Schlagwort-Archive: Bedeutung

Generalangriff der Philosophie auf die naturwissenschaftliche Weltsicht

Der amerikanische Philosoph Thomas Nagel bläst in seinem neuen Buch mit dem Titel „Geist und Kosmos“ (ISBN 978-3518586013 ) zum Generalangriff auf die etablierte naturwissenschaftliche Weltsicht. Ihr Problem, so seine These, ist grundsätzlicher Natur: Das, was den menschlichen Geist auszeichnet – Bewusstsein, Denken und Werte –, lässt sich nicht reduzieren, schon gar nicht auf überzeitliche physikalische Gesetze.

Hat Thomas Nagel recht oder passt seine eigene Weltsicht nicht zur Realität?

Zur Beantwortung der Frage möchte ich hier mein eigenes Weltbild als Naturwissenschaftler kurz skizzieren. Mein Weg zur Erklärung von Information, Bewusstsein, Sinn, Bedeutung, aber auch Dingen wie Krankheit oder die Phänomene der Quantenphysik, basiert auf einer strikten Trennung der abstrakten geistigen von der physikalischen Welt, da jede Vermischung beider Welten zu Ergebnissen führt, die weder real sind noch zur Naturwissenschaft gehören, sondern allein in der abstrakten geistigen Welt angesiedelt sind.

Beispielsweise gehören mathematische Formeln, exakte geometrische Formen, Gottheiten oder “unmögliche Dinge” wie eckige Kreise und eierlegende Wollmilchsäue zur abstrakten geistigen Welt. Ein Großteil der Objekte der Philosophie gehört dorthin. In der geistigen Welt existiert alles, was man nur denken kann.

Zum Bereich der realen physikalischen Welt gehört alles, was sich prinzipiell messen oder beobachten lässt, d. h. Wechselwirkungen mit anderen Objekten eingeht. Das Kriterium “Wechselwirkungen” hilft uns zu unterscheiden, was in die eine, was in die andere Welt gehört. Beispielsweise können eierlegende Wollmilchsäue in der freien Natur nicht fotografiert werden, d.h. sie können keine Photonen aussenden, die zu Wechselwirkungen mit dem Foto-Chip führen. Würde jemand mit einem Fotoapparat losziehen, um Bilder von der Wollmilchsau-Spezies zu schießen, würde man ihn zu Recht für dumm oder verrückt erklären, weil er die Realität nicht von der geistigen Welt zu unterscheiden vermag. Wenn es allerdings um die Anbetung von Gottheiten geht, dann ist die Gemeinschaft der Gläubigen geneigt, die Entitäten ihres eigenen Glaubens für real zu halten, die der Andersgläubigen aber für irreal.

Wie Schrödingers Katze die abstrakte mit der realen Welt vermischt

Die Vermischung von realer und geistiger Welt findet man nicht nur im geisteswissenschaftlichen oder theologischen Bereich, sondern genauso bei jenen Quantenphysikern, die Schrödingers Wellenfunktion als eine Beschreibung der Wirklichkeit ansehen. Zur Erinnerung: Schrödingers Wellenfunktion ist eine mathematische Formel zur Beschreibung des Zustands von Quanten vor ihrer Messung. Wäre die Wellenfunktion eine Beschreibung der Wirklichkeit, dann wäre Schrödingers Katze, die in einem Gedankenexperiment zusammen mit einem Mordinstrument in eine Kiste eingesperrt ist, vor dem Öffnen der Kiste gleichzeitig tot und lebendig.

Schrödingers Katze ist ein gutes Beispiel für die Vermischung der abstrakten Welt mit der realen physikalischen (siehe auch: „Der Widerhall des Urknalls“ ISBN 978-3848212255, S. 113). Die Wellenfunktion gehört als mathematische Formel zur abstrakten geistigen Welt, die Katze in der Kiste zur realen physikalischen. Die Vermischung der beiden Welten in einer physikalischen Theorie führt zu etwas, was in der realen Welt völliger Unsinn, in der abstrakten geistigen Welt ein erlaubtes gedankliches Konstrukt ist. Man muss sich nur im Klaren darüber sein, dass die Ergebnisse der Theorien, die beide Welten miteinander vermischen, nicht zur realen Welt gehören. Um es noch mal ganz deutlich zu sagen: Die gleichzeitig tote und lebendige Katze von Schrödingers Gedankenexperiment gehört nicht der realen Welt an.

Wie abstrakte und reale Welt miteinander verbunden sind

Zwischen der abstrakten und der physikalischen Welt gibt es nur eine Verbindung: Das sind die Prozesse. Dabei definiere ich einen Prozess in Übereinstimmung mit der DIN IEC 60050-351 als die Gesamtheit von aufeinander einwirkenden Vorgängen in einem System, durch die Materie, Energie oder Information umgeformt, transportiert oder gespeichert wird.“ Beispielsweise sind Computerprogramme Prozesse. Der Programmcode gehört zur abstrakten geistigen Welt. Die Ausführung des Programmcodes gehört zur physikalischen Welt, weil jede Durchführung eines Programmschritts eine Wechselwirkung darstellt.

Thomas Nagel ist wohl nicht bewusst, dass Prozesse die Verbindung zwischen der abstrakten geistigen und der realen Welt darstellen. Es mag völlig richtig sein, dass “Werte” nicht zur naturwissenschaftlichen Welt gehören, doch wenn Werte (= Ziele) in Prozesse (= Programme) eingebaut werden, dann verbinden sie die abstrakte Welt mit der physikalischen. Das Gleiche gilt für “Denken”. Denken formt Information um oder speichert sie. Denken kann deshalb als ein Prozess angesehen werden und der Denkprozess verbindet die abstrakte mit der realen Welt, indem etwas ausgeführt wird. Abstrakte Information wird umgeformt und physikalisch gespeichert.

Was ist aber mit dem Bewusstsein? Allgemein wird Bewusstsein als eine Entität angesehen, die je nachdem, aus welcher Fakultät der Wissenschaftler stammt, entweder einer nicht fassbaren, d. h. abstrakten, oder einer realen materialistischen, d. h. physikalischen Welt zugeordnet wird. Theologen und Geisteswissenschaftler neigen eher dazu, Bewusstsein als eine Entität der geistigen Ebene anzusehen. Dagegen ist nach meiner Überzeugung Bewusstsein ein Prozess (wie ich unter anderem in meinem Büchlein mit dem Titel “Synthetisches Bewusstsein ISBN 978-3842368033”) beschrieben habe. Damit verbindet es beide Welten, die abstrakte geistige und die physikalische.

Nagel hat insoweit recht, dass alle drei Entitäten, die den menschlichen Geist auszeichnen, sich nicht auf physikalische Gesetze reduzieren lassen. Aber sie lassen sich auf Prozesse reduzieren, die eine Verbindung zwischen der physikalischen und der abstrakten Welt darstellen.

Kann Krankheit auf überzeitliche physikalische Gesetze reduziert werden?

Wir können das bisher Gesagte anwenden und testen, indem wir einmal untersuchen, wo Krankheit einzuordnen ist. Ist Krankheit etwas abstrakt Geistiges oder ist es eine Entität der naturwissenschaftlichen Weltsicht? Nagel würde jetzt sagen: „Krankheit lässt sich nicht reduzieren auf überzeitliche physikalische Gesetze.“

Ich sehe Krankheit als ein Abweichen von der Regelhaftigkeit der Lebensvorgänge. Das Ausmaß dieses Abweichens bestimmt, ob es sich um Krankheit handelt oder nicht. Das Ausmaß ist ein abstrakter geistiger Wert. Lebensvorgänge sind Prozesse, denn in einem biologischen System, auf das sich der jeweilige Lebensvorgang bezieht, wird Materie, Energie oder Information umgeformt, transportiert oder gespeichert. Wenn es bei einem der Systemelemente zu Abweichungen kommt, dann kann das als Krankheit gelten. Weil Lebensvorgänge Prozesse sind, sehe ich Krankheit ebenfalls als einen Prozess. Da in Prozessen regelmäßig Information umgeformt, transportiert oder gespeichert wird, liegt in der Beobachtung und Einordnung der sich verändernden Information einer der Schlüssel zum tieferen Verständnis für das Wesen der Krankheit. Wie Information sich auf den Krankheitsprozess auswirkt, werde ich in einem meiner nächsten Beiträge untersuchen. – Klaus-Dieter Sedlacek

Buchtipps:

 

Die produktivsten Erfinder, Schriftsteller und Gelehrten aller Zeiten

Zeichnung von Leonardo da Vinci:  Helicopter und Flügel
Zeichnung von Leonardo da Vinci: Helicopter und Flügel


Leonardo da Vinci, der nach neuer Wertung »nebenher Maler und Bildhauer« war, im Hauptberuf aber Ingenieur, Physiker und Erfinder, ist auch den fruchtbarsten Schriftstellern aller Zeiten zuzurechnen.

Die Gesamtzahl seiner Buchwerke beträgt 120; viele davon sind untergegangen und teilen das Vergänglichkeitslos seiner Bildhauerarbeiten. Aber die Zahl der von Leonardo herrührenden Blätter mit Abhandlungen, Entwürfen und Berechnungen, soweit sie noch heute erhalten sind, geht immer noch in die Tausende!

Raimundus Lullus, (geboren 1235), Urheber der »Ars magna Lulli«, der man ehedem in der philosophischen Welt eine gewisse Bedeutung beimaß, betätigte sich als einer der kräftigsten Vielschreiber. Die Mindestzahl der von ihm herrührenden Schriften theologischen, philosophischen und alchimistischen Inhalts beträgt 500. Nach andern Quellen hat des Lullus Produktivität das Riesenmaß von 4000 Schriften erreicht.

Die Produktion des spanischen Dichters Lope de Vega ist in ihrer Üppigkeit weit über die Grenzen seiner Heimat sprichwörtlich geworden. Seiner eigenen Rechnung zufolge hat er bis zum Jahre 1631 weit über 1500 Komödien und 400 kleinere Bühnenspiele verfasst Ungefähr 500 davon sind erhalten, während die Mehrzahl verloren ging. Dazu kommt bei dem nämlichen Autor eine enorme Menge von Schriften erzählenden, lyrischen und didaktischen Inhalts, die in einer Madrider Ausgabe 21 weitere Bände füllten.

Auch Vegas genialer Landsmann Calderon hat mit seinen Gaben nicht gekargt. Er erreichte und überschritt mit seinen dramatischen Werken die Zahl 200.

Honoré de Balzac brachte es in seinem arbeitsreichen Leben bis auf 90 Romane und Novellen, die zusammen eine Bibliothek von 120 Bänden ausmachen.

Die Produktivität des älteren Alexandre Dumas wird von Eduard Engel in seiner Geschichte der französischen Literatur drastisch gekennzeichnet: Man hat berechnet, dass Dumas mehr als dreimal so viel zusammengeschrieben hat als Voltaire, dessen sämtliche Werke etwa hundert Bände umfassen. Scherzhaft wurde gesagt, aber man könnte es ebenso wohl im Ernst aussprechen: Niemand habe Dumas’ sämtliche Werke gelesen, nicht einmal – Dumas selber. Es gibt eine gut beglaubigte Anekdote, dass Dumas von einem der Romane, die seinen Namen trugen, unbefangen sagte: »Je l’ai signé, mais je ne l’ai pas lu.« Der Katalog seines Verlegers Lévy weist genau 300 Bände von Dumas dem Älteren aus, und dieser Katalog ist unvollständig!

Von den Gelehrten behauptet der große Mathematiker Leonhard Euler den Gipfel der Unbegreiflichkeit. Ihn feiert M. Cantors Monumentalwerk der Geschichte der Mathematik: „Man wird kaum ein Gebiet der reinen und angewandten Mathematik nennen können, in welchem Euler nicht tätig war, und Tätigkeit hieß bei ihm bahnbrechender Erfolg. Eine Gesamtausgabe alles dessen, was Euler geschrieben hat, würde mindestens 2000 Druckbogen stark werden.” Also nach der Größe gemessen mehr als 30 Bände größten Lexikonformats, worin Zeile auf Zeile die schwierigsten Probleme mit dem Maximum des Scharfsinns behandelt werden!

Auch unser Alexander von Humboldt kann sich in der Reihe der Hochproduzenten sehen lassen. Es genüge der Hinweis auf eine Notiz des Professors Leunis, der vom Jahre 1856 lakonisch meldet: »Humboldts sämtliche Werke kosten an 3000 Taler!« Das ist nach heutigem Wert mehr als 1 Million Euro.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse

Julius_Robert_Meyer
Julius_Robert_Meyer

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse, die unsere gesamte Anschauung über das Wesen der Natur grundlegend beeinflusst hat, verdanken wir einem einfachen Arzt.

Der Vorgang ist deshalb noch besonders interessant, weil die tiefe Erkenntnis einem Menschen ganz plötzlich gelang, der bis dahin auch nicht das Geringste geleistet hatte, bei dem nichts auf eine besondere Befähigung hinwies, und der auch nicht zum zweiten Mal hervorgetreten ist.

Julius Robert Mayer wurde am 25. November 1814 als dritter Sohn eines Apothekers in Heilbronn geboren. Auf der Schule hat der Knabe sehr schlechte Leistungen aufzuweisen gehabt. Auch seine Doktordissertation über das damals gerade gefundene Santonin lässt in keiner Weise einen hervorragenden Denker oder Forscher erkennen. 1840 trat Mayer als Schiffsarzt in niederländische Dienste, um nach Java zu fahren. Der Inhalt des uns erhaltenen Tagebuchs dieser Reise ist durchaus belanglos.

Aber auf der Reede von Surabaya ging ihm durch eine an sich ganz nebensächliche Beobachtung plötzlich eine Gedankenreihe auf, die zu der grundlegenden Erkenntnis führte, dass Wärme und mechanische Arbeit miteinander verwandt seien, dass die eine sich in die andere umwandeln könne. Nach seiner Rückkehr fasste er am 16. Juni 1841 das von ihm entdeckte Gesetz von der Erhaltung der Kraft in einer kleinen Abhandlung zusammen, die er der damals bedeutendsten wissenschaftlich-physikalischen Zeitschrift, den »Poggendorff’schen Annalen« einsandte. Poggendorff erkannte den Wert der Arbeit nicht und schickte sie zurück. Man kann ihm daraus keinen allzu großen Vorwurf machen, da Mayer selbst seine Gedankenreihe sehr mangelhaft begründet hatte, wie es denn überhaupt scheint, dass er selbst die ganze epochale Bedeutung seiner Erkenntnis niemals ganz erfasst hat.

So ist es Julius Robert Mayer zu Lebzeiten denn auch niemals gelungen, sich durchzusetzen, und zahllose Gegner machten ihm so viel zu schaffen, dass er zwei Selbstmordversuche unternahm und 1878 verbittert starb. Dennoch steht fest, dass er als Erster das große Gesetz von der mechanischen Wärmeäquivalenz erkannt hat; nachdem es von Joule und namentlich von Helmholtz fester fundamentiert worden war, hat es auf die ganze Physik bedeutsamsten Einfluss gewonnen.

(Quelle: Moszkowski: 1000 Wunder; Wilhelm Ostwald: »Große Männer«. Akademische Verlagsgesellschaft m.b.H., Leipzig, 1909.)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Durchbruch bei Quantenteleportation: Quantenbits auf Knopfdruck übertragen

Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist. Quelle: University of Tokyo
Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.
Quelle: University of Tokyo

Mithilfe quantenmechanischer Verschränkung räumlich getrennter Lichtfelder ist es Wissenschaftlern aus Tokio und Mainz gelungen, photonische Quantenbits außerordentlich zuverlässig zu teleportieren. Rund 15 Jahre nach den ersten Versuchen auf dem Gebiet der optischen Teleportation ist damit ein entscheidender Durchbruch gelungen.

Der Erfolg des in Tokio durchgeführten Experiments beruht auf einer Hybridtechnik, bei der zwei konzeptionell verschiedene, bisher unvereinbare Ansätze verknüpft werden. „Diskrete, digitale optische Quanteninformation kann dabei kontinuierlich und damit sozusagen auf Knopfdruck übertragen werden“, erklärt Univ.-Prof. Dr. Peter van Loock von der Johannes Gutenberg-Universität Mainz (JGU). Van Loock hat als Physik-Theoretiker die experimentellen Physiker um Akira Furusawa von der Universität Tokio beraten, wie sie den Teleportationsversuch am effizientesten durchführen und eine erfolgreiche Quantenteleportation letztlich auch verifizieren können. Die Forschungsarbeiten wurden in dem renommierten Fachmagazin Nature am 15. August 2013 veröffentlicht.

Die Quantenteleportation ermöglicht den Transfer von beliebigen Quantenzuständen von einem Sender, als Alice bezeichnet, zu einem räumlich entfernten Empfänger, genannt Bob. Voraussetzung ist, dass sich Alice und Bob zunächst einen verschränkten Quantenzustand, z.B. in Form von verschränkten Photonen, über die Distanz teilen. Die Quantenteleportation ist von fundamentaler Bedeutung für die Verarbeitung von Quanteninformation (Quantencomputing) und die Quantenkommunikation. Insbesondere für die Quantenkommunikation gelten Photonen als optimale Informationsträger, da sie eine Signalübertragung mit Lichtgeschwindigkeit ermöglichen. Mit einem Photon kann man ein Quantenbit oder Qubit darstellen – analog zu einem Bit in der klassischen Informationsverarbeitung. Man spricht dann von „fliegenden Quantenbits“.

Erste Versuche zur Teleportation von einzelnen Photonen, die auch als Lichtteilchen bezeichnet werden, gehen auf den Wiener Physiker Anton Zeilinger zurück. In der Zwischenzeit wurden verschiedene Experimente durchgeführt, allerdings stieß die Teleportation eines photonischen Quantenbits mithilfe der herkömmlichen Methoden aufgrund von experimentellen Unzulänglichkeiten und grundsätzlichen Prinzipien an Grenzen.

Der Schlüssel für das Experiment in Tokio ist eine Hybridtechnik. Mit ihrer Hilfe ist es gelungen, experimentell eine vollkommen deterministische Quantenteleportation von photonischen Qubits zu erzielen, bei der die Teleportation mit außerordentlich hoher Zuverlässigkeit erfolgt. Die Genauigkeit der Übertragung liegt bei 79 bis 82 Prozent für vier unterschiedliche Qubits. Außerdem konnten die Qubits selbst bei einem geringen Grad der Verschränkung wesentlich effizienter teleportiert werden als in früheren Experimenten.

Verschränkung-on-Demand durch Lichtquetschung

Der Begriff der Verschränkung geht auf Erwin Schrödinger zurück und bezeichnet den Befund, dass zwei Quantensysteme, beispielsweise zwei Lichtteilchen, einen gemeinsamen Zustand einnehmen und in ihrem Verhalten auf stärkere Weise voneinander abhängen als es klassisch möglich ist. Bei dem Tokioter Experiment wurde durch die Verschränkung von vielen Photonen mit vielen Photonen eine kontinuierliche Verschränkung erzeugt, bei der nicht nur einzelne wenige Lichtteilchen, sondern die kompletten Amplituden und Phasen zweier Lichtfelder miteinander quantenkorreliert sind. Bisherige Experimente hatten dagegen jeweils nur ein einzelnes Photon mit einem anderen einzelnen Photon verschränkt – eine weniger effiziente Lösung. „Die Verschränkung von Photonen hat in dem Tokio-Experiment sehr gut funktioniert – praktisch auf Knopfdruck, sobald der Laser eingeschaltet wurde“, beschreibt van Loock, Professor für Theorie der Quantenoptik und Quanteninformation, den Versuch. Erreicht wurde diese kontinuierliche Verschränkung durch sogenanntes gequetschtes Licht, das im Phasenraum des Lichtfeldes die Form einer Ellipse annimmt. Ist die Verschränkung erzeugt, kann ein drittes Lichtfeld beim Sender angeheftet werden. Von dort können dann im Prinzip beliebige und beliebig viele Zustände an den Empfänger übertragen werden. „In unserem Experiment waren es genau vier ausreichend repräsentative Testzustände, die unter Benutzung der Verschränkung von Alice übermittelt wurden und bei Bob entsprechende Zustände erzeugt haben. Dank der kontinuierlichen Verschränkung ist es möglich, dass die photonischen Qubits deterministisch, also bei jedem Versuch, zu Bob übertragen werden“, ergänzt van Loock.

Frühere Experimente zur optischen Teleportation waren unterschiedlich angelegt und bis heute inkompatibel. Von physiktheoretischer Seite wurde zwar angenommen, dass die beiden unterschiedlichen Ansätze, die diskrete und die kontinuierliche Welt, zu verbinden sind. Dass es nun im Experiment mit der Hybridtechnik tatsächlich gelungen ist, stellt einen technologischen Durchbruch dar. „Jetzt nähern sich die beiden Welten an“, so van Loock.
( Quelle: idw. Veröffentlichung: Shuntaro Takeda et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 15. August 2013. DOI: 10.1038/nature12366)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Gehirn und Geist: Ist Denken ein mechanischer Vorgang?


Heidelberg. Denken gilt den meisten Menschen als abstrakte, vom Körper losgelöste Fähigkeit. Unser Geist habe mit dem mechanisch funktionierenden Organismus wenig zu tun. Diese Vorstellung zweifeln immer mehr Forscher heute jedoch an, berichtet das Magazin “Gehirn und Geist” in seiner neuen Ausgabe (Heft 1-2/2013). Wie Experimente von Psychologen und Neurowissenschaftlern zeigen, beeinflussen Bewegungen und andere körperliche Vorgänge das Denken viel stärker als bisher angenommen.

So verändert zum Beispiel schon die Art und Weise, wie wir einen Stift übers Papier bewegen, unsere Kreativität. Michael Slepian von der Tufts University in Medford (USA) und Nalini Ambady von der Stanford University ließen Probanden entweder geschwungene oder kantige Formen auf einem Blatt nachzeichnen. Im anschließenden Kreativitätstest schnitten jene, die die eckigen Figuren kopieren sollten, im Schnitt schlechter ab!

Wie kommt es zu solchen Effekten? Der Blick ins Gehirn liefert eine mögliche Erklärung: Wenn wir uns erinnern, nachdenken oder rechnen, sind dieselben Areale des Gehirns aktiv, die Bewegungen steuern oder Formen und Farben wahrnehmen. Betrachten wir zum Beispiel einen Hammer, dann wird ein Netzwerk unterschiedlicher Hirnareale aktiv, zu dem auch der prämotorische Kortex (PMC) gehört – jene Region, die Bewegungen vorbereitet. Offenbar spult unser Denkorgan unmittelbar eine Art “motorische Gebrauchsanweisung” ab. Das Wissen um die Handhabung von Objekten lässt sich also nicht von unserem konzeptionellen Wissen (“Das ist ein Hammer.”) trennen, resümierte der Psychologe Alex Martin von der University of Maryland in Bethesda.

Zum Hintergrund: Wahrnehmen, nachdenken, handeln – diese Funktionen sind im Gehirn nicht klar voneinander abzugrenzen. Wenn unser Körper nicht nur unsere Urteile und Emotionen beeinflusst, können wir ihn dann auch als Hilfsmittel zum Denken und Lernen nutzen? Diese Frage untersucht der Kognitionsforscher derzeit. Fast alle Kinder der Welt gebrauchen beim Rechnenlernen die Finger. Und das scheint für die Entwicklung ihrer Zahlenkompetenz von großer Bedeutung zu sein: Laut Studien können Erstklässler, die ein ausgeprägtes Körpergefühl in den Fingern haben, ein Jahr später auch besser mit Zahlen umgehen als Gleichaltrige mit weniger sensiblen Fingern.

Die Tübinger Psychologen Ulrike Cress und Hans-Christoph Nürk untersuchten 2012, ob gezielte körperliche Erfahrungen Kindern beim Mathelernen helfen. Verbessert sich beispielsweise ihr Gefühl für den Wert von Zahlen, wenn sie den Zahlenstrahl mit körperlichem Einsatz üben? “Mathe mit der Matte” heißt ein Projekt, bei dem Kinder auf einer digitalen Tanzmatte stehen, Zahlen vergleichen und je nachdem, ob eine Zahl größer oder kleiner ist, nach rechts oder nach links springen. Mit Zweitklässlern übten die Forscher einen Zahlenstrahl am Boden entlangzugehen und vorgegebene Zahl an der richtigen Stelle eintragen. Ergebnis der Studie: Die Kinder kennen anschließend nicht nur den Zahlenstrahl besser, sondern profitieren auch in anderen Bereichen der Mathematik. Die Kleineren können besser zählen, die Größeren leichter Additionsaufgaben lösen. (Quelle: Gehirn und Geist, 1 – 2 / 2013)

Buchtipps:

 

Leben auf dem Jupitermond Europa?

In der eisigen Kruste des Jupitermonds Europa befinden sich in Hohlräumen große Ansammlungen flüssigen Salzwassers. Diese Oasen in der Eiswüste sind auch für die Suche nach möglichem Leben auf dieser fernen Welt von großer Bedeutung, wie die Zeitschrift Sterne und Weltraum in ihrer aktuellen Ausgabe berichtet.

Der Jupitermond Europa gilt aus geologischer und biologischer Sicht nach der Erde als einer der interessantesten Himmelskörper in unserem Sonnensystem. Er besteht wie der Erdmond überwiegend aus Gesteinen und metallischem Eisen, ist aber von einer rund 100 Kilometer dicken Schicht aus Wasser umgeben. Dieses bildet eine 30 Kilometer dicke Eiskruste. Darunter befindet sich ein bis zu 70 Kilometer tiefer Ozean aus flüssigem Wasser. Reibung durch Gezeiteneffekte sorgt im Inneren des Jupitermonds für genügend Wärme, die verhindert, dass die Wasserschicht bis zum Grund gefriert.

Die gleißend helle Eisoberfläche von Europa ist auffallend eben und zeigt kaum größere Einschlagkrater. Sie ist offenbar sehr jung. Die Planetenforscher um Britney Schmidt vom Geophysikalischen Institut an der University of Texas in Austin geben in ihrem kürzlich im Wissenschaftsjournal Nature erschienenen Artikel ein Alter von 30 bis 70 Millionen Jahren an. Dies ist im Vergleich zum Gesamtalter von Europa von 4,5 Milliarden Jahren ein äußerst geringer Wert. Offenbar wird die Eisoberfläche durch geologische Vorgänge stetig erneuert.

Das Forscherteam um Schmidt erkannte als Ursache für die auf Europa weit verbreiteten „chaotischen Terrains” einen der Vorgänge, die zur Verjüngung der Mondoberfläche beitragen. Ihr Anblick erinnerte die Wissenschaftler stark an irdische Packeisregionen und polare Gletscherströme. Die chaotischen Terrains bestehen aus einer Aufwölbung in der Eiskruste, in der große Eisblöcke in einem breiigen See aus feinen Eisbruchstücken schwimmen.

Für die Entstehung der chaotischen Terrains gehen die Wissenschaftler von einem Szenario aus, bei dem Effekte eine Rolle spielen, die sich beim Einsatz von Streusalz auf den Straßen leicht beobachten lassen. Schon eine mäßige Erwärmung der salzhaltigen Eiskruste reicht aus, um dort eine Linse aus flüssigem Salzwasser entstehen zu lassen. Wasser zieht sich aber beim Aufschmelzen zusammen, so dass durch den Volumenverlust oberhalb der Wasserlinse die Oberfläche absinkt und dabei auch in einzelne Blöcke zerbricht. In der Folge bildet sich ein solches chaotisches Terrain.

Manche dieser Salzwasserlinsen befinden sich möglicherweise nur etwa drei Kilometer unterhalb der Eisoberfläche Europas. Somit bestünde die Möglichkeit, diese eines Tages mit einer fortschrittlichen Raumsonde mit Eisbohrtechnik erreichen zu können. Dann könnte eine Messapparatur in einen dieser Salzseen eindringen, um dort nach Spuren eventuellen Lebens zu suchen. Insbesondere der Nachweis von komplexen organischen Molekülen wäre für die Astrobiologen von herausragendem Interesse, sie sind Grundvoraussetzung für Leben, wie wir es kennen. (Quelle: Sterne und Weltraum, Februar 2012)

Kann Religion die Übel der Welt rechtfertigen?

Die Theologie reklamiert für sich rationales Denken und Wissenschaftlichkeit – trotz ihrer Bindung an die Religion. Dabei geht es ihr vor allem darum, innere Widersprüche zu beseitigen, aber auch um die Auseinandersetzung und Abstimmung mit anderen Disziplinen. Doch ist hier ein Konsens überhaupt möglich? Kann Religion die Übel der Welt rechtfertigen? weiterlesen

Neue Methoden zum Nachweis von Bewusstsein


Neue Tests helfen festzustellen, wie viel Patienten im Wachkoma von ihrer Umgebung wahrnehmen.

Neuropsychologen der Universitäten Tübingen und Heidelberg haben eine Serie neuer Tests entwickelt, mit denen sich genauer untersuchen lässt, ob Wachkomapatienten bei Bewusstsein sind. Darüber berichten die Forscher Boris Kotchoubey und Simone Lang in der Ausgabe des Magazins Gehirn&Geist (9/2011).

Wachkoma, Schmerz und Empathie
Im Gegensatz zu bisherigen Verfahren lassen sich mit der neuen Methode auch grundlegende Aspekte des Bewusstseins prüfen, beispielsweise Schmerzempfinden oder ein intaktes Arbeitsgedächtnis. Schon 2009 stellte der britische Neurologe Adrian Owen eine Methode vor, mit der er nachgewiesen hatte, dass eine junge Komapatientin bei Bewusstsein war. Die Frau erhielt im Hirnscanner liegend über Kopfhörer Anweisungen vom Forscher. Anhand der Hirnaktivität konnte Owen erkennen, dass die Betroffene ihn verstanden hatte.

Dieses Verfahren setzt jedoch voraus, dass die Patienten noch in der Lage sind, Sprache zu verstehen. Bewusstsein sei jedoch auch ohne Sprache denkbar, kritisieren Kotchoubey und Lang in Gehirn&Geist. Ihre einfacheren Tests zielen daher auf den Nachweis von Schmerzempfinden oder Gedächtnisleistungen. Insbesondere die Frage, ob die Betroffenen in der Lage sind, Schmerzen zu verspüren, sei von großer Bedeutung. Denn oftmals debattierten Angehörige und Ärzte darüber, ob sie die lebenserhaltenden Maßnahmen abschalten sollten.

Im Wachkoma, auch vegetativer Zustand genannt, haben die Betroffenen zwar meistens die Augen geöffnet, zeigen aber keine äußeren Anzeichen von Bewusstsein. Ursachen sind meist schwere Hirnschäden, die durch Unfälle, Sauerstoffmangel (etwa nach einem Herzstillstand) oder durch Schlaganfälle entstehen können. (Quelle: Gehirn&Geist, September 2011)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Technologiesprung bei spukhaft verschränkten Lichtteilchen

Video: Quantenverschränkung – Das Phänomen der Nichtlokalität

Eine neuartige Quelle von verschränkten Lichtteilchen haben Wiener PhysikerInnen um Philip Walther und Anton Zeilinger entwickelt. Diese erlaubt es erstmals nachzuweisen, dass ein verschränkter Zustand vorliegt, ohne diesen zu messen.

Verschränkung ist eine Eigenschaft der Quantenmechanik, die kaum mit dem alltäglichen, makroskopischen Verständnis der Welt vereinbar ist und kein Gegenstück in der klassischen Physik besitzt. Sind zwei Lichtteilchen (Photonen) miteinander verschränkt, so bleiben sie über beliebige Distanzen verbunden. Führt man eine Messung, z.B. des Polarisationszustandes, an einem der beiden Teilchen durch, so ändert sich auf “spukhafte Weise” auch der Zustand des anderen Teilchens.

Für die Realisierung von auf Verschränkung basierenden Technologien, wie optischen Quantennetzwerken und photonischen Quantencomputern, ist diese wissenschaftliche Arbeit der Wiener PhysikerInnen ein wichtiger Schritt.

Bisher hatte die Standardquelle für verschränkte Photonen einen entscheidenden Nachteil: Der Emissionszeitpunkt war unbekannt und es ließ sich damit nicht feststellen, wann die Teilchen die Quelle verlassen. Diese spontane Emission der Teilchenpaare führte zu diversen Problemen bei experimentellen Realisierungen. Möchte man z.B. einen Quantencomputer auf der Basis von Photonen bauen, hieße das, dass man nicht genau weiß, wann die sogenannten Quantenbits, in diesem Fall in Form von Photonen, vorhanden sind. In der Praxis bedeutet dies, dass nach jedem vermuteten Rechenschritt Photonen gemessen werden müssen, um festzustellen, ob dieser erfolgreich war.

Die von Wiener ForscherInnen realisierte Quelle von verschränkten Photonenpaaren, bei der die Emission der Paare angekündigt wird, macht eine Messung zur Anwesenheit der Teilchen überflüssig und ermöglicht eine Erweiterung des derzeitigen optischen Quantencomputers. Das Konzept dieser Quelle basiert auf zusätzlichen Hilfsteilchen, deren Messung eine Aussage über den Zustand der verbleibenden Teilchen ermöglicht. Im konkreten Fall des Wiener Experiments präparieren die ForscherInnen sechs Photonen in einem speziellen quantenmechanischen Zustand. Misst man nun vier dieser Photonen in einer festgelegten Konfiguration, so befinden sich die übrigen beiden Photonen in einem verschränkten Zustand. “Vier gleichzeitige Detektorklicks der vier Hilfsphotonen signalisieren also die Aussendung eines Paares verschränkter Photonen”, erklärt die am Experiment beteiligte Physikerin Stefanie Barz.

Neben der fundamentalen Bedeutung von verschränkten Systemen, liefern diese auch vollkommen neue Ansätze zur Informationsverarbeitung und zur abhörsicheren Kommunikation unter Ausnutzung von quantenmechanischen Prinzipien. Verschränkte Photonen bilden daher seit vielen Jahren einen Ausgangspunkt für zahlreiche Grundlagenexperimente zur Quantenmechanik und sind die Basis für experimentelle Realisierungen von Konzepten zur Quanteninformationsverarbeitung. So wurden bereits einfache Quantencomputer realisiert, die die Gesetze der Quantenmechanik ausnutzen, um eine schnellere und sicherere Informationsverarbeitung zu ermöglichen. (Quelle: idw)

Supernovae-Explosion: Wie das Weltall vermessen wird

NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory
NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Vom genauen Mechanismus hängt es ab, wie gut wir das Verhalten unseres Universums verstehen
Manche Sterne beenden ihr Dasein mit einem enormen Knall: Binnen Stunden steigern sie ihre Helligkeit um das Millionen- oder gar Milliardenfache und leuchten für einige Tage so hell wie eine ganze Galaxie. Astronomen entdecken jedes Jahr mehrere hundert solcher Supernovae, die zumeist in entlegenen Winkeln des Universums aufleuchten.

Supernovae künden aber nicht nur vom gewaltsamen Ende eines Sterns, sondern erweisen sich auch als wichtige Hilfsmittel für die Vermessung des Weltalls. Denn ein spezieller Typ dieser Sternexplosionen, genannt Ia, erreicht stets die gleiche Maximalhelligkeit. Gelingt es, dieses Maximum zu beobachten, dann folgt aus der gemessenen Helligkeit der Supernova direkt ihre Entfernung. Denn so, wie der fernere zweier gleich heller Autoscheinwerfer einem Beobachter lichtschwächer erscheint, verhält es sich auch mit Supernovae: Je größer ihre Distanz zur Erde ist, umso weniger hell erscheinen sie.

Die Entfernungsbestimmung mit Supernovae vom Typ Ia klappt so gut, dass sie sich als Maßstab oder Standardkerze zur Auslotung des Universums verwenden lassen. Seit rund achtzig Jahren ist bekannt, dass sich das Weltall ausdehnt. Aber erst vor wenigen Jahren fanden die Astronomen heraus, dass sich diese Ausdehnung sogar beschleunigt– ein Befund, der sich anhand der Distanzen der Supernovae vom Typ Ia ergab. Um diese Beschleunigung zu erklären, mussten die Wissenschaftler die Existenz einer ominösen »Dunklen Energie« annehmen, die das Universum beschleunigt auseinandertreibt.

Wegen der kosmologischen Bedeutung dieses Supernova-Typs interessieren sich die Astronomen für die Ursachen und den Ablauf der Sternexplosionen. Zwei Arten von Explosionen sind bekannt, in denen jeweils so genannte Weiße Zwerge eine Rolle spielen. Weiße Zwerge bilden das Endstadium verbrauchter Sterne ähnlich unserer Sonne. Bei der einen Art saugt ein Weißer Zwerg Materie von seinem Partnerstern ab. Er macht dies solange, bis er sich gewissermaßen überfressen hat und er von einer thermonuklearen Explosion zerrissen wird. Dies passiert stets mit der gleichen Maximalhelligkeit. Bei der anderen Art bilden zwei Weiße Zwerge ein Doppelsternpaar und verschmelzen schließlich, wobei es ebenfalls zur Supernovaexplosion kommt. Hier hängt die Maximalhelligkeit von der jeweiligen Masse der Weißen Zwerge ab. Die Astronomen besaßen Hinweise darauf, dass die erste Art deutlich häufiger vorkommt und sich Supernovae vom Typ Ia deshalb als Standardkerzen verwenden lassen.

Neue Untersuchungen von Astronomen des Max-Planck-Instituts für Astrophysik in Garching bei München belegen nun, dass nur fünf Prozent aller Supernovaexplosionen vom Typ Ia in elliptischen Galaxien auf Materie aufsammelnde Weiße Zwerge zurückgehen. Offenbar geht der größte Teil der gewaltigen Sternexplosionen auf die Vereinigung zweier Weißer Zwerge zurück, wie der Physiker Jan Hattenbach im aktuellen Mai-Heft der Zeitschrift “Sterne und Weltraum” berichtet. Dieser Befund schränkt allerdings die Verwendung der Supernovae vom Typ Ia als Standardkerzen ein. Denn nun erwarten die Astronomen, dass die Maximalhelligkeiten wegen der unterschiedlichen Massen der Weißen Zwerge bei ihrer Verschmelzung unterschiedlich ausfallen. Spannend ist jetzt, wie sich diese Erkenntnis auf die Messung der beschleunigten Expansion des Raums auswirkt. Quelle: Sterne und Weltraum, Mai 2010 – Bild: Zwei weiße Zwerge, die sich zunehmend enger umkreisen, verschmelzen schließlich was eine Supernova-Explosion zur Folge hat. (c) NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory