Schlagwort-Archive: Bakterien

Physik sorgt für Entwicklungsschub in der Biologie

Geschichte der Biophysik

Physik und Biologie haben gemeinsame Wurzeln und haben sich oft gegenseitig inspiriert. Neue physikalische Messmethoden führten zu einem Entwicklungsschub in der Biologie und Beobachtungen der Biologen dienten als Denkanstöße in der Physik.

Kann die Physik auch prinzipielle Fragen der Biologie klären? Einige Experten hegten einst starke Zweifel. So erklärte der französische Genetiker und Medizin-Nobelpreisträger von 1965, Jacques Monod, lange Zeit, dass Leben zwar mit den Gesetzen der Physik kompatibel sei, aber nicht durch physikalische Gesetze kontrolliert werde. Ernst Walter Mayr, der große Entwicklungsbiologe, behauptete, Physik spiele in der Biologie überhaupt keine Rolle und habe praktisch nichts zur Deutung lebender Materie beigetragen. Die historischen Beispiele zeigen jedoch das Gegenteil.

Mit Physik die Zelle entdecken

Ein erster Begründer der modernen Biologie war der Delfter Kaufmann und Hobbyforscher Antoni van Leeuwenhoek, der um 1670 einfache Mikroskope baute, mit denen er eine bis zu 200-fache Vergrößerung erreichte. Die Mikroskope bestanden aus einer auf einem Kupferring ruhenden Glaskugel, als Beleuchtung diente eine Kerze. Leeuwenhoek beobachtete damit erstmals lebende Zellen – wahrscheinlich sogar große Bakterien.

Historische Skizze des Mikroskops von Robert Hooke.
Mikroskop nach Hooke

Als zweiter Entdecker der Zelle kann der englische Physiker Robert Hooke angesehen werden. Der Experimentator, dessen Name vor allem durch sein Gesetz der Elastizität bekannt ist, beobachttee im 17. Jahrhundert die Struktur von Kork und prägte den Begriff der Zelle. Seine und Leeuwenhoeks Beobachtungen über die Existenz und Bewegung von Zellen wurden von den Biologen lange als Spielerei abgetan und so dauerte es noch gut 200 Jahre, bis die Idee der Zelle vollständig akzeptiert wurde.

Physikalische Prinzipien in der Biologie

Weitere Pioniere der Biophysik waren Thomas Young und Hermann von Helmholtz, die beide über die Medizin zur Physik kamen. Der Augenarzt Thomas Young lieferte Anfang des 19. Jahrhundert mit seinem Beugungsversuch am Doppelspalt den ersten experimentellen Beweis für die Wellennatur des Lichts – gegen den Widerstand des wissenschaftlichen Establishments. In Selbstversuchen lieferte er außerdem den Beweis, dass die Adaption des Auges auf der Verformung der Augenlinse beruht und belegte die Ursache des Astigmatismus, eines optischen Abbildungsfehlers, der sich im Auge als Hornhautverkrümmung äußert. Er stellte auch die Dreifarben-Hypothese des Farbsehens auf, ausgebaut von Helmholtz und heute voll bestätigt. Ebenso wichtig für die Biologie ist Youngs Entdeckung des nach ihm benannten Gesetzes der Kapillarität.

Dargestellt ist die von Helmholtz und Young vermutete Empfindlichkeit des Auges für die drei Farbtöne rot, grün und blau/violett.
Dreifarben-Hypothese

Der Physiologe Helmholtz maß als erster die Transportgeschwindigkeit von Nervensignalen. Seine Formulierung des Energieerhaltungssatzes der Physik und die Entdeckung der zentralen Bedeutung der Zirkulationsströmung für das Fliegen wurden durch die Biologie inspiriert. Dabei ist seine Entwicklung vom Mediziner zum theoretischen Physiker außergewöhnlich: Als Mediziner begründete er die moderne Physiologie und als Physiker legte er den Grundstein für die zum Ende des 19. Jahrhunderts einsetzende enorme Entwicklung der Physik in Deutschland.

Energie und Bewegung

Die prominentesten Beispiele für die Auswirkungen der Biologie auf die Physik sind die Entdeckung des allgemeinen Energieerhaltungsssatzes durch den deutschen Arzt und Physiker Julius von Mayer und den Physiologen Hermann von Helmholtz sowie die Theorie der Brownschen Bewegung durch Albert Einstein. Mayer beobachtete als Schiffsarzt auf Java, dass das in den Venen zum Herzen zurückfließende Blut der Hafenarbeiter in den Tropen heller ist als in gemäßigten Zonen. Er wusste bereits, dass Blut umso heller ist, je mehr Sauerstoff es enthält. Daraus schloss er, dass die Arbeiter in den Tropen bei gleicher Arbeitsleistung weniger Sauerstoff – und damit Energie – verbrauchten als in gemäßigten Zonen, da weniger Wärme an die Umgebung abgegeben wird. Dies brachte ihn auf die Idee, dass Wärme und mechanische Arbeit äquivalente Energieformen sind und er bestimmte aus physiologischen Messungen sogar das mechanische Wärmeäquivalent.

Die Grafik ist zweigeteilt und zeigt statistische Bewegungen von Teilchen, die sich bei höherer Temperatur schneller bewegen.
Brownsche Bewegung

Seine Intuition allein reichte jedoch nicht aus, um der Idee in der Physik zum Durchbruch zu verhelfen. Erst dem Theoretiker Helmholtz gelang 1847 die allgemeine Formulierung des Energieerhaltungssatzes. Seine im Alter von 26 Jahren verfasste Arbeit wurde allerdings nicht zur Publikation in den Annalen für Physik und Chemie angenommen, und so setzte sich der Energieerhaltungssatz eher zögernd durch. Einsteins Deutung der Beobachtung des britischen Botanikers Robert Brown, dass Bärlappsamen in Wasser wirre Bewegungen ausführen, beeinflusste die Physik zu Beginn des Jahrhunderts fast ähnlich stark wie die Plancksche Strahlungsformel. Nach dem experimentellen Beweis der Theorie der Brownschen Bewegung durch den französischen Physiker Jean-Baptiste Perrin, der 1926 den Physik-Nobelpreis erhielt, akzeptierten auch skeptische Physiker das Konzept der atomistischen Struktur der Materie. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

Primäres Bewusstsein bei Mikroben entdeckt

Prokaryoten umfassen die Bakterien und Archaeen, also die einfachsten und frühesten Lebewesen, die wir kennen. Es sind Mikroben ohne Zellkern, die aber ein Chromosom besitzen, mit dessen Hilfe sie sich fortpflanzen. Im Rahmen der Bewusstseinsforschung stellt sich die Frage, ab welcher Stufe der Evolution sich ein rudimentäres Bewusstsein zeigt. Durch raffinierte Tests hat man vor einigen Jahren herausgefunden, dass Schimpansen, Elefanten oder Raben Bewusstsein zeigen. Nun kann man aber auch primäres Bewusstsein bei Prokaryoten nachweisen.

Primäres Bewusstsein ist eine einfache Bewusstseinsform, die etwa mit den Funktionen eines Unterbewusstseins vergleichbar ist. Es beinhaltet nicht das Selbst- oder Ich-Bewusstsein, das wir von uns Menschen kennen. Bewusstsein ist ein informationsverarbeitender Prozess und dient einem Lebewesen dazu, sich auf neue Anforderungen oder geänderte äußere Umstände einzustellen. Wenn das Lebewesen zwischen möglichen Handlungsalternativen auf nicht determinierte Weise entscheidet und die Entscheidung zur Befriedigung seiner Bedürfnisse dient, dann kann man zumindest von primärem Bewusstsein ausgehen (zur Definition von Bewusstsein siehe: Klaus-Dieter Sedlacek, „Der Widerhall des Urknalls“, Norderstedt 2012, S. 148). Andererseits kann man nicht von primärem Bewusstsein ausgehen, wenn Handlungen ausschließlich eine automatische Reaktion auf Umweltreize sind und keinerlei Entscheidungen zwischen Alternativen erkennen lassen.

Prokaryoten haben Geißeln, um sich schwimmend fortbewegen zu können. Die Beweglichkeit kann ihnen nur nützen, wenn sie erkennen, wohin sie schwimmen sollen. Aus ihrer Orientierungsreaktion (Taxis), das heißt, ihrer Ausrichtung nach einem Reiz oder einem Umweltfaktor lassen sich Rückschlüsse auf jenen informationsverarbeitenden Prozess ziehen, der eine Voraussetzung für Bewusstsein ist. Man unterscheidet zum Reiz gerichtete Reaktionen und vom Reiz weggerichtete Meide- oder Schreckreaktionen (negative Taxis).

Bei einer Chemotaxis erfolgt beispielsweise die Ausrichtung nach der Konzentration eines Stoffes. Aerotaxis ist die Orientierung zum Sauerstoff. Es handelt sich um eine besondere Form von Chemotaxis oder Energietaxis. Phototaxis ist die Orientierung an der Helligkeit und Farbe des Lichts und Galvanotaxis die Orientierung an elektrischen Feldern um nur ein paar Taxisarten zu nennen. Im Internet findet sich ein kleines Video über das Pantoffeltierchen (Paramecium), wie es sich an einem elektrischen Feld ausrichtet (https://youtu.be/-U9G0Xhp3Iw).

Viele Bakterien können gleichzeitig die Konzentration von Futtersubstanzen, Sauerstoff oder Licht erkennen und sich danach ausrichten. Solange sie z.B. keine Futtersubstanz erkennen, schwimmen sie eine Zeit lang in eine zufällige Richtung und wechseln anschließend die Richtung, um wieder eine Zeit lang in eine andere Richtung weiterzuschwimmen. Bei geringer werdender Konzentration wechseln sie häufig die Richtung, bei zunehmender Konzentration schwimmen sie dagegen zielgerichteter zum Ort der höheren Konzentration. Sie zeigen ein gleiches Verhalten in Bezug auf die Sauerstoffkonzentration und auf Licht (vgl. Cypionka, „Grundlagen der Mikrobiologie“, 3. Aufl., Springer 2006, S. 33f.)

Aus dem Verhalten kann man ableiten, dass die Bakterien zeitlich auflösen können, ob die Konzentration geringer oder stärker wird. Sie können also Änderungen in den Umweltbedingungen feststellen, indem sie einen vorherigen Zustand auf irgendeine Weise speichern. Schon allein dadurch erkennt man das Vorhandensein eines informationsverarbeitenden Prozesses. Die Mikroben zeigen zudem ein Bedürfnis (= Neigung ein Ziel zu verfolgen), zum Ort der höheren Futter- oder Sauerstoffkonzentration zu schwimmen.

Es kann aber auch vorkommen, dass zwei unterschiedliche Bedürfnisse nicht miteinander vereinbar sind. Beispielsweise kann die höhere Sauerstoffkonzentration entgegengesetzt vom Ort der höheren Futterkonzentration liegen. Zwischen den beiden Orten, an denen je ein anderes Bedürfnis befriedigt wird, gibt es eine Stelle, an der die Bewertung, welcher Reiz stärker ist, gleich ausfällt. Der Mikrobe muss sich entscheiden, welchem Reiz sie nachgeht, d.h., zu welchem Ort sie schwimmen soll. Die Entscheidung kann nicht determiniert fallen, weil vorausgesetzt wird, dass die Stärke der Reize von der Mikrobe gleich bewertet wird. Wir haben es in diesem Fall mit einer nicht determinierte Entscheidung zwischen Handlungsalternativen zu tun. Es ist die Entscheidung in die eine oder in die andere Richtung zur Befriedigung eines Bedürfnisses zu schwimmen.

Zusammenfassend gilt: Im Verhalten der Mikroben kann man einen informationsverarbeitenden Prozess erkennen, der bei Änderungen der Konzentration verschiedener Stoffe, also der Umweltbedingungen, eine nicht determinierte Entscheidung zwischen Handlungsalternativen trifft, die zum zielgerichteten Verhalten zur Befriedigung von Bedürfnissen führt. Das bedeutet: Mikroben zeigen primäres Bewusstsein. – Klaus-Dieter Sedlacek

Buchtipps:

 

Biotechnologie: Bakterien sollen Bio-Nylon produzieren

Schätzungen zur Folge sollen die Erdölvorkommen Mitte des Jahrhunderts zur Neige gehen. Für Erdöl, das nicht nur als Ausgangssubstanz für Benzin oder Heizöl dient, sondern etwa auch für Farben, Kosmetik und Kunststoff, müsste spätestens dann eine Alternative her. Weltweit sind Forscher daher bemüht, neue und nachhaltige Wege für die industrielle Produktion zu erschließen. Auch an der Universität des Saarlandes beschäftigen sich Professor Christoph Wittmann und seine Arbeitsgruppe damit, etwa Chemikalien und Wirkstoffe auf Basis nachwachsender Rohstoffe herzustellen.

In einem neuartigen Ansatz arbeiten die Saarbrücker Forscher nun daran, Nylon mittels biotechnologischer Methoden zu produzieren. Nylon ist einer der weltweit wichtigsten Kunststoffe – er kommt nicht nur in Strumpfhosen, sondern auch in vielen Verbundwerkstoffen vor, die zum Beispiel beim Autobau verwendet werden. Bei seinem Verfahren setzt das Team um Wittmann auf die zentrale Vorstufe des Kunststoffs – die Adipinsäure. „Adipinsäure hat in den vergangenen Jahrzehnten vor allem als Baustein für Nylon-Kunststoffe, aber auch für Lebensmittelzusätze, Pharmazeutika, Dünger und Pflanzenschutzmittel einen Weltmarkt von jährlich mehreren Milliarden Euro pro Jahr erreicht“, sagt Professor Christoph Wittmann. Bislang sei die Säure aber nur unter hohem Energieverbrauch aus Erdöl zu gewinnen. Wittmann und sein Team wollen die Substanz künftig aus Abfallstoffen gewinnen. „In der Holz- und Papierindustrie sowie bei der Herstellung von Biotreibstoffen fällt viel Lignin an“, erläutert Wittmann. „Mangels Alternativen wird dies bislang meist nur verbrannt.“

Die Forscher möchten bei ihrem Vorhaben Stoffwechselwege von Bakterien ausnutzen, die verarbeitetes Lignin zu einer Vorstufe der Adipinsäure zusammensetzen können. „In einer chemischen Nachbehandlung, einer sogenannten Hydrierung, wollen wir diese Vorstufe direkt in Adipinsäure umwandeln und daraus dann den hochwertigen Kunststoff zusammenbauen – vollständig biobasiert aus Abfallstoffen“, so Wittmann weiter.

Zudem möchten die Saarbrücker Wissenschaftler ihren innovativen Prozess in den kommenden Jahren derart optimieren, dass die Technologie in der Industrie zum Einsatz kommen kann. „Wir werden daran arbeiten, dass die Bakterien als maßgeschneiderte Zellfabriken den natürlichen Kunststoff mit hoher Ausbeute und Reinheit fertigen“, erläutert der Professor. „Erste Analysen haben bereits gezeigt, dass das Verfahren sowohl sehr umweltschonend als auch wirtschaftlich rentabel sein kann. Es gibt bereits Nachfragen aus der Industrie nach Bio-Nylon.“ Das Bundesministerium für Bildung und Forschung stellt für das Vorhaben in den nächsten drei Jahren insgesamt 1,4 Millionen Euro bereit.

Künstliche Fotosynthese: Lösung aller Energieprobleme?

Heidelberg. Die Sonne ist eine unerschöpfliche und zudem saubere Energiequelle. Fotovoltaikanlagen und Solarthermiekraftwerke zapfen sie bereits an und gewinnen aus Sonnenlicht Strom. Der ist jedoch nur sehr begrenzt speicherbar und muss sofort verbraucht werden. Sein Transport über weite Strecken ist zudem mit großen Verlusten verbunden. Nur über den Umweg der Wasserelektrolyse lässt sich elektrischer Strom in den breiter einsetzbaren Energieträger Wasserstoff umwandeln, was aber sehr ineffektiv ist.

Eine wesentlich elegantere Lösung macht uns die Natur seit jeher vor: die Fotosynthese. Dabei erzeugen Pflanzen, Algen und gewisse Bakterien mit Hilfe von Sonnenlicht aus Kohlendioxid und Wasser direkt energiereiche Zuckermoleküle. Schon seit einiger Zeit versuchen Forscher deshalb, den Vorgang künstlich nachzuahmen. Dabei geht es ihnen vor allem um den ersten Schritt der Fotosynthese: die Spaltung von Wasser in Wasserstoff und Sauerstoff.

Die bisher erzielten Erfolge sind beachtlich. So präsentierte Daniel Nocera vom Massachussetts Institute of Technology vor zwei Jahren ein “künstliches Blatt”. Es besteht aus einer Solarzelle, in der auftreffendes Sonnenlicht freie Elektronen und “Löcher” (Elektronenfehlstellen) erzeugt. Die dem Licht zugewandte Seite ist mit einem cobalthaltigen Katalysator beschichtet, der mit Hilfe der Löcher aus Wasser Sauerstoff freisetzt. Die zurückbleibenden Protonen wandern zur anderen Seite und werden dort von einer Legierung aus Nickel, Molybdän und Zink mit Hilfe der Elektronen zu Wasserstoff reduziert. Der Wirkungsgrad liegt mit 2,5 bis 4,7 Prozent – je nach genauer Konfiguration – schon recht hoch. Pflanzen verwerten das auftreffende Sonnenlicht sogar nur zu 0,3 Prozent.

Allerdings ist dieses “Blatt” wegen der enthaltenen Metalle noch ziemlich teuer und auch nicht lange beständig. Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm hat sich deshalb auf ein anderes Material verlegt, das nicht nur sehr stabil, sondern auch einfach und preiswert herstellbar ist: graphitisches Kohlenstoffnitrid. Schon Justus Liebig kannte die Substanz im 19. Jahrhundert. Sie ist entfernt mit dem Chlorophyll des Blattgrüns verwandt und ähnelt stark dem Graphen – einer maschendrahtartigen Anordnung von Kohlenstoffatomen, der viele eine große Zukunft in der Elektronik vorhersagen.

Kohlenstoffnitrid als solches ist allerdings nicht sehr aktiv, was unter anderem an seinem zu geringen Verhältnis von Oberfläche zu Volumen liegt. Wie Antonietti in Spektrum der Wissenschaft berichtet, konnte seine Gruppe aber bereits eine Steigerung um das Zehnfache erreichen, indem sie gezielt die Porosität des Materials erhöhte.

Eine weitere Verbesserung ließ sich durch Dotieren mit Schwefel oder Barbitursäure erreichen. Auf diese Weise konnten die Forscher die Quantenausbeute der Oxidation von Wasser zu Protonen und Sauerstoff für violette Strahlung einer Wellenlänge von 440 Nanometern immerhin auf 5,7 Prozent steigern. Hilfreich war auch die Zugabe von Nanoteilchen aus Cobaltoxid. Dadurch erhöhte sich die Quantenausbeute für die Wasserspaltung insgesamt auf 1,1 Prozent.

Alles in allem sehen die bisherigen Ergebnisse also ermutigend aus. Zwar veranschlagt Antonietti bis zur praktischen Einsatzreife seines Systems noch mindestens 20 Jahre. Doch die Aussichten wären verlockend. Wenn sich mit künstlichen Fotosynthesesystemen 10 Prozent der Solarenergie nutzen ließen, müssten sie nur 0,16 Prozent der Erdoberfläche bedecken, um den für 2030 vorausgesagten globalen Energiebedarf von 20 Terawattstunden zu decken. Als Standorte kämen dabei in erster Linie Wüsten in Frage, wo die Sonne fast immer scheint und keine Konkurrenz zu Agrarnutzflächen besteht. Ein Zehntel der Sahara, die 1,76 Prozent der Erdoberfläche einnimmt, würde bereits genügen.

Wie heutige Solarzellen ließen sich künstliche Fotosynthesesysteme aber auch auf Dächern installieren. Bei einer Lichtausbeute von 10 Prozent könnten sie beispielsweise 300 Tonnen Methanol pro Hektar und Jahr liefern. “Wären nur 100 Quadratmeter des eigenen Grundstücks damit bedeckt, bräuchte selbst ein leidenschaftlicher Autofahrer bei heutigem Treibstoffverbrauch nie mehr zur Tankstelle”, erklärt Antonietti.  (Quelle: Spektrum der Wissenschaft, September 2013)

Bakterien produzierten Milliarden Tonnen Eisenerz

Alternierende Schichten von schwarzen und orangefarbenen Eisen- und Silikatmineralen in 2,5 bis 2,6 Milliarden Jahre alten präkambrischen gebänderten Eisenformationen (Gamohaan Hill, in der Nähe von Kuruman, Northern Cape Province, Südafrika).Foto: Andreas Kappler
Wie riesige gebänderte Gesteinsformationen entstanden sind – Veröffentlichung in “Nature”

Vor allem in Südafrika und Australien gibt es mächtige, zwei bis 3,4 Milliarden Jahre alte geologische Formationen aus Eisenoxid und Siliziumdioxid. Manche von diesen sogenannten gebänderten Eisenformationen (englisch: Banded Iron Formations, BIFs) enthalten viele Milliarden Tonnen Eisenoxid und haben eine Ausdehnung von 100.000 Quadratkilometern. Diese Eisenerze decken nicht nur einen Großteil des Weltbedarfs an Eisen, sondern sind auch von besonderem Interesse für die Wissenschaft. Die Wissenschaftler erhoffen sich von der Erforschung dieser Gesteinsformationen Aufschluss über die Entwicklung der Atmosphäre und des Klimas sowie der Evolution von Mikroorganismen in der frühen Erdgeschichte. Wie die Ablagerungen mit den auffälligen Bänderungen entstanden sind, ist bislang unbekannt. Doch die Geomikrobiologen vom Zentrum für Angewandte Geowissenschaften der Universität Tübingen Nicole R. Posth und Florian Hegler unter der Leitung von Prof. Andreas Kappler können jetzt der Entstehungsgeschichte ein wichtiges Puzzleteil hinzufügen. Sie haben erstmals eine plausible Erklärung gefunden, auf welche Weise Mikroorganismen an der Bildung der Eisenerze beteiligt waren und wie sie auch zur Ablagerung der immer im Wechsel mit dem Eisen auftretenden Siliziumdioxid-Schichten beigetragen haben.

Das Eisen im Urozean stammte aus heißen Quellen am Ozeanboden und war als reduziertes, zweiwertiges Eisen im Wasser gelöst. Der Großteil des Eisens in den heutigen BIFs liegt jedoch als oxidiertes, dreiwertiges Eisen vor. Die Forscher wissen deshalb, dass das zweiwertige Eisen zur Ablagerung oxidiert werden musste. Im klassischen Modell zur Entstehung der BIFs wurde angenommen, dass die Oxidation durch Sauerstoff geschah, den frühe einzellige Lebewesen, die Cyanobakterien, durch ihren Stoffwechsel als Abfallprodukt gebildet hatten. Die Forschung der letzten Jahre hat gezeigt, dass zu diesem frühen Zeitpunkt in der Erdgeschichte vermutlich nur sehr wenig oder sogar kein Sauerstoff vorhanden war. Es wurde auch bezweifelt, dass es damals überhaupt schon Cyanobakterien gab. Die Bildung der ältesten BIFs kann also nicht durch Sauerstoff geschehen sein. Denn die ältesten bekannten gebänderten Eisenerze stammen bereits aus dem Präkambrium, sie sind bis zu vier Milliarden Jahre alt – das Alter der Erde wird auf 4,5 bis 4,6 Milliarden Jahre geschätzt.

Andreas Kappler und seine Arbeitsgruppe knüpften bei ihren Forschungen an eine Theorie an, die im Jahre 1969 zum ersten Mal veröffentlicht wurde: Danach sollten die Erze durch eisenoxidierende Bakterien entstanden sein, die zum Leben zwar Licht, aber keinen Sauerstoff benötigten. Allerdings wurden solche anaeroben phototrophen eisenoxidierenden Bakterien erst 1993 in der Natur entdeckt und konnten dann im Labor gezüchtet und untersucht werden. Mit Hilfe von Lichtenergie oxidieren sie zweiwertiges Eisen und setzen es zu dreiwertigem Eisen um – eben zu solchen rostigen Mineralen, wie sie in den BIFs enthalten sind. Die Tübinger Geomikrobiologen entdeckten nun, dass die Ausfällung von Eisen- und Silikatmaterialien in den BIFs natürlichen Temperaturschwankungen unterlag. Die Abhängigkeit von der Temperatur würde auch die bisher unerklärte alternierende Bänderung der Gesteinsformationen erklären: Die Eisenbakterien oxidieren zweiwertiges Eisen nur innerhalb eines bestimmten Temperaturbereiches. Wenn die Temperatur sinkt, werden weniger Eisenoxide gebildet. Im Gegenzug fällt in einer chemischen Reaktion das im Wasser gelöste Siliziumdioxid in Form von festem Silikat aus. Steigt die Temperatur erneut, werden die Eisenbakterien wieder aktiv und lagern die nächste Schicht Eisenminerale ab – und so weiter. Dadurch lässt sich die typische Wechsellagerung von Eisenoxid- und Silikatmineralien erklären.

Durch ihre Arbeiten können die Tübinger Wissenschaftler nicht nur erstmals erklären, wie Mikroorganismen an der Bildung der Bänderung der BIFs beteiligt sind. Die Forschungsergebnisse geben auch weitere Hinweise darauf, dass zu dieser frühen Zeit auf der Erde sauerstoffbildende Bakterien wie die Cyanobakterien nicht die wichtigste Rolle gespielt haben oder vielleicht noch gar nicht vorhanden waren. Damit hätte es auch noch keinen beziehungsweise nur wenig Sauerstoff in der Atmosphäre gegeben. Stattdessen dominierten vor einigen Milliarden Jahren andere Mikroben wie die von den Tübingern untersuchten Eisenbakterien die Ozeane. (Quelle: idw)

Künstliche Lebewesen aus der Retorte

Die synthetische Biologie ist ein junger Forschungszweig, der sich anschickt, in einer Art zweiter Schöpfung nach vier Milliarden Jahren ein künstliches Lebewesen aus der Retorte zu erschaffen. Forscher wie Tom Knight, Drew Endy und Randy Rettberg (MIT Cambridge, USA) entwerfen nach dem Legoprinzip zunächst modulare biologische Bausteine die sogenannten »BioBricks«. Diese Biobricks erfüllen definierte biologische Aufgaben, analog den elektronischen Schaltkreisen, wie sie in Mikroprozessoren (Computer) zu finden sind.

Biobricks befinden sich in der experimentellen Phase und werden bereits in die »Baupläne des Lebens« von Bakterien eingebaut. In ersten Erfolgen hat die kalifornische Firma LS9 das Darmbakterium Escherichia coli reprogrammiert. Nun erzeugt das Bakterium Biosprit aus Mais-Sirup und Zuckerrohr.

Als Bauplan des Lebens oder DNA bezeichnet man ein in allen Lebewesen vorkommendes Biomolekül, welches die komplette Erbinformation (Genom) trägt. DNA besteht aus zwei parallelen Strängen, die einander schraubenartig umlaufen (Doppelhelix). Die Stränge sind durch Sprossen miteinander verbunden. So eine Sprosse wird als Basenpaar bezeichnet, weil sie aus zwei sich ergänzenden Basen und einer Wasserstoffbrücke gebildet wird. Chemisch gesehen handelt es sich bei der Base um ein Nukleotid, welches zu den vier Gruppen der Biomoleküle gehört. Ein Basenpaar stellt die unterste Informationseinheit der DNA dar und entspricht zwei Bit herkömmlicher Information. Die Abschnitte der DNA, welche die Information über die einzelnen Erbanlagen enthalten, werden Gene genannt. Bei Katzen kann beispielsweise ein Gen das Merkmal kurzer oder langer Schwanz bedeuten, ein anderes Gen braunes oder weißes Haar. Menschen besitzen ca. 25.000 Gene mit 3 Billionen Basenpaaren, ein Bakterium 500 bis 7000 Gene mit 1 – 10 Millionen Basenpaaren.

Video: Craig Venter (in englisch)

Schöpfung oder bekanntes Verfahren?

Einer, dem es kürzlich gelungen ist, das komplette Erbgut eines Bakteriums im Labor synthetisch herzustellen und zusammenzusetzen, ist der US-amerikanische Biochemiker Craig Venter. Venter hatte sich bereits früher einen Namen gemacht, als er im Jahr 2000 das menschliche Genom entschlüsselte. Auch wenn die Synthese von DNA unter den Forschern als allseits bekanntes Verfahren gilt, ist das von Venter erzeugte synthetische Genom mit rund 500.000 Basenpaaren nach seinen Angaben zwanzig Mal größer als alles, was man bisher zusammenhängend produziert hat.

Im nächsten Schritt will Venter das synthetische Genom in eine lebende Bakterienzelle einschleusen. In dieser soll es anstelle des natürlichen Genoms die Kontrolle übernehmen. Dadurch würde er nach seiner Ansicht einen neuen künstlich hergestellten Organismus schaffen. Das wäre ein Durchbruch gegenüber der herkömmlichen Gentechnologie, die nur einzelne Gene verändern kann, aber nicht ganze Gen-Systeme.

Komplette biologische Systeme nach Maß

Noch einen Schritt weiter geht das Zusammenstellen kompletter biologischer Systeme aus Biobricks nach Maß. Die Forscher am Massachusetts Institute for Technology (MIT) haben, um das Ziel zu erreichen, schon mehr als zweitausend Biobricks in einer Datenbank gesammelt. Wie Elektroingenieure ein Schaltbild aus elektronischen Komponenten am Reißbrett zeichnen, wollen die MIT-Zellingenieure nun aus den Genabschnitten der Biobricks komplette Gen-Systeme zusammenstellen. Das so entworfene Genom wird nach Plan produziert und anschließend sollen leere Zellhüllen mit dem künstlichen Erbgut bestückt werden. Das auf diese Weise künstlich geschaffene »Lebewesen« soll dann die geplanten Substanzen produzieren, beispielsweise Biokraftstoffe, Medikamente oder Biokunststoffe.

Kritiker wie Professor André Rosenthal sind allerdings der Ansicht, dass man von der Schaffung künstlichen Lebens noch Jahrhunderte entfernt ist. Rosenthal ist Leiter der Signature Diagnostics AG in Potsdam, die Gen-Tests zur Krebs-Früherkennung erstellt. Auch wenn das Genom synthetisiert werden kann, ist doch die Hülle der Zelle nicht künstlich hergestellt und das ist für ihn entscheidend. Nach seiner Meinung wäre Craig Venters Arbeit nur interessant, wenn er eine künstliche Zelle mit den entsprechenden Zellorganellen im Reagenzglas erzeugen könnte. Wie die Zeitschrift »Bild der Wissenschaft« in ihrer Ausgabe 3/2009 berichtet, gibt es aber bereits Ansätze zur Erschaffung einer kompletten funktionstüchtigen Zelle einschließlich Hülle, wenn auch noch ein langer Weg vor den Forschern liegt. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs »Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen«. In dem Buch wird unter anderem der Zusammenhang zwischen den fundamentalen Bausteinen der Welt und Bewusstsein aufgedeckt.

Durchbruch: Interferon hilft bei der Eliminierung von Krebsstammzellen

Wie entsteht Krebs?

Der Immunbotenstoff Interferon alpha erweckt schlafende Blutstammzellen im Knochenmark zur Aktivität und macht sie dadurch für die Wirkung vieler Medikamente angreifbar. Dies veröffentlichten Wissenschaftler aus dem Deutschen Krebsforschungszentrum gemeinsam mit Kollegen aus Lausanne in der Zeitschrift Nature. Auch Tumorstammzellen, so vermuten die Forscher, lassen sich so zur Teilung anregen und damit für die Behandlung mit Krebsmedikamenten sensibilisieren.

Nach Verletzungen mit Blutverlust muss der Körper das lebensnotwendige Blutvolumen schnell wiederherstellen. Dafür sorgt eine bestimmte Gruppe von Stammzellen im Knochenmark. Diese Blutstammzellen verbringen ihr gesamtes Leben in einer Art Schlafzustand, aus dem sie erst durch Verletzung und Blutverlust zur Aktivität geweckt werden. Unverzüglich beginnen sie, sich zu teilen, bis der Verlust an Blutzellen wieder ausgeglichen ist. Dies zeigten kürzlich Wissenschaftler um Professor Andreas Trumpp aus dem Deutschen Krebsforschungszentrum.

Der Dauerschlaf ist ein wichtiger Schutzmechanismus der Stammzellen: Erstens bewahren sie so ihr Erbgut vor Genveränderungen, die sich vor allem während einer Zellteilung ereignen. Darüber hinaus entgehen sie im Schlaf auch der Attacke vieler Zellgifte, die nur auf sich teilende Zellen wirken.

Bislang war unbekannt, welche Signalmoleküle die Stammzellen tatsächlich aus ihrem Schlummer wecken. Andreas Trumpp und Marieke Essers aus seinem Team veröffentlichten nun in der Zeitschrift Nature, dass Interferon alpha, ein Botenstoff des Immunsystems, wie ein Wecker auf Blutstammzellen wirkt. Die Wissenschaftler zeigten damit zum ersten Mal, dass Interferon alpha die Funktion von Stammzellen direkt beeinflussen kann.

Interferon alpha wird von Immunzellen ausgeschüttet, wenn der Organismus von Bakterien oder Viren bedroht wird. Die Wissenschaftler lösten die Interferonproduktion in Mäusen aus, indem sie ihnen eine Substanz verabreichten, die den Tieren eine Virusinfektion vorgaukelt. Daraufhin kam es zu einem starken Anstieg der Teilungsrate der Blutstammzellen. In Kontrolltieren dagegen, die das Interferonsignal nicht verarbeiten können, führte die Substanz nicht zum Aufwachen der Stammzellen.

Einen weiteren Beweis für die Wirkung des Interfon alpha erzielten die Forscher mit dem Medikament 5-Fluorouracil, einem Zellgift, das häufig bei Brust- und Darmkrebs eingesetzt wird: Schlafende Stammzellen sind resistent gegen das Medikament, das seine Wirkung nur während der Teilung entfaltet. Erhalten die Tiere jedoch vor der 5-Fluorouracil-Behandlung Interferon alpha, so versterben sie nach kurzer Zeit an Blutarmut. Der Grund dafür: Durch die Interferon-Vorbehandlung wurden die ruhenden Stammzellen in die Zellteilung gezwungen und damit für die 5-FU-Wirkung sensibilisiert und abgetötet. Daher stehen nach kurzer Zeit keine Stammzellen mehr zur Verfügung, die Nachschub an kurzlebigen reifen Blutzellen wie Erythrozyten und Blutplättchen liefern.

Die Forscher begeistert an diesem Ergebnis besonders die Aussicht, dass der neu entdeckte Wirkmechanismus möglicherweise die Krebsbehandlung verbessern kann: “Eventuell können wir mit Interferon alpha nicht nur Blutstammzellen, sondern ebenso Tumorstammzellen aus dem Schlafzustand wecken und damit ihre oft beobachtete Resistenz gegen viele Krebsmedikamente brechen”, vermutet Andreas Trumpp.

Eine klinische Beobachtung weist bereits darauf hin, dass diese Vermutung mehr ist als reines Wunschdenken: Patienten, die an dem Blutkrebs chronisch myeloische Leukämie leiden und mit dem Medikament Glivec behandelt werden, erleiden nach Absetzen des Medikaments fast immer Rückfälle. Einigen Erkrankten wurde jedoch vor der Glivec-Therapie Interferon alpha verabreicht. Diese Patienten erlebten überraschenderweise lange rückfallfreie Phasen ohne jegliche Medikation. “Wir gehen davon aus”, erklärt Andreas Trumpp, “dass die Leukämie-Stammzellen durch die Interferongabe geweckt und damit für die Eliminierung durch das Medikament Glivec sensibilisiert wurden.” (Quelle: idw)

Weg vom Erdöl! Biomasse als alternative Kohlenstoffquelle.

Video: Wie aus Tiefseebakterien nützliche Enzyme für die Energiegewinnung und Anwendung in der chemischen Industrie gewonnen werden.

(idw). Erdöl wird immer teurer – das bekommt auch die chemische Industrie zu spüren. Eine alternative Kohlenstoffquelle ist Biomasse.

Erdöl ist der Ausgangsstoff für viele Produkte der chemischen Industrie. Doch dieser fossile Rohstoff wird immer knapper und teurer. Eine Alternative ist es, nachwachsende Rohstoffe zu nutzen. Doch müssen Bioethanol und Co. aus Nahrungsmitteln wie Zuckerrohr oder Getreide gewonnen werden? Nein. Über die weiße Biotechnologie lassen sich chemische Stoffe auch aus Abfallprodukten der Lebensmittelindustrie oder Restbiomasse aus der Forst- und Landwirtschaft oder Reststoffen gewinnen. Wie das gehen kann, demonstrieren Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart am Beispiel der biotechnischen Verwertung von Raps, Molke und Krabbenschalen.

Kunststoff und Lacke aus Raps
Bei der Herstellung von Biodiesel aus Rapsöl fällt als Nebenprodukt Rohglyzerin an. Wissenschaftler am IGB haben nun ein Verfahren entwickelt, mit dem sich Rohglyzerin in 1,3-Propandiol umsetzen lässt – einen chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken. Bislang wird 1,3-Propandiol chemisch synthetisiert. Es gibt aber auch Mikroorganismen, die Glyzerin zu 1,3-Propandiol umsetzen können. So produziert das Bakterium Clostridium diolis den chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken in vergleichsweise hoher Ausbeute.

Bio-Plastik aus Molke
Ein Abfallprodukt bei der Herstellung von Milchprodukten ist Sauermolke. Bislang wird die Molke teuer entsorgt. Mit Hilfe von Michsäurebakterien lässt sich der in der Sauermolke enthaltene Milchzucker (Lactose) jedoch zu Milchsäure (Lactat) umsetzen. Lactat dient nicht nur als Konservierungs- und Säuerungsmittel in der Lebensmittelherstellung, sondern kann auch als Grundstoff in der chemischen Industrie eingesetzt werden – zum Beispiel in der Produktion von Polylactiden, biologisch abbaubaren Kunststoffen. Einweggeschirr und Schrauben für die Chirurgie aus Polymilchsäure gibt es bereits.

Feinchemikalien aus Krabbenschalen
Chitin ist nach Zellulose das am häufigsten vorkommende Biopolymer auf der Erde. Der nachwachsende Rohstoff fällt in der Aquakultur und bei der Verarbeitung von Meeresfrüchten wie Krabben in großen Mengen als Abfall an. In dem vom Bundesforschungsministerium geförderten Projekt “BioSysPro” untersuchen Forscher des IGB, ob sich Chitin durch den Einsatz von mikrobiellen Chitinasen als nachwachsender Rohstoff für die chemische Industrie erschließen lässt.

“Die Weiße Biotechnologie nutzt die Natur als chemische Fabrik. Herkömmliche chemische Produktionsprozesse werden durch den Einsatz von Mikroorganismen oder Enzymen ersetzt”, erläutert Prof. Thomas Hirth, Leiter des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, den Ansatz. Auf der Messe Biotechnica vom 7. bis 9. Oktober in Hannover stellen die Forscher die Verfahren auf dem Fraunhofer-Gemeinschaftsstand in Halle 9, Stand E29 vor.

Weitere Informationen:
Das Video ist Teil der DVD “Die Zukunft der Biotechnologie — Eine Deutschlandreise”, die im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) im Jahr 2008 entstanden ist und kostenlos auf der Webseite www.biotechnologie.de bestellt werden kann.