehört als mathematische Formel zur abstrakten geistigen Welt, die Katze in der Kiste zur realen physikalischen. Die Vermischung der beiden Welten in einer physikalischen Theorie führt zu etwas, was in der realen Welt völliger Unsinn, in der abstrakten geistigen Welt ein erlaubtes gedankliches Konstrukt ist. Man muss sich nur im Klaren darüber sein, dass die Ergebnisse der Theorien, die beide Welten miteinander vermischen, nicht zur realen Welt gehören. Um es noch mal ganz deutlich zu sagen: Die gleichzeitig tote und lebendige Katze von Schrödingers Gedankenexperiment gehört nicht der realen Welt an.

Wie abstrakte und reale Welt miteinander verbunden sind

Zwischen der abstrakten und der physikalischen Welt gibt es nur eine Verbindung: Das sind die Prozesse. Dabei definiere ich einen Prozess in Übereinstimmung mit der DIN IEC 60050-351 als die Gesamtheit von aufeinander einwirkenden Vorgängen in einem System, durch die Materie, Energie oder Information umgeformt, transportiert oder gespeichert wird.“ Beispielsweise sind Computerprogramme Prozesse. Der Programmcode gehört zur abstrakten geistigen Welt. Die Ausführung des Programmcodes gehört zur physikalischen Welt, weil jede Durchführung eines Programmschritts eine Wechselwirkung darstellt.

Thomas Nagel ist wohl nicht bewusst, dass Prozesse die Verbindung zwischen der abstrakten geistigen und der realen Welt darstellen. Es mag völlig richtig sein, dass “Werte” nicht zur naturwissenschaftlichen Welt gehören, doch wenn Werte (= Ziele) in Prozesse (= Programme) eingebaut werden, dann verbinden sie die abstrakte Welt mit der physikalischen. Das Gleiche gilt für “Denken”. Denken formt Information um oder speichert sie. Denken kann deshalb als ein Prozess angesehen werden und der Denkprozess verbindet die abstrakte mit der realen Welt, indem etwas ausgeführt wird. Abstrakte Information wird umgeformt und physikalisch gespeichert.

Was ist aber mit dem Bewusstsein? Allgemein wird Bewusstsein als eine Entität angesehen, die je nachdem, aus welcher Fakultät der Wissenschaftler stammt, entweder einer nicht fassbaren, d. h. abstrakten, oder einer realen materialistischen, d. h. physikalischen Welt zugeordnet wird. Theologen und Geisteswissenschaftler neigen eher dazu, Bewusstsein als eine Entität der geistigen Ebene anzusehen. Dagegen ist nach meiner Überzeugung Bewusstsein ein Prozess (wie ich unter anderem in meinem Büchlein mit dem Titel “Synthetisches Bewusstsein ISBN 978-3842368033”) beschrieben habe. Damit verbindet es beide Welten, die abstrakte geistige und die physikalische.

Nagel hat insoweit recht, dass alle drei Entitäten, die den menschlichen Geist auszeichnen, sich nicht auf physikalische Gesetze reduzieren lassen. Aber sie lassen sich auf Prozesse reduzieren, die eine Verbindung zwischen der physikalischen und der abstrakten Welt darstellen.

Kann Krankheit auf überzeitliche physikalische Gesetze reduziert werden?

Wir können das bisher Gesagte anwenden und testen, indem wir einmal untersuchen, wo Krankheit einzuordnen ist. Ist Krankheit etwas abstrakt Geistiges oder ist es eine Entität der naturwissenschaftlichen Weltsicht? Nagel würde jetzt sagen: „Krankheit lässt sich nicht reduzieren auf überzeitliche physikalische Gesetze.“

Ich sehe Krankheit als ein Abweichen von der Regelhaftigkeit der Lebensvorgänge. Das Ausmaß dieses Abweichens bestimmt, ob es sich um Krankheit handelt oder nicht. Das Ausmaß ist ein abstrakter geistiger Wert. Lebensvorgänge sind Prozesse, denn in einem biologischen System, auf das sich der jeweilige Lebensvorgang bezieht, wird Materie, Energie oder Information umgeformt, transportiert oder gespeichert. Wenn es bei einem der Systemelemente zu Abweichungen kommt, dann kann das als Krankheit gelten. Weil Lebensvorgänge Prozesse sind, sehe ich Krankheit ebenfalls als einen Prozess. Da in Prozessen regelmäßig Information umgeformt, transportiert oder gespeichert wird, liegt in der Beobachtung und Einordnung der sich verändernden Information einer der Schlüssel zum tieferen Verständnis für das Wesen der Krankheit. Wie Information sich auf den Krankheitsprozess auswirkt, werde ich in einem meiner nächsten Beiträge untersuchen. – Klaus-Dieter Sedlacek

Buchtipps:

 

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse

Julius_Robert_Meyer
Julius_Robert_Meyer

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse, die unsere gesamte Anschauung über das Wesen der Natur grundlegend beeinflusst hat, verdanken wir einem einfachen Arzt.

Der Vorgang ist deshalb noch besonders interessant, weil die tiefe Erkenntnis einem Menschen ganz plötzlich gelang, der bis dahin auch nicht das Geringste geleistet hatte, bei dem nichts auf eine besondere Befähigung hinwies, und der auch nicht zum zweiten Mal hervorgetreten ist.

Julius Robert Mayer wurde am 25. November 1814 als dritter Sohn eines Apothekers in Heilbronn geboren. Auf der Schule hat der Knabe sehr schlechte Leistungen aufzuweisen gehabt. Auch seine Doktordissertation über das damals gerade gefundene Santonin lässt in keiner Weise einen hervorragenden Denker oder Forscher erkennen. 1840 trat Mayer als Schiffsarzt in niederländische Dienste, um nach Java zu fahren. Der Inhalt des uns erhaltenen Tagebuchs dieser Reise ist durchaus belanglos.

Aber auf der Reede von Surabaya ging ihm durch eine an sich ganz nebensächliche Beobachtung plötzlich eine Gedankenreihe auf, die zu der grundlegenden Erkenntnis führte, dass Wärme und mechanische Arbeit miteinander verwandt seien, dass die eine sich in die andere umwandeln könne. Nach seiner Rückkehr fasste er am 16. Juni 1841 das von ihm entdeckte Gesetz von der Erhaltung der Kraft in einer kleinen Abhandlung zusammen, die er der damals bedeutendsten wissenschaftlich-physikalischen Zeitschrift, den »Poggendorff’schen Annalen« einsandte. Poggendorff erkannte den Wert der Arbeit nicht und schickte sie zurück. Man kann ihm daraus keinen allzu großen Vorwurf machen, da Mayer selbst seine Gedankenreihe sehr mangelhaft begründet hatte, wie es denn überhaupt scheint, dass er selbst die ganze epochale Bedeutung seiner Erkenntnis niemals ganz erfasst hat.

So ist es Julius Robert Mayer zu Lebzeiten denn auch niemals gelungen, sich durchzusetzen, und zahllose Gegner machten ihm so viel zu schaffen, dass er zwei Selbstmordversuche unternahm und 1878 verbittert starb. Dennoch steht fest, dass er als Erster das große Gesetz von der mechanischen Wärmeäquivalenz erkannt hat; nachdem es von Joule und namentlich von Helmholtz fester fundamentiert worden war, hat es auf die ganze Physik bedeutsamsten Einfluss gewonnen.

(Quelle: Moszkowski: 1000 Wunder; Wilhelm Ostwald: »Große Männer«. Akademische Verlagsgesellschaft m.b.H., Leipzig, 1909.)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Super-Dämmung entwickelt: Drastisch reduzierte Heizkosten

Wärmedämmende Materialien zu entwickeln, mit denen sich die Energieeffizienz von Gebäuden erheblich steigern lässt, ist eine zunehmend dringliche Herausforderung. Schon seit geraumer Zeit werden beim Hausbau Kunststoff-Schäume verwendet, um Dach und Außenwände besser zu isolieren. Einem Forschungsteam um Prof. Dr.-Ing. Volker Altstädt an der Universität Bayreuth ist es jetzt gelungen, diese Isolationswirkung erheblich zu steigern. Auf der Basis von Polystyrol-Schäumen haben die Bayreuther Wissenschaftler neuartige Dämmmaterialien entwickelt, die zu einer drastischen Senkung von Heizkosten beitragen können.

Der Grund dafür liegt in äußerst wirkungsvollen Zutaten, welche die Bayreuther Wissenschaftler dem Polystyrol beigemischt haben. Es handelt sich dabei um extrem dünne Kohlenstoffplättchen, sogenannte Graphene. Diese Plättchen sind flächige Netzwerke von Kohlenstoffatomen, die in sechseckigen Waben angeordnet sind.

Graphene im Kunststoff-Schaum verkleinern die Hohlräume und senken die Durchlässigkeit für infrarote Strahlung

Polystyrol-Schäume bestehen aus vielen kleinen hohlen Zellen, die durch Kunststoffwände voneinander getrennt sind. Normalerweise haben diese Zellen einen Durchmesser von rund 100 Mikrometern. Sobald aber dem Kunststoff die Kohlenstoffplättchen beigemischt werden, verringert sich die Zellgröße auf 25 Mikrometer. Die Folgen für die Isolationswirkung sind enorm. Denn aufgrund der verkleinerten Zellen wird die Gaswärmeleitung deutlich vermindert; das heißt, es fließt eine wesentlich geringere Wärmemenge durch die im Kunststoff-Schaum enthaltene Luft. Zudem wird aufgrund der Graphen-Plättchen die infrarote Strahlung abgesenkt. Denn infrarote Strahlung, die einen hohen Anteil an der aus Wohnräumen entweichenden Wärme hat, kann den Kunststoff-Schaum kaum noch durchdringen. Sie wird größtenteils reflektiert oder vom Kunststoff absorbiert.

Folglich eignen sich die mit Graphenen versetzten Schäume vorzüglich als Dämmmaterialien, die dafür sorgen, dass die Wärme in den Wohnräumen bleibt. “Die neuen Polystyrol-Schäume lassen sich ohne hohen technischen Aufwand industriell herstellen, so dass künftig im Baubereich erhebliche Einsparungen möglich werden”, erklärt Prof. Dr.-Ing. Volker Altstädt, der an der Universität Bayreuth den Lehrstuhl für Polymere Werkstoffe innehat.

Das Verfahren, die Graphene  in Kunststoffe einzubringen, eröffnet jetzt neue Perspektiven für Materialien, die das Prinzip der Nachhaltigkeit in Industrie und Wirtschaft erheblich stärken. Dipl.-Ing. Thomas Köppl, wissenschaftlicher Mitarbeiter an der Universität Bayreuth, meint: „Die von uns entwickelten Dämmmaterialien sind nur ein Beispiel für das hohe Innovationspotenzial, das in diesem Gemeinschaftsprojekt steckt und noch längst nicht ausgeschöpft ist.

Weitere Informationen zum Forschungsverbund “FUNgraphen”:  https://idw-online.de/de/news517085 (Quelle: idw)

Kontrollierte Kernfusion: Neuer Ansatz zur Energieerzeugung?

Seit Jahren entwickeln Physiker Hochenergie-Laser, um in winzigen Kügelchen durch Implosion Energie aus Kernfusion zu gewinnen. Das Vorhaben ist bei Fachleuten als “Trägheitsfusion” bekannt. Sie ist eine Spielart der so genannten kontrollierten Kernfusion, in der millimeter-große Brennstoffkügelchen von Lasern mehr als tausendfach komprimiert werden. Dadurch beginnen ab einem bestimmten Punkt Atomkerne miteinander zu verschmelzen – sie fusionieren. Der Prozess ähnelt den Vorgängen im Innern der Sonne und setzt wie dort Energie frei. Falls diese die eingesetzte Laserenergie übersteigt, lässt sich das System als Grundlage für einen Fusionsreaktor nutzen. Kontrollierte Kernfusion: Neuer Ansatz zur Energieerzeugung? weiterlesen

Den Wächter im Gehirn entdeckt

Der Chefdirigent im Gehirn schläft nie

Das “Hintergrundrauschen” haben Forscher bisher nur nicht verstanden
“Im Kopf herrscht niemals Ruhe”. Unter diesem Titel berichtet die Juni-Ausgabe von „Spektrum der Wissenschaft“ von der Entdeckung eines Netzwerks im Gehirn, das gerade dann am intensivsten arbeitet, wenn wir dösend vor uns hin träumen, schlafen oder sogar, wenn wir unter Narkose sind. Schelmisch nennen Forscher diese Aktivität “dunkle Energie des Gehirns” – in Anlehnung an die bisher noch hypothetische Dunkle Energie im Universum.

Der Autor des Artikels, der amerikanische Hirnforscher Marcus E. Raichle von der Washington University in St. Louis (Missouri), gehört zu den Entdeckern eines zentralen Systems im Gehirn, das im Hintergrund arbeitet und darum früher übersehen wurde. Denn beispielsweise tauchen bei einem EEG (Elektroenzephalogramm), bei dem Hirnwellenmuster außen am Schädel erfasst werden, auch besonders langsame Wellen auf. Bislang haben die Experten sie vernachlässigt. Sie hielten das schlicht für ein diffuses, nichtssagendes Hintergrundrauschen.Doch mittlerweile konnten Hirnforscher belegen, dass augenblicklich scheinbar nicht aktive Hirngebiete sehr regelmäßige langsame Wellen produzieren. Diese sind sogar zwischen weit auseinander liegenden Gebieten, etwa zwischen den beiden Hirnhälften, aufeinander abgestimmt.

Am meisten aber verblüffte, dass ein großes Netzwerk über mehrere weit auseinander liegende Hirngebiete existiert, welches seine Aktivität herunter fährt, solange wir eine konkrete Tätigkeit ausführen, zum Beispiel lesen. Die Forscher nennen es „Ruhestandardnetz“ (oder englisch „Default Mode Network“, kurz DMN). Wenn wir dagegen “abschalten” und in den Tag träumen, steigert jenes Ruhenetzwerk seine Aktivität. Weil diese Zufallsentdeckung überhaupt nicht zu den herrschenden Vorstellungen passte, hatten Raichle und seine Mitstreiter zunächst große Schwierigkeiten, ihre Arbeit überhaupt zu veröffentlichen.

Heute steht aber fest: Das Gehirn besitzt einen Chefdirigenten. Der schläft nie, denn er muss dafür sorgen, dass wir jederzeit auf eine plötzliche Störung angemessen reagieren, dass also die passenden Hirnregionen schnell wieder aufwachen. Alle anderen Hirnsysteme stehen im Grunde ebenfalls immer in Bereitschaft. Auch das zeigen die langsamen Wellen. Ganz schnell können diese Hirngebiete dann jeweils auf Befehl des Ruhenetzes hochschalten.

Dieses übergreifende System scheint nach Raichle auch über manche Hirnerkrankungen und -störungen Aufschluss geben. Wie es aussieht, degenerieren bei der Alzheimerdemenz gerade Gebiete, die zu den Hauptzentren jenes zentralen Ruhenetzes gehören. Bei Depressionen bestehen zwischen diesen Zentren teils weniger Verbindungen. Bei Schizophrenie wiederum fällt auf, dass manche der Zentren auffallend viele Signale senden.

Die bewusste Auseinandersetzung mit der Außenwelt macht nur einen kleinen Teil der Hirnaktivität aus. Das wissen Hirnforscher schon lange. Doch den Rahmen für das kleine Bewusstseinsfenster liefert, so Raichle, die bisher übersehene „dunkle Energie“ des Gehirns. Wenn Forscher das Ruhenetz von Versuchspersonen im Hirnscanner beobachten, erkennen sie bis zu eine halbe Minute im Voraus, ob der- oder diejenige gleich in einem Computertest einen Fehler machen wird – nämlich dann, wenn dieses früher übersehene System die Kontrolle übernimmt. (Quelle: Spektrum der Wissenschaft, Juni 2010)

Sonnenenergie tanken

Der Solarofen des PSI kann die Strahlung der Sonne bis zu 5000-fach konzentrieren. Damit können Hochtemperatur-Solarreaktoren getestet werden.

Konzentrierte Sonnenenergie kann technisch nicht nur zur Erzeugung von elektrischem Strom genutzt werden, man kann mit ihrer Hilfe auch Brennstoffe wie Wasserstoff oder indirekt sogar flüssige Treibstoffe produzieren. Nun wurde einer der Pioniere auf diesem Gebiet, Professor Aldo Steinfeld vom Paul Scherrer Institut (PSI) und der ETH Zürich, mit dem Yellott Award, dem Preis des amerikanischen Ingenieursverband ASME für Arbeiten zu erneuerbaren Energien ausgezeichnet.

Sonnenenergie ist im Wesentlichen uneingeschränkt vorhanden und ihre Verwendung ökologisch sinnvoll. Allerdings ist die auf die Erde treffende Solarstrahlung stark verdünnt, nicht dauernd verfügbar sowie ungleichmässig über die Erdoberfläche verteilt. Diese Nachteile können überwunden werden, wenn die Sonnenenergie konzentriert und in chemische Energieträger umgewandelt wird, und zwar in Form von solaren Brenn- und Treibstoffen, die über lange Zeit gespeichert und über weite Distanzen transportiert werden können.

Sonnenlicht erfolgreich konzentrieren

Dazu werden durch hochkonzentriertes Sonnenlicht chemische Reaktionen angeregt, deren Produkte als Treibstoffe dienen können – im einfachsten Fall kann man etwa Wasser in Sauerstoff und Wasserstoff aufspalten und mit dem gewonnenen Wasserstoff in einer Brennstoffzelle elektrischen Strom erzeugen. Die Arbeit von Steinfeld und seinen Kollegen konzentriert sich darauf, thermochemische Hochtemperatur-Prozesse zu erforschen und besonders effiziente Solarreaktoren zu entwickeln, in denen die Vorgänge unter den extremen Bedingungen der hochkonzentrierten Sonneneinstrahlung stattfinden können. “Die Technologien zum Konzentrieren der Sonnenenergie werden bereits erfolgreich im Megawatt-Massstab in solarthermischen Kraftwerken eingesetzt. Dabei heizt konzentriertes Sonnenlicht eine Flüssigkeit auf, die wiederum Dampf erhitzt, womit eine Turbine angetrieben und über den angeschlossenen Generator elektrischer Strom erzeugt wird. Man müsste also nur einen entsprechenden chemischen Reaktor in den Brennpunkt eines Solarturm-Kraftwerks einbauen, um unser Verfahren zu nutzen” erklärt Steinfeld einen der praktischen Vorteile und das Potenzial seiner Technologie. Solarthermische Kraftwerke werden bereits in mehreren Ländern genutzt und sind in den letzten Wochen durch die Idee, in Afrika erzeugten Strom nach Europa zu transportieren, wieder ins öffentliche Bewusstsein gerückt.

Zink als Sonnenspeicher

Die Forschenden von Steinfelds Arbeitsgruppen am PSI und an der ETH arbeiten an verschiedenen chemischen Verfahren, um solare Treibstoffe herzustellen. Besonders attraktiv ist die am PSI entwickelte Methode, Zinkoxid mit Hilfe von konzentrierter Sonnenenergie in metallisches Zink und Sauerstoff aufzuspalten. Bringt man das Zink später mit Wasserdampf in Kontakt, entsteht dabei wieder Zinkoxid sowie Wasserstoff, der als Treibstoff genutzt werden kann. Der Vorteil dieses thermochemischen Kreisprozesses besteht darin, dass Sauerstoff und Wasserstoff in getrennten Reaktionen entstehen und man so nicht mit einem explosiven Gasgemisch hantieren muss. Ausserdem kann die zweite Reaktion erst an dem Ort stattfinden, an dem der Wasserstoff benötigt wird – man muss also kein Wasserstoffgas lagern oder transportieren.

Sonnenenergie tanken

Als weiteres Beispiel nennt Steinfeld die solare Produktion von Synthesegas – einer Mischung von Wasserstoff und Kohlenmonoxid – das mit bekannten chemischen Verfahren in flüssigen Treibstoff umgewandelt und somit an den vorhandenen Tankstellen wie gewöhnliches Benzin getankt werden kann. “Solare Brenn- und Treibstoffe machen es möglich, Kraftwerke, Fahrzeuge und Betriebe der chemischen Industrie mit umweltfreundlicher Energie zu versorgen und leisten damit einen Beitrag zur Lösung der Klimaproblematik.” betont Steinfeld.

Um die neu entwickelten Solarreaktoren testen zu können, betreibt das Labor für Solartechnik am PSI einen Solarofen, in dem die Sonnenenergie an einem Punkt bis zu 5000-fach konzentriert werden kann und in dem Temperaturen von über 2000°C erreicht werden können. Quelle: idw; Foto: Paul Scherrer Institut

Dunkle Energie: Welches Schicksal erwartet unser Universum?

Geheimnisse des Universums: Dunkle Energie

Umstrittene Dunkle Energie

Gibt es eine Alternative, die beschleunigte Expansion des Weltalls zu erklären?
Das Universum scheint sich beschleunigt auszudehnen. Ursache dafür soll eine seltsame neue Energieform sein, Fachleute nennen sie die Dunkle Energie. Das Problem: Niemand weiß wirklich, was diese Dunkle Energie wirklich ist. Bisher suchen sie jedenfalls vergeblich nach Erklärungen für das rätselhafte Verhalten des Kosmos.

Kein Wunder, dass immer wieder alternative Modelle entwickelt werden, um vielleicht ohne exotischen Energieformen auszukommen. Wie zwei Kosmologen von der Oxford University im aktuellen August-Heft von “Spektrum der Wissenschaft” in der Titelgeschichte beschreiben, könnte ein solches Alternativmodell so aussehen: Falls wir kosmisch gesehen inmitten einer Region leben, in der weniger Sterne und andere Materie zu finden sind als anderswo, dann würde sich der astronomische Befund vom gleichmäßig beschleunigten Universum anders darstellen. Dann variiert nämlich die kosmische Expansionsrate mit dem Ort – und das würde den Astronomen eine kosmische Beschleunigung nur vorspiegeln, ohne es wirklich zu sein.

Könnte es also sein, dass wir im Universum nicht in einer gleich verteilten Ansammlung von Sternen und Galaxien leben, wie das kosmische Standardmodell annimmt? Eine riesige Leere um die Erde und ihr Milchstraßensystem herum kommt den meisten Kosmologen deshalb auch sehr unwahrscheinlich vor, doch einige Forscher ziehen sie der mysteriösen Dunklen Energie vor. Was spricht dafür? Was spricht dagegen?

Die Entdeckung des beschleunigten Universums kündigte sich vor vor elf Jahren an. Aus einer winzigen Abweichung in der Helligkeit explodierender Sterne folgerten die Astronomen, sie hätten keine Ahnung, woraus über 70 Prozent des Kosmos bestehen. Sie konnten nur feststellen, dass der Raum anscheinend von einer ganz unvergleichlichen Substanz erfüllt wird, welche die Expansion des Universums nicht bremst, sondern vorantreibt. Diese Substanz erhielt damals den Namen Dunkle Energie.

Inzwischen ist ein Jahrzehnt vergangen, und die Dunkle Energie gibt noch immer so viele Rätsel auf, dass einige Kosmologen die grundlegenden Postulate, aus denen ihre Existenz gefolgert wurde, in Zweifel ziehen. Eines dieser Postulate ist das kopernikanische Prinzip. Ihm zufolge nimmt die Erde keinen zentralen oder sonst wie ausgezeichneten Platz im All ein. Wenn wir dieses Grundprinzip preisgeben, bietet sich eine überraschend einfache Erklärung für die neuen Beobachtungen an.

Wir haben uns längst an die Idee gewöhnt, dass unser Planet nur ein winziger Fleck ist, der irgendwo am Rand einer durchschnittlichen Galaxie einen typischen Stern umkreist. Nichts scheint unseren Ort inmitten von Milliarden Galaxien, die sich bis an unseren kosmischen Horizont erstrecken, besonders auszuzeichnen. Doch woher nehmen wir diese Bescheidenheit? Und wie könnten wir herausfinden, ob wir nicht doch einen speziellen Platz einnehmen? Meist drücken sich die Astronomen um diese Fragen und nehmen an, unsere Durchschnittlichkeit sei offensichtlich genug. Die Idee, wir könnten tatsächlich einen besonderen Ort im Universum bewohnen, ist für viele undenkbar. Dennoch ziehen einige Physiker dies seit Kurzem in Betracht.

Zugegeben: Die Annahme, wir seien kosmologisch unbedeutend, erklärt viel. Mit ihrer Hilfe können wir von unserer kosmischen Nachbarschaft auf das Universum im Großen und Ganzen schließen. Alle gängigen Modelle des Universums beruhen auf dem kosmologischen Prinzip. Die beschleunigte Expansion war also die große Überraschung, mit der die aktuelle Revolution in der Kosmologie begann.

Angenommen, die Expansion verlangsamt sich überall, weil die Materie an der Raumzeit zieht und sie bremst. Nehmen wir ferner an, dass wir in einer gigantischen kosmischen Leere leben – in einem Gebiet, das zwar nicht völlig leer gefegt ist, wo aber die mittlere Materiedichte nur etwa halb so groß ist wie anderswo. Je leerer eine Raumregion ist, desto weniger Materie bremst dort die räumliche Expansion, und entsprechend höher ist die Expansionsgeschwindigkeit innerhalb des Leerraums. Am höchsten ist sie in der Mitte; zum Rand hin, wo sich die höhere Dichte des Außenraums bemerkbar macht, nimmt sie ab. Zu jedem Zeitpunkt expandieren verschiedene Raumpartien unterschiedlich schnell – wie der ungleichmäßig aufgeblasene Luftballon.

Wie ausgefallen ist diese Idee einer monströsen Abnormität? Auf den ersten Blick sehr. Sie scheint in eklatantem Widerspruch zur kosmischen Hintergrundstrahlung zu stehen, die bis auf Hunderttausendstel genau gleichförmig ist, ganz zu schweigen von der im Großen und Ganzen ebenmäßigen Verteilung der Galaxien. Doch bei näherer Betrachtung muten diese Indizien weniger zwingend an. Die Gleichförmigkeit der Reststrahlung erfordert nur, dass das Universum in jeder Richtung nahezu gleich aussieht. Wenn eine Leere ungefähr kugelförmig ist und wir einigermaßen nahe ihrem Zentrum sitzen, muss sie nicht unbedingt den Beobachtungen widersprechen.

In kommenden Jahren werden Himmelsbeobachtungen zwischen beiden Erklärungen entscheiden.
Quelle: Spektrum der Wissenschaft, August 2009

Trinkwasser aus Wüstenluft

Kein Pflänzchen weit und breit – dafür ist es in der Wüste zu trocken. Doch in der Luft ist Wasser enthalten. Forscher haben nun einen Weg gefunden, aus der Luftfeuchtigkeit Trinkwasser zu gewinnen. Das System basiert nur auf regenerativer Energie und ist daher autark.

Risse ziehen sich durch den ausgedörrten Wüstenboden – die karge Landschaft ist geprägt von Wassermangel. Doch selbst dort, wo es an Seen, Flüssen und Grundwasser mangelt, sind in der Luft erhebliche Wassermengen gespeichert: In der Negev-Wüste in Israel beispielsweise beträgt die relative Luftfeuchtigkeit im Jahresmittel 64 Prozent – in jedem Kubikmeter Luft befinden sich 11,5 Milliliter Wasser.

Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart haben gemeinsam mit ihren Kollegen von der Firma Logos Innovationen einen Weg gefunden, diese Luftfeuchtigkeit autark und dezentral in trinkbares Wasser umzuwandeln. »Der Prozess, den wir entwickelt haben, basiert ausschließlich auf regenerativen Energiequellen wie einfachen thermischen Sonnenkollektoren und Photovoltaikzellen, was diese Methode vollständig energieautark macht. Sie funktioniert also auch in Gegenden, in denen es keine elektrische Infrastruktur gibt«, sagt Siegfried Egner, Abteilungsleiter am IGB. Das Prinzip: Hygroskopische Salzsole – also Salzlösung, die Feuchtigkeit aufsaugt – rinnt an einer turmförmigen Anlage hinunter und nimmt Wasser aus der Luft auf. Anschließend wird sie in einen Behälter gepumpt, der in einigen Metern Höhe steht und in dem Vakuum herrscht. Energie aus Sonnenkollektoren erwärmt die Sole, die durch das aufgenommene Wasser verdünnt ist. Der Siedepunkt liegt aufgrund des Vakuums niedriger als bei normalem Luftdruck. Diesen Effekt kennt man aus den Bergen: Da der Luftdruck auf dem Gipfel geringer ist als im Tal, kocht Wasser bereits bei Temperaturen deutlich unter 100 Grad Celsius. Das verdampfte, salzfreie Wasser kondensiert über eine Destillationsbrücke und läuft über ein vollständig gefülltes Rohr kontrolliert nach unten ab, wobei die Schwerkraft dieser Wassersäule kontinuierlich das Vakuum erzeugt – eine Vakuumpumpe ist nicht nötig. Die wieder konzentrierte Salzsole fließt erneut an der Turmoberfläche hinunter, um Luftfeuchtigkeit aufzunehmen.

»Das Konzept eignet sich für verschiedene Größenordnungen: Es sind sowohl Einzelpersonenanlagen denkbar als auch Anlagen, die ganze Hotels mit Wasser versorgen«, sagt Egner. Für beide Komponenten, die Aufnahme der Luftfeuchtigkeit und die Vakuumverdampfung, gibt es Prototypen. In Laborversuchen haben die Forscher das Zusammenspiel der beiden Komponenten bereits getestet. In einem weiteren Schritt wollen die Forscher eine Demonstrationsanlage entwickeln.  (Text: Copyright © by
Fraunhofer-Gesellschaft)