Schlagwort-Archive: albert einstein

Einsteins Gravitationswellen entdeckt

(11.02.2016) Idw. In diesem Jahr jährt sich Einsteins Vorhersage von Gravitationswellen zum hundertsten Mal. Und an diesem Donnerstag, um 16:30 Ortszeit, hat die amerikanische National Science Foundation eine Pressekonferenz im National Press Club in Washington, DC, einberufen, auf der Wissenschaftler von Caltech, MIT und dem Laser Interferometer Gravitational-wave Observatory (LIGO) die neuesten Resultate von LIGOs Suche nach Gravitationswellen bekanntgeben werden.

Einsteins Gravitationswellen entdeckt weiterlesen

Elektronen gleichzeitig an zwei verschiedenen Orten

Nach einem grundlegenden Theorem der Quantenmechanik sind bestimmte Elektronen in ihrem Ort nicht eindeutig bestimmbar. Zwei Physikern der Universität Kassel ist nun gemeinsam mit Kollegen in einem Experiment der Beweis gelungen, dass sich diese Elektronen tatsächlich an zwei Orten gleichzeitig aufhalten.

„Vermutet hat man dieses für den Laien schwer verständliche Verhalten schon lange, aber hier ist es zum ersten Mal gelungen, dies experimentell nachzuweisen“, erläuterte Prof. Dr. Arno Ehresmann, Leiter des Fachgebiets „Funktionale dünne Schichten und Physik mit Synchrotronstrahlung“ an der Universität Kassel. „In umfangreichen Versuchen haben wir an Elektronen von Sauerstoff-Molekülen die zum Beweis dieser Aussage charakteristischen Oszillationen nachgewiesen.“ Dr. André Knie, Mitarbeiter am Fachgebiet und Geschäftsführer des LOEWE-Forschungs-Schwerpunkts „Elektronendynamik chiraler Systeme“, ergänzte: „Dieses Experiment legt einen Grundstein für das Verständnis der Quantenmechanik, die uns wie so oft mehr Fragen als Antworten gibt. Besonders die Dynamik der Elektronen ist ein Feld der Quantenmechanik, dass zwar schon seit 100 Jahren untersucht wird, aber immer wieder neue und verblüffende Einsichten in unsere Natur ermöglicht.“

Die theoretischen Grundlagen für die Entdeckung gehen auf Albert Einstein zurück. Er erhielt für die Beschreibung des sogenannten Photoeffekts 1922 den Physik-Nobelpreis. Danach können Elektronen aus Atomen oder Molekülen mit Hilfe von Licht dann entfernt werden, wenn die Energie des Lichts größer ist als die Bindungsenergie der Elektronen. Einstein hat schon 1905 die mathematische Beschreibung dieses sogenannten Photoeffekts abgeleitet, in dem er damals Unerhörtes annahm: Licht wird dazu als ein Strom aus Lichtteilchen beschrieben und je ein Lichtteilchen („Photon“) übergibt seine Energie an je ein Elektron. Übersteigt diese Energie die Energie, mit dem das Elektron an das Atom gebunden ist, wird das Elektron freigesetzt. Soweit wurde diese Annahme später auch experimentell bestätigt.

Einstein weitergedacht

Darauf aufbauend lässt sich das Verhalten von Elektronen weiter untersuchen. In einem zweiatomigen Molekül, das aus zwei gleichen Atomen zusammengesetzt ist (z. B. das Sauerstoffmolekül O2) gibt es Elektronen, die sehr eng an das jeweilige Atom gebunden sind. Im Teilchenbild könnte man sich vorstellen, dass diese Elektronen um das jeweilige Atom kreisen. Nach der Quantenmechanik sind diese Elektronen allerdings nicht zu unterscheiden. Für ein Photon mit einer Energie, die größer ist als die Bindungsenergie dieser Elektronen (für beide Elektronen ist die Bindungsenergie gleich) stellt sich nun die Frage: An welches dieser beiden für mich als Photon nicht zu unterscheidenden Elektronen gebe ich meine Energie ab? Die Antwort der Quantenmechanik lautet: Das Photon gibt seine Energie zwar an ein einziges Elektron ab, aber dieses befindet sich mit einer gewissen Wahrscheinlichkeit gleichzeitig nahe bei Atom 1 und nahe bei Atom 2 (das Gleiche gilt für das andere Elektron). Und: Elektronen sind auch als Welle verstehbar, genauso wie damals Einstein zur Beschreibung des Lichts Teilchen angenommen hat. Wird nun ein einziges Elektron vom Atom entfernt, so laufen die zugehörigen Wellen sowohl von Atom 1 aus, als auch von Atom 2, da sich dieses Elektron ja gleichzeitig da und dort befindet. Seit langem wurde daher schon vorhergesagt, dass sich diese beiden Wellen überlagern müssen und damit interferieren. Experimentell war der Nachweis dieser Interferenzmuster bis dato noch nicht gelungen.

Genau dies glückte jedoch nun der Forschungsgruppe, an der die Kasseler Physiker Ehresmann und Knie beteiligt waren – ein eindeutiger Beleg, dass sich ein Elektron gleichzeitig an zwei verschiedenen Orten aufhält. Die Experimente wurden an den Synchrotronstrahlungsanlagen DORIS III bei DESY in Hamburg sowie BESSY II in Berlin durchgeführt. Dabei wurde monochromatische Synchrotronstrahlung auf gasförmige Moleküle fokussiert. Diese wurden durch die Strahlung ionisiert und die bei der Ionisation freiwerdenden Elektronen durch sogenannte Elektronenspektrometer winkel- und energieaufgelöst detektiert. (Quelle: idw)

Buchtipps:

 

Verrückte Quanten bereiten klassischer Physik Niederlage

Quantenphysikalische Teilchen können an mehreren Orten gleichzeitig sein und hinterlassen dabei sogar Spuren. Das haben Physiker der Goethe-Universität in einem verblüffenden Experiment nachgewiesen, das Albert Einstein vor mehr als 80 Jahren anregte. Damals konnte sein wichtigster Kontrahent, der Physiker Niels Bohr, ihm lediglich Argumente entgegensetzten. Jetzt geben die neuen Experimente dem Dänen Recht.

FRANKFURT. Einstein hat Zeit seines Lebens die quantenphysikalische Aussage bekämpft, dass Teilchen – solange man sie nicht beobachtet – an mehreren Orten gleichzeitig sein können. Sein wichtigstes Gegenargument war: Die geisterhaften Teilchen müssten durch Zusammenstöße mit anderen Teilchen entlang ihrer Bahn eine sichtbare Spur hinterlassen. Eben diese Spur hat Dr. Lothar Schmidt in der Arbeitsgruppe von Prof. Reinhard Dörner am Institut für Kernphysik der Goethe-Universität nun gemessen.

Das klassische Experiment, das auch heutigen Physikstudenten noch Kopfzerbrechen bereitet, ist die Streuung quantenphysikalischer Teilchen am Doppelspalt. Solange es unbeobachtet ist, scheint jedes einzelne Teilchen durch beide Schlitze des Spalts zu gehen. Es bildet – ähnlich wie Wasserwellen – ein Interferenzmuster hinter dem Spalt. Dieses verschwindet aber, sobald man eine Information über den Weg des Teilchens zu gewinnen versucht.

Einstein argumentierte, man müsse gar nicht nachsehen, wo das Teilchen ist, denn es verrate seinen Ort indirekt, indem es beim Passieren des Spalts einen Impuls überträgt: Ginge es durch den linken Schlitz, erfahre das Beugungsgitter einen minimalen Stoß nach links, und entsprechend nach rechts, wenn es durch den rechten Spalt geht. Bohr konterte, auch das Beugungsgitter verhalte sich wie ein quantenmechanisches System, das heißt, es müsse gleichzeitig in beide Richtungen abgelenkt werden.

Dass diese verrückt klingende Vermutung tatsächlich richtig ist, haben Dörner und seine Mitarbeiter jetzt durch die Streuung von Helium-Atomen an einem „Doppelspalt“ nachgewiesen. Mit den Modellen der klassischen Physik lassen sich die gemessenen Ergebnisse nicht beschreiben. „Da wir bei dieser Versuchsanordnung nicht beobachten, durch welches Loch das Teilchen gegangen ist, passiert genau das, was Bohr vorhergesagt hat: Der Doppelspalt rotiert gleichzeitig mit und gegen den Uhrzeigersinn“, erklärt Schmidt. (Quelle: idw).

Buchtipps:

 

Was passiert wenn Makro- und Quantenwelt zusammentreffen?

Heidelberg. Was passiert mit den manchmal geheimnisvollen Phänomenen der Quantenphysik, wenn man immer größere und schwerere Objekte betrachtet? Darüber stritten einst schon Erwin Schrödinger und Albert Einstein. Neue Experimente mit Systemen großer Masse sollen jetzt Hinweise zur Klärung dieses fundamentalen Rätsels liefern.

Wie die Quantenphysiker Markus Aspelmeyer und Markus Arndt von der Universität Wien in der Oktoberausgabe von “Spektrum der Wissenschaft” berichten, könnten sie darüber hinaus in Laborexperimenten sogar bestimmte Vorhersagen der Quantengravitation auf der sonst unerreichbaren Planck-Skala überprüfen – jener Dimension, bei der Raum und Zeit an ihre klassischen Grenzen stoßen.

Diese Art der Forschung hat ihren Ursprung im Jahre 1935. Damals entwarf der Theoretiker Erwin Schrödinger ein scheinbar paradoxes Gedankenexperiment, das seitdem Quantenphysiker und Philosophen beschäftigt. Es geht um die fundamentale Frage, ob auch ein makroskopisches Objekt in unbeobachtetem Zustand mehrere sich eigentlich ausschließende Eigenschaften annehmen kann – ob etwa eine Katze zugleich lebendig und tot zu sein. Dahinter steht das Problem des Messprozesses in der Quantenphysik.

Bei der Beobachtung etwa in einem Laborversuch reduziert sich der vorher nach der Quantentheorie mehrdeutige Zustand verschiedener Möglichkeiten auf genau eine Wirklichkeit, also genau einen bestimmten Messwert. Die Physiker sprechen dann auch vom “Kollaps der Wellenfunktion”. Lange Zeit waren solche Versuche jedoch nur auf die allerkleinsten Objekte der Nature – Atome und kleine Moleküle – beschränkt. Seit einigen Jahren verbuchen Physiker nun aber große Fortschritte bei quantenphysikalischen Experimenten mit makroskopischen Objekten. Diese enthalten beispielsweise Millionen oder Milliarden von Atomen, etwa in kleinen schwingenden Hebeln oder Membranen. Die Antworten beeinflussen unser grundlegendes Verständnis von Wirklichkeit und Kausalität.

Wenn also Makro- und Quantenwelt im Labor zusammentreffen – was werden wir aus diesen Experimenten lernen? Eines ist sicher: Vorläufig wird Raum für verschiedene Deutungen der Resultate bleiben. Sollten alle Experimente bei hoher Masse und Komplexität lediglich die Vorhersagen der etablierten Quantenphysik bestätigen, bliebe der philosophische Erkenntnisstand aus Sicht des Quantenphysikers unverändert. Gleichwohl würden dann etliche alternative Vorstellungen über die Welt ausgeschlossen werden – etwa jene, die den Kollapsmodellen zu Grunde liegen.

Nicht weniger spannend ist eine andere Variante. Nehmen wir an, die Forscher würden im Labor auf reproduzierbare Abweichungen von den etablierten Vorhersagen der gängigen Quantentheorie stoßen. Dann wäre es eine Herausforderung, zu entscheiden, ob diese mit “neuer Physik” oder doch im Rahmen der gängigen Quantentheorie ablaufen. (Quelle: Spektrum der Wissenschaft, Oktober 2012)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Beschenkt ein Gott seine Schöpfung mit Freiheit?

Video: Gott und die Wissenschaft

„Gott würfelt nicht” ist ein oft zitierter Ausspruch Albert Einsteins, der mit diesem Argument die Quantenmechanik ablehnte. Die Quantenmechanik beschreibt verschiedene Zustände von Elementarteilchen mithilfe von berechenbaren Wahrscheinlichkeiten – einzelne Ereignisse sind dabei nicht mehr präzise vorhersagbar. Einstein zum Trotz ist sie inzwischen ein anerkanntes Teilgebiet der Physik. Oft wird die Quantentheorie aber auch zur Beantwortung weltanschaulicher Fragen und als Grundlage philosophischer und theologischer Hypothesen herangezogen. Diese Praxis hinterfragt die LMU-Wissenschaftlerin Anna Ijjas in ihrem neuen Buch „Der Alte mit dem Würfel”. „Mittlerweile gibt es kaum noch ein metaphysisches Problem, das nicht unter Berufung auf die Quantentheorie angeblich gelöst wurde”, sagt die Theologin und Physikerin Ijjas, die in ihrem Buch untersucht, ob und inwiefern die Quantentheorie für theologische und philosophische Fragestellungen eine Rolle spielen kann. Dazu entwickelte sie eigens eine neue Methodik, anhand derer sie die Verbindung zwischen Quantenmechanik und Metaphysik hinterfragte.

Insbesondere interessierte sie, ob die der Quantenmechanik zugrunde liegende Theorie mit verschiedenen metaphysischen Modellen – wie etwa der Determinismus-Frage – logisch vereinbart werden kann. Anschließend untersuchte Ijjas die Relevanz der Quantenphysik für die Frage nach dem Verhältnis von Gehirn und Bewusstsein, dem Problem der Willensfreiheit und dem Wirken Gottes in der Welt. Dabei zeigt sich für Ijjas, dass zentrale theologische Aussagen mit der Theorie der Quantenphysik durchaus vereinbar sind – ein interdisziplinärer Dialog zwischen Naturwissenschaft und Theologie also möglich und sinnvoll ist. „Ich glaube, Einstein hat sich geirrt”, sagt Ijjas, „das Universum lässt eine gewisse Offenheit der Vorgänge zu. Aber die Quantenphysik gibt keinen Anlass zu glauben, dass die Welt von blindem Zufall regiert wäre. Vielmehr stellt eine kreatürliche Fähigkeit zur eigenen Entscheidung die Norm dar. Gott beschenkt seine Schöpfung mit Freiheit.” (göd) (Quelle:idw)

Elektronen an zwei Orten gleichzeitig

Video: Die Quantenphysik

In einer Art molekularem Doppelspaltexperiment haben Wissenschaftler des Fritz-Haber-Instituts (FHI) der Max-Planck Gesellschaft in Zusammenarbeit mit Forschern vom California Institute of Technology in Pasadena/USA erstmals an Elektronen nachgewiesen, dass diese gleichzeitig Eigenschaften von Welle und Teilchen besitzen und quasi per Knopfdruck zwischen beiden Zuständen hin- und hergeschaltet.

Vor hundert Jahren begann man den in der Naturphilosophie postulierten dualen Charakter der Natur auch auf der Ebene elementarer physikalischer Vorgänge schrittweise zu erkennen. Albert Einstein war der erste, der 1905 diese Konsequenz aus Plancks Quantenhypothese zog. Er ordnete dem eindeutig als elektromagnetische Welle bekannten Photon Teilchencharakter zu. Dies ist die Quintessenz seiner Arbeit zum Photoeffekt. Später war es vor allem deBroglie, der 1926 erkannte, dass alle uns als Teilchen bekannten Bausteine der Natur – Elektronen, Protonen etc. – sich unter bestimmten Bedingungen wie Wellen verhalten.
Die Natur in ihrer Gesamtheit ist also dual; kein einziger ihrer Bestandteile ist nur Teilchen oder Welle. Niels Bohr führte zum Verständnis dieser Tatsache 1923 das Korrespondenz-Prinzip ein, das vereinfacht besagt: Jeder Bestandteil der Natur hat sowohl Teilchen- als auch Wellencharakter und es hängt nur vom Beobachter ab, welchen Charakter er gerade sieht. Anders gesagt: Es hängt vom Experiment ab, welche Eigenschaft – Teilchen oder Welle – man gerade misst. Dieses Prinzip ist als Komplementaritätsprinzip in die Geschichte der Physik eingegangen.

Albert Einstein war diese Abhängigkeit der Natureigenschaften vom Beobachter Zeit seines Lebens suspekt. Er glaubte, es müsse eine vom Beobachter unabhängige Realität geben. Doch die Quantenphysik hat die Tatsache, dass es keine unabhängige Realität zu geben scheint, im Laufe der Jahre einfach als gegeben akzeptiert, ohne sie weiter zu hinterfragen, da alle Experimente sie immer wieder und mit wachsender Genauigkeit bestätigt haben.

Bestes Beispiel ist das Young’sche Doppelspaltexperiment. Bei diesem Doppelspaltexperiment lässt man kohärentes Licht auf eine Blende mit zwei Schlitzen fallen. Auf einem Beobachtungsschirm hinter der Blende zeigt sich dann ein Interferenzmuster aus hellen und dunklen Streifen. Das Experiment kann aber nicht nur mit Licht, sondern auch mit Teilchen wie z. B. Elektronen durchgeführt werden. Schickt man einzelne Elektronen nacheinander durch den offenen Young’schen Doppelspalt, erscheint auf der dahinterstehenden Photoplatte ein streifenförmiges Interferenzmuster, das keinerlei Information über den Weg, den das Elektron genommen hat, enthält. Schließt man jedoch einen der beiden Spalte, so erscheint auf der Photoplatte ein verwaschenes Abbild des jeweils offenen Spaltes, aus dem man den Weg des Elektrons direkt ablesen kann. Eine Kombination aus Streifenmuster und Lagebild ist in diesem Doppelspaltexperiment jedoch nicht möglich, dazu bedarf es eines molekularen Doppelspaltexperiments.

Obwohl jedes Elektron einzeln durch einen der beiden Spalte zu laufen scheint, baut sich am Ende ein wellenartiges Interferenzmuster auf, als ob sich das Elektron beim Durchgang durch den Doppelspalt geteilt hätte, um sich danach wieder zu vereinen. Hält man aber einen Spalt zu oder beobachtet man, durch welchen Spalt das Elektron geht, verhält es sich wie ein ganz normales Teilchen, das sich zu einer bestimmten Zeit nur an einem bestimmten Ort aufhält, nicht aber an beiden gleichzeitig. Je nachdem also, wie man das Experiment ausführt, befindet sich das Elektron entweder an Ort A oder an Ort B oder an beiden gleichzeitig.
Das diese Doppeldeutigkeit erklärende Bohrsche Komplementaritäts-Prinzip fordert aber zumindest, dass man nur eine der beiden Erscheinungsformen zu einer gegebenen Zeit in einem gegebenen Experiment beobachten kann – entweder Welle oder Teilchen, aber nicht beides zugleich. Entweder ist ein System in einem Zustand des wellenartigen “Sowohl-als-auch” oder aber des teilchenartigen “Entweder-oder” in Bezug auf seine Lokalisierung.

In jüngster Zeit hat eine Klasse von Experimenten ergeben, dass diese verschiedenen Erscheinungsformen der Materie ineinander überführbar sind, das heißt, man kann von einer Form in die andere schalten und unter bestimmten Bedingungen wieder zurück. Diese Klasse von Experimenten nennt man Quantenmarker und Quantenradierer. Sie haben in den letzten Jahren an Atomen und Photonen und seit jüngstem auch an Elektronen gezeigt, das es ein Nebeneinander von “Sowohl-als-auch” und “Entweder-oder” für alle Formen der Materie gibt, also eine Grauzone der Komplementarität. Es gibt demzufolge experimentell nachweisbare Situationen, in denen die Materie sowohl als Welle aber auch als Teilchen gleichzeitig in Erscheinung tritt.

Beispiele dafür sind die Atom-Interferometrie, wo dieses Verhalten 1997 erstmalig bei Atomen, d.h. zusammengesetzten Teilchen, gefunden wurde. In der Ausgabe [nature, 29. September 2005] berichten die Berliner Max-Planck-Forscher gemeinsam mit Forschern vom California Institute of Technology in Pasadena/USA nun von molekularen Doppelspaltexperimenten. Diese beruhen darauf, dass sich Moleküle mit identischen und damit spiegelsymmetrischen Atomen wie ein von der Natur aufgebauter mikroskopisch kleiner Doppelspalt verhalten. Dazu gehört Stickstoff, wo sich jedes Elektron – auch die hochlokalisierten inneren Elektronen – an beiden Atomen gleichzeitig aufhält. Ionisiert man nun ein solches Molekül etwa mit weicher Röntgenstrahlung, führt diese Eigenschaft zu einer wellenartig streng gekoppelten Emission eines Elektrons von beiden atomaren Seiten, genauso wie im Doppelspaltexperiment mit Einzelelektronen.

Die Experimente wurden von Mitarbeitern der Arbeitsgruppe “Atomphysik” des FHI an den Synchrotronstrahlungslaboren BESSY in Berlin und HASYLAB bei DESY in Hamburg durchgeführt. Die Messungen mittels einer Multi-Detektoranordnung für kombinierten Elektronen- und Ionen-Nachweis fanden hinter so genannten Undulator-Strahlrohren statt, die weiche Röntgenstrahlung mit hoher Intensität und spektraler Auflösung liefern. Quelle: idw

Wenn sich jedes Elektron an zwei Orten gleichzeitig aufhalten kann, wie im vorletzten Absatz angeführt, dann hat das Folgen für unser Weltbild. Welche Folgen das sind, ist im Sachbuch mit dem Titel  Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen näher beschrieben.

Quantenverschränkung: Brückenschlag zwischen Naturwissenschaft und Religion?

Video: Rätselhafte Quantenwelt

(openPR) – Kann die Wissenschaft einen Brückenschlag zur Religion anbieten? Diese Frage haben sich bereits Generationen von Naturwissenschaftlern und Philosophen ergebnislos gestellt. Neueste Ergebnisse aus der modernen Quantenphysik lassen jedoch darauf schließen, dass menschliches Bewusstsein auch außerhalb des Körpers existiert, was wiederum ein Hinweis auf eine unsterbliche Seele ist. Führende Physiker sprechen von einem Paradigmenwechsel, der unser Weltbild bereits in den nächsten Jahren von Grund auf revolutionieren könnte.
„Du kannst nicht von Gott reden, weil Gott eigentlich das Ganze ist. Und wenn er das Ganze ist, dann schließt es Dich mit ein.” Dieses Zitat stammt von keinem Theologen, sondern von dem Physiker Professor Dr. Hans-Peter Dürr, einem Schüler des Nobelpreisträgers Werner Heisenberg. Dürr, der langjähriger Direktor des Max-Planck-Instituts für Physik in München war, zieht heute Bilanz über die Ergebnisse der modernen Quantenphysik und die daraus resultierenden Konsequenzen für unser gesamtes Weltbild. „Was wir Diesseits nennen, ist im Grunde die Schlacke, die Materie, also das was greifbar ist. Das Jenseits ist alles Übrige, die umfassende Wirklichkeit, das viel Größere”, zeigt er sich überzeugt.
Die Basis für die atemberaubende These liefert das quantenphysikalische Phänomen der Verschränkung. Bereits Albert Einstein ist auf diesen seltsamen Effekt gestoßen, hat ihn aber als „spukhafte Fernwirkung” später zu den Akten gelegt. Das Verschränkungsprinzip besagt Folgendes: Ändert ein Teilchen seinen Zustand, so erfolgt diese Änderung wie durch Geisterhand zum exakt gleichen Zeitpunkt auch bei dem anderen. Diese Verschränkung bleibt auch dann erhalten, wenn die wenn die Wechselwirkung weit in der Vergangenheit stattgefunden hat und die beiden Teilchen weit voneinander entfernt sind. Die moderne Wissenschaft geht seit kurzem davon aus, dass große Teile des Universums seit dem kosmischen Urknall vor 13.7 Milliarden miteinander verschränkt sind.

Das Gehirn als Welle

Diese fundamentale Eigenschaft des Universums hat wiederum dramatische Auswirkungen auf jedes einzelne Individuum. Das liegt daran, dass der menschliche Körper aus Organen, Zellen und Molekülen besteht, die ihrerseits von atomaren Teilchen gebildet werden. Da diese Teile auch Wellencharakter haben, lässt sich wiederum folgern, dass auch unser Gehirn über Welleneigenschaften verfügt. Dies führt zu der Schlussfolgerung, dass Teile der belebten und der unbelebten Welt miteinander verschränkt sind und auf subtile Weise miteinander kommunizieren.
Ein Physikerteam aus Genf unter der Leitung von Professor Nicolas Gisin hat im August 2008 erstmals die Geschwindigkeit des Informationsaustausches zweier miteinander verschränkter Teilchen messen können. In einer komplizierten Berechnung kamen sie zu dem Ergebnis, dass die Ausbreitungsgeschwindigkeit der spukhaften Fernwirkung mindestens 100.000mal größer sein muss als die Lichtgeschwindigkeit. Demnach scheint sich die Theorie zu bestätigen, dass die „wahre” Ausbreitung der Information unendlich schnell – also simultan erfolgt.
Tief beeindruckt zeigte sich der englische Quantenphysiker Terence Graham Rudolph vom Londoner Imperial College. Die Nachricht aus Genf kommentierte er wie folgt: „Das Ergebnis zeigt, dass in der Quantenmechanik das in unserer Vorstellungskraft herrschende Raum-Zeit-Gefüge überschritten wird.” Mit anderen Worten: Die Konsequenzen des Versuches könnten die Fugen unseres Weltbildes nicht minder dramatisch erschüttern, wie zur Zeit der kopernikanischen Wende. So wird bereits darüber spekuliert, dass das Verschränkungsprinzip der Quantenphysik eine Pionierbrücke zwischen der Wissenschaft und der Spiritualität schlagen könnte.

Zusammenbruch eines Paradigmas

Für den amerikanischen Physiker Jack Sarfatti ist die Quantenverschränkung der Beweis dafür, dass Geist und Seele den Körper überdauern können. Der 1939 in New York geborene Wissenschaftler hat sich auch als Autor von populären Werken über Quantenphysik und Bewusstsein einen Namen gemacht. Sarfatti ist davon überzeugt, dass das Paradigma, welches Naturwissenschaften und Geisteswissenschaften trennt, in Kürze zusammenbrechen wird. „Nichts geschieht im menschlichen Bewusstsein, ohne dass irgendetwas im Universum darauf reagiert. Mit jedem Gedanken, jeder Handlung beschreiben wir nicht nur unsere eigene kleine Festplatte, sondern speichern auch etwas im Quantenuniversum ab, das unser irdisches Leben überdauert”, lautet sein Credo.

Sollten sich die Theorien der Quantenphysiker in weiteren Versuchen bestätigen, dann würden sich auch Naturwissenschaft und Religion fortan nicht mehr als Gegensätze gegenüberstehen. Vielmehr könnten sie sich komplementär ergänzen – geradewegs wie die zwei Seiten ein und derselben Münze. Buchtipp: Der Text enthält Auszüge aus dem Buch des Autors Rolf Froböse: Die geheime Physik des Zufalls: Quantenphänomene und Schicksal – Kann die Quantenphysik paranormale Phänomene erklären?. Edition BoD, Norderstedt 2008, herausgegeben von Vito von Eichborn, Preis: EUR 14.90.

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen von Klaus-Dieter Sedlacek, Gebundene Ausgabe, 148 Seiten, Verlag: BoD, Norderstedt;  Preis EUR 18,95.

Spukhafte Fernwirkung: 100.000 mal schneller als das Licht.

(prcenter.de) „Der Weltraum, unendliche Weiten, wir befinden uns in einer fernen Zukunft…”. Wenn der Commander das Raumschiffs via „Wharp-Antrieb” mit zigfacher Lichtgeschwindigkeit durch die Galaxis gleiten lässt, dürfte Albert Einstein nicht mit an Bord sein, da er sonst die Notbremse ziehen würde. Denn gemäß den Gesetzen seiner Relativitätstheorie setzt die Lichtgeschwindigkeit mit knapp 300.000 Kilometern pro Sekunde dem interstellaren Reise- und Kommunikationsverkehr enge Grenzen.

Stimmt das wirklich? Ein Physikerteam aus Genf unter der Leitung von Professor Nicolas Gisin könnte Einsteins Dogma erstmals in Wanken bringen – zumindest was den Kommunikationsverkehr betrifft. In einem ausgeklügelten Experiment haben Gisin und seine Teamkollegen erstmals versucht, die Geschwindigkeit des Informationsaustausches zweier miteinander verschränkter Teilchen zu messen. Hierzu verbanden die Wissenschaftler in den östlich und westlich von Genf gelegenen Ortschaften Satigny und Jussy zwei Stationen über 17.5 km lange Glasfaserkabel mit dem Genfer Labor. Dann schickten sie von Genf aus Photonen an die Endstationen, wo so genannte Interferometer als Messstationen platziert waren.

Verschränkte Teilchen gehören bisher zu dem Bizarrsten, was die moderne Physik zu offerieren hat: Ändert ein Teilchen seinen Zustand, so erfolgt diese Änderung wie durch Geisterhand spontan auch bei dem anderen. Diese Verschränkung bleibt sogar dann erhalten, wenn der Zeitpunkt der Wechselwirkung weit in der Vergangenheit liegt und die zwei Teilsysteme inzwischen über große Distanzen getrennt sind. Dabei ist es völlig egal, ob die Entfernung zwischen zwei Teilchen A und B beispielsweise 100 Meter, 1000 Kilometer oder gar Lichtjahre beträgt.

Eine 24-stündige Messung der Genfer Forscher sorgte für eine perfekte Sensation. So waren die an den unterschiedlichen Endpunkten angelangten Teilchen stets miteinander verschränkt. Im weiteren Verlauf des Versuchs ermittelten die Forscher, mit welcher Geschwindigkeit der Informationstransfer der miteinander verschränkten Teilchen erfolgt. In einer komplizierten Berechnung, die auch die Messgenauigkeit der Detektoren mit einschloss, kamen sie zu dem Ergebnis, dass die Ausbreitungsgeschwindigkeit der spukhaften Fernwirkung mindestens 100.000mal größer sein muss als die Lichtgeschwindigkeit.

Demnach scheint sich die Theorie zu bestätigen, dass die „wahre” Ausbreitung der Information unendlich schnell – also simultan erfolgt. Das wäre in der Tat eine Verletzung der Relativitätstheorie. Bisher hatten sich die Physiker mit dem Argument „aus der Patsche” geholfen, dass zwischen verschränkten Systemen keine Simultanübertragung von Information stattfinde. Die Genfer Ergebnisse scheinen dies zu widerlegen.

In der Fachwelt schlug die Neuigkeit bereits wie eine Bombe ein. In einem in „Nature News” veröffentlichten Beitrag mit der Überschrift „Physicists spooked by faster-than-light information transfer”
https://www.nature.com/news/2008/080813/full/news.2008.1038.html
räumt Forscher Gisin ein, dass er von dem überraschenden Ergebnis des Versuches regelrecht verwirrt sei. „Gegenwärtig haben wir noch keine plausible Erklärung für das Phänomen”, sagt er. Vielmehr hoffe er, dass das Experiment theoretische Physiker ermutigen werde, sich mit dem Phänomen der spukhaften Fernwirkung wesentlich intensiver als bisher auseinanderzusetzen.

Kommentar eines Quantenphysikers: „Da steckt noch der Affe in uns”

Tief beeindruckt zeigte sich bereits der englische Quantenphysiker Terence Graham Rudolph vom Londoner Imperial College. Die Nachricht aus Genf kommentierte er wie folgt: „Das Ergebnis zeigt, dass in der Quantenmechanik das in unserer Vorstellungskraft herrschende Raum-Zeit-Gefüge überschritten wird.” Wir Menschen seien es gewohnt, in einer Welt zu leben, die von einem dreidimensionalen Raum und einer eindimensionalen Zeit beherrscht werde. Diesem Weltbild würden wir eine übertriebene Bedeutung beimessen. Rudolph im Klartext: „Da steckt noch der Affe in uns.”

Mit anderen Worten: Die Konsequenzen des Versuches könnten die Fugen unseres Weltbildes nicht minder dramatisch erschüttern, wie zur Zeit der kopernikanischen Wende. So wird bereits darüber spekuliert, dass das Verschränkungsprinzip der Quantenphysik eine Pionierbrücke zwischen der Wissenschaft und der Spiritualität schlagen könnte. Die damit verbundenen Phänomene und Konsequenzen hat der Autor bereits in seinem jetzt erschienenen Buch „Die geheime Physik des Zufalls. Quantenphänomene und Schicksal – Kann die Quantenphysik paranormale Phänomene erklären?”. Edition BoD, 2. aktualisierte Auflage, Norderstedt, Juli 2008. Herausgegeben von Vito von Eichborn.” beschrieben.

Kommentar:
Eine plausible Erklärung für die Ausbreitungsgeschwindigkeit der spukhaften Fernwirkung findet sich im neu erschienenen
Sachbuch “Unsterbliches Bewusstsein” ISBN 978-3-8370-4351-8 von Klaus-Dieter Sedlacek. Dort wird ein metrikfreies Vakuum für die Übertragung der Information beschrieben. Im metrikfreien Vakuum gibt es praktisch keine Entfernungen. Die Informationsübertragung kann deshalb simultan, scheinbar mit unendlicher Geschwindigkeit geschehen.

Einsteins Theorie Kosmischer Bewegungs- Erscheinungen von Alexander Moszkowski

Buchcover Einsteins Theorie kosmischer Bewegungserscheinungen
Buchcover Einsteins Theorie kosmischer Bewegungserscheinungen

Das Buch enthält die Ausführungen von Albert Einstein zu den Themen: die neue Mechanik. – Bewahrheitung theoretischer Ergebnisse. – Parallele mit Leverrier. – Neptun und Merkur. – Erprobung der Relativitätstheorie. – Die Sonnenfinsternis von 1919. – Das Programm einer Expedition. – Der gekrümmte Lichtstrahl. – Feinheit in Berechnung und Messung – Sternfotografie. – Das Äquivalenzprinzip.– Sonnenmythus. Die Entstehung des Textes leitet sich aus Gesprächen ab, die der Autor Alexander Moszkowski in den Jahren 1919 und 1920 mit dem berühmten Physiker geführt und nachträglich notiert hat. Der Wert und Reiz des leicht fasslichen Inhalts ist seine Farbigkeit und Vielfältigkeit.

Jetzt lesen!