Schlagwort-Archive: beobachter

Supernovae-Explosion: Wie das Weltall vermessen wird

NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory
NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Vom genauen Mechanismus hängt es ab, wie gut wir das Verhalten unseres Universums verstehen
Manche Sterne beenden ihr Dasein mit einem enormen Knall: Binnen Stunden steigern sie ihre Helligkeit um das Millionen- oder gar Milliardenfache und leuchten für einige Tage so hell wie eine ganze Galaxie. Astronomen entdecken jedes Jahr mehrere hundert solcher Supernovae, die zumeist in entlegenen Winkeln des Universums aufleuchten.

Supernovae künden aber nicht nur vom gewaltsamen Ende eines Sterns, sondern erweisen sich auch als wichtige Hilfsmittel für die Vermessung des Weltalls. Denn ein spezieller Typ dieser Sternexplosionen, genannt Ia, erreicht stets die gleiche Maximalhelligkeit. Gelingt es, dieses Maximum zu beobachten, dann folgt aus der gemessenen Helligkeit der Supernova direkt ihre Entfernung. Denn so, wie der fernere zweier gleich heller Autoscheinwerfer einem Beobachter lichtschwächer erscheint, verhält es sich auch mit Supernovae: Je größer ihre Distanz zur Erde ist, umso weniger hell erscheinen sie.

Die Entfernungsbestimmung mit Supernovae vom Typ Ia klappt so gut, dass sie sich als Maßstab oder Standardkerze zur Auslotung des Universums verwenden lassen. Seit rund achtzig Jahren ist bekannt, dass sich das Weltall ausdehnt. Aber erst vor wenigen Jahren fanden die Astronomen heraus, dass sich diese Ausdehnung sogar beschleunigt– ein Befund, der sich anhand der Distanzen der Supernovae vom Typ Ia ergab. Um diese Beschleunigung zu erklären, mussten die Wissenschaftler die Existenz einer ominösen »Dunklen Energie« annehmen, die das Universum beschleunigt auseinandertreibt.

Wegen der kosmologischen Bedeutung dieses Supernova-Typs interessieren sich die Astronomen für die Ursachen und den Ablauf der Sternexplosionen. Zwei Arten von Explosionen sind bekannt, in denen jeweils so genannte Weiße Zwerge eine Rolle spielen. Weiße Zwerge bilden das Endstadium verbrauchter Sterne ähnlich unserer Sonne. Bei der einen Art saugt ein Weißer Zwerg Materie von seinem Partnerstern ab. Er macht dies solange, bis er sich gewissermaßen überfressen hat und er von einer thermonuklearen Explosion zerrissen wird. Dies passiert stets mit der gleichen Maximalhelligkeit. Bei der anderen Art bilden zwei Weiße Zwerge ein Doppelsternpaar und verschmelzen schließlich, wobei es ebenfalls zur Supernovaexplosion kommt. Hier hängt die Maximalhelligkeit von der jeweiligen Masse der Weißen Zwerge ab. Die Astronomen besaßen Hinweise darauf, dass die erste Art deutlich häufiger vorkommt und sich Supernovae vom Typ Ia deshalb als Standardkerzen verwenden lassen.

Neue Untersuchungen von Astronomen des Max-Planck-Instituts für Astrophysik in Garching bei München belegen nun, dass nur fünf Prozent aller Supernovaexplosionen vom Typ Ia in elliptischen Galaxien auf Materie aufsammelnde Weiße Zwerge zurückgehen. Offenbar geht der größte Teil der gewaltigen Sternexplosionen auf die Vereinigung zweier Weißer Zwerge zurück, wie der Physiker Jan Hattenbach im aktuellen Mai-Heft der Zeitschrift “Sterne und Weltraum” berichtet. Dieser Befund schränkt allerdings die Verwendung der Supernovae vom Typ Ia als Standardkerzen ein. Denn nun erwarten die Astronomen, dass die Maximalhelligkeiten wegen der unterschiedlichen Massen der Weißen Zwerge bei ihrer Verschmelzung unterschiedlich ausfallen. Spannend ist jetzt, wie sich diese Erkenntnis auf die Messung der beschleunigten Expansion des Raums auswirkt. Quelle: Sterne und Weltraum, Mai 2010 – Bild: Zwei weiße Zwerge, die sich zunehmend enger umkreisen, verschmelzen schließlich was eine Supernova-Explosion zur Folge hat. (c) NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Elektronen an zwei Orten gleichzeitig

Video: Die Quantenphysik

In einer Art molekularem Doppelspaltexperiment haben Wissenschaftler des Fritz-Haber-Instituts (FHI) der Max-Planck Gesellschaft in Zusammenarbeit mit Forschern vom California Institute of Technology in Pasadena/USA erstmals an Elektronen nachgewiesen, dass diese gleichzeitig Eigenschaften von Welle und Teilchen besitzen und quasi per Knopfdruck zwischen beiden Zuständen hin- und hergeschaltet.

Vor hundert Jahren begann man den in der Naturphilosophie postulierten dualen Charakter der Natur auch auf der Ebene elementarer physikalischer Vorgänge schrittweise zu erkennen. Albert Einstein war der erste, der 1905 diese Konsequenz aus Plancks Quantenhypothese zog. Er ordnete dem eindeutig als elektromagnetische Welle bekannten Photon Teilchencharakter zu. Dies ist die Quintessenz seiner Arbeit zum Photoeffekt. Später war es vor allem deBroglie, der 1926 erkannte, dass alle uns als Teilchen bekannten Bausteine der Natur – Elektronen, Protonen etc. – sich unter bestimmten Bedingungen wie Wellen verhalten.
Die Natur in ihrer Gesamtheit ist also dual; kein einziger ihrer Bestandteile ist nur Teilchen oder Welle. Niels Bohr führte zum Verständnis dieser Tatsache 1923 das Korrespondenz-Prinzip ein, das vereinfacht besagt: Jeder Bestandteil der Natur hat sowohl Teilchen- als auch Wellencharakter und es hängt nur vom Beobachter ab, welchen Charakter er gerade sieht. Anders gesagt: Es hängt vom Experiment ab, welche Eigenschaft – Teilchen oder Welle – man gerade misst. Dieses Prinzip ist als Komplementaritätsprinzip in die Geschichte der Physik eingegangen.

Albert Einstein war diese Abhängigkeit der Natureigenschaften vom Beobachter Zeit seines Lebens suspekt. Er glaubte, es müsse eine vom Beobachter unabhängige Realität geben. Doch die Quantenphysik hat die Tatsache, dass es keine unabhängige Realität zu geben scheint, im Laufe der Jahre einfach als gegeben akzeptiert, ohne sie weiter zu hinterfragen, da alle Experimente sie immer wieder und mit wachsender Genauigkeit bestätigt haben.

Bestes Beispiel ist das Young’sche Doppelspaltexperiment. Bei diesem Doppelspaltexperiment lässt man kohärentes Licht auf eine Blende mit zwei Schlitzen fallen. Auf einem Beobachtungsschirm hinter der Blende zeigt sich dann ein Interferenzmuster aus hellen und dunklen Streifen. Das Experiment kann aber nicht nur mit Licht, sondern auch mit Teilchen wie z. B. Elektronen durchgeführt werden. Schickt man einzelne Elektronen nacheinander durch den offenen Young’schen Doppelspalt, erscheint auf der dahinterstehenden Photoplatte ein streifenförmiges Interferenzmuster, das keinerlei Information über den Weg, den das Elektron genommen hat, enthält. Schließt man jedoch einen der beiden Spalte, so erscheint auf der Photoplatte ein verwaschenes Abbild des jeweils offenen Spaltes, aus dem man den Weg des Elektrons direkt ablesen kann. Eine Kombination aus Streifenmuster und Lagebild ist in diesem Doppelspaltexperiment jedoch nicht möglich, dazu bedarf es eines molekularen Doppelspaltexperiments.

Obwohl jedes Elektron einzeln durch einen der beiden Spalte zu laufen scheint, baut sich am Ende ein wellenartiges Interferenzmuster auf, als ob sich das Elektron beim Durchgang durch den Doppelspalt geteilt hätte, um sich danach wieder zu vereinen. Hält man aber einen Spalt zu oder beobachtet man, durch welchen Spalt das Elektron geht, verhält es sich wie ein ganz normales Teilchen, das sich zu einer bestimmten Zeit nur an einem bestimmten Ort aufhält, nicht aber an beiden gleichzeitig. Je nachdem also, wie man das Experiment ausführt, befindet sich das Elektron entweder an Ort A oder an Ort B oder an beiden gleichzeitig.
Das diese Doppeldeutigkeit erklärende Bohrsche Komplementaritäts-Prinzip fordert aber zumindest, dass man nur eine der beiden Erscheinungsformen zu einer gegebenen Zeit in einem gegebenen Experiment beobachten kann – entweder Welle oder Teilchen, aber nicht beides zugleich. Entweder ist ein System in einem Zustand des wellenartigen “Sowohl-als-auch” oder aber des teilchenartigen “Entweder-oder” in Bezug auf seine Lokalisierung.

In jüngster Zeit hat eine Klasse von Experimenten ergeben, dass diese verschiedenen Erscheinungsformen der Materie ineinander überführbar sind, das heißt, man kann von einer Form in die andere schalten und unter bestimmten Bedingungen wieder zurück. Diese Klasse von Experimenten nennt man Quantenmarker und Quantenradierer. Sie haben in den letzten Jahren an Atomen und Photonen und seit jüngstem auch an Elektronen gezeigt, das es ein Nebeneinander von “Sowohl-als-auch” und “Entweder-oder” für alle Formen der Materie gibt, also eine Grauzone der Komplementarität. Es gibt demzufolge experimentell nachweisbare Situationen, in denen die Materie sowohl als Welle aber auch als Teilchen gleichzeitig in Erscheinung tritt.

Beispiele dafür sind die Atom-Interferometrie, wo dieses Verhalten 1997 erstmalig bei Atomen, d.h. zusammengesetzten Teilchen, gefunden wurde. In der Ausgabe [nature, 29. September 2005] berichten die Berliner Max-Planck-Forscher gemeinsam mit Forschern vom California Institute of Technology in Pasadena/USA nun von molekularen Doppelspaltexperimenten. Diese beruhen darauf, dass sich Moleküle mit identischen und damit spiegelsymmetrischen Atomen wie ein von der Natur aufgebauter mikroskopisch kleiner Doppelspalt verhalten. Dazu gehört Stickstoff, wo sich jedes Elektron – auch die hochlokalisierten inneren Elektronen – an beiden Atomen gleichzeitig aufhält. Ionisiert man nun ein solches Molekül etwa mit weicher Röntgenstrahlung, führt diese Eigenschaft zu einer wellenartig streng gekoppelten Emission eines Elektrons von beiden atomaren Seiten, genauso wie im Doppelspaltexperiment mit Einzelelektronen.

Die Experimente wurden von Mitarbeitern der Arbeitsgruppe “Atomphysik” des FHI an den Synchrotronstrahlungslaboren BESSY in Berlin und HASYLAB bei DESY in Hamburg durchgeführt. Die Messungen mittels einer Multi-Detektoranordnung für kombinierten Elektronen- und Ionen-Nachweis fanden hinter so genannten Undulator-Strahlrohren statt, die weiche Röntgenstrahlung mit hoher Intensität und spektraler Auflösung liefern. Quelle: idw

Wenn sich jedes Elektron an zwei Orten gleichzeitig aufhalten kann, wie im vorletzten Absatz angeführt, dann hat das Folgen für unser Weltbild. Welche Folgen das sind, ist im Sachbuch mit dem Titel  Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen näher beschrieben.

Das neue Gesicht der Wirklichkeit

Der Theologe Adolf von Harnack (1851- 1930) hat die theoretischen Physiker als die wahren Philosophen des 20. Jahrhunderts bezeichnet. Die Notwendigkeit zu philosophieren ergab sich vor allem durch die Schlüsselposition, die der Beobachter in der Quantentheorie einnimmt. Im täglichen Leben wird niemand behaupten, dass der Mond nur dann am Himmel steht, wenn wir ihn anschauen. Aber in der Mikrowelt entscheidet sich das Ergebnis eines Experiments tatsächlich erst durch die Messung. Oder anders herum: Bevor eine quantenphysikalische Größe gemessen wird, hat sie keinen bestimmten Wert. Beispielsweise kann ein Elektron in einem von der Umgebung isolierten Atom sich gleichzeitig auf zwei verschiedenen Kreisbahnen um den Kern bewegen [man spricht von der ‘Überlagerung der Zustände’]. Damit besitzt es keinen bestimmten Energiewert – solange, bis der Physiker eine Messung vornimmt. Misst man direkt nach dieser Messung das Elektron noch einmal, kommt wieder der Wert aus der ersten Messung heraus. Denn durch die erste Messung ist der vorher unbestimmte Zustand eindeutig festgelegt worden.

In modernen Experimenten ist es bereits gelungen, Atome zu erzeugen, die sich gleichzeitig in zwei verschiedenen Zuständen befinden. Unlängst gelang es sogar Forschern im US-amerikanischen Stony Brook, einen supraleitenden Strom zu erzeugen, der gleichzeitig in zwei verschiedenen Richtungen floss. Solche Versuche sind besonders knifflig, da man eine Möglichkeit finden muss, die überlagerten Zustände auf indirektem Weg nachzuweisen, denn eine direkte Messung würde die Überlagerung aufheben.

Der Einfluß des Beobachters ist in der Quantenwelt entscheidend. Wie aber sein „Eingreifen“ genau zu verstehen ist und wo die Grenze zwischen Alltags- und Quantenwelt tatsächlich liegt, ist bis heute nicht geklärt. Besitzt der Beobachter eine Sonderstellung, die ihn über die Materie erhebt, oder ist er selbst eine Überlagerung quantenmechanischer Zustände? In den Anfängen der Quantentheorie wurde von einigen Wissenschaftlern tatsächlich die „Geist-über-Materie“- Interpretation vertreten: das menschliche Bewusstsein sei, so behaupteten sie, nicht den Regeln der Quantenmechanik unterworfen, da diese nur für Materie gälten. Auf Grund dieser Sonderstellung könnten wir durch bloße Beobachtung bewirken, dass Objekte von unbestimmten Zuständen in ein konkretes Dasein treten. Solch eine Erklärung würde aber bedeuten, dass Messapparate alleine keine eindeutigen Ergebnisse bei einem Experiment produzieren könnten. Es wäre immer ein menschlicher Beobachter nötig, der diese Ergebnisse registriert und sie dadurch erst von der quantenmechanischen Überlagerung in die Eindeutigkeit der Alltagswelt überführt. Diese Interpretation der Quantenphysik hätte natürlich bizarre Konsequenzen: Ein Wissenschaflter könnte dann nämlich ein Messprotokoll – ohne es anzuschauen – vervielfältigen und an Physikinstitute in aller Welt verschicken. Die Ergebnisse auf den Papieren blieben solange vieldeutig, bis der erste Physiker sein Exemplar des Protokolls angesehen hätte. In diesem Augenblick wären auch die Ergebnisse auf allen anderen Kopien wie durch Zauberei festgelegt. Ein Effekt, der dem Fall der Zwillingsphotonen ähnelt, diesmal aber Objekte aus der Alltagswelt betreffen würde!

Einen noch phantastischer klingenden Vorschlag zur Interpretation des Messprozesses machte 1957 der amerikanische Physiker Hugh Everett. Er ging davon aus, dass der Beobachter sich in mehrere Kopien seiner selbst aufspaltet und dadurch jeden möglichen Ausgang eines Experiments sieht. Der Beobachter merkt nur deshalb nichts davon, weil jede Kopie nach der Beobachtung in ihrem eigenen, parallel existierenden Universum weiterlebt. Da für jedes denkbare Ergebnis jeder quantenmechanischen Wechselwirkung Kopien des jeweiligen Beobachters entstehen, existieren Everetts Theorie zufolge eine fast unendliche Zahl paralleler Universen nebeneinander.

Umstritten ist im Rahmen dieser Theorie die Frage, ob wir andere Universen besuchen könnten. Der britische Physiker David Deutsch bejaht dies und kommt zu dem überraschenden Schluss, dass Zeitreisen in Everetts „Viele-Welten-Theorie“ ohne Widersprüche möglich wären. Eines der wichtigsten Argumente gegen Ausflüge in die Vergangenheit ist nämlich, dass der Zeitreisende in der Vergangenheit seine eigene Geburt verhindern und somit ein Paradoxon erzeugen könnte. Dieses Argument ist aber in einem „Multiversum“ nicht stichhaltig: Denn ein Zeitreisender könnte sich in die Vergangenheit jedes parallelen Universums begeben und dort die Geburt seines „Doubels“ verhindern, ohne dass ein logischer Fehler auftreten würde.

Die meisten Physiker sind der Überzeugung, dass die beiden vorgestellten extremen Sichtweisen bei der Interpretation der Quantentheorie noch nicht der Weisheit letzter Schluss sind. Und letztendlich ist dies eben eine philosophische Diskussion. Bereits Niels Bohr vertrat die pragmatische Sichtweise, die Physik könne lediglich Aussagen über Dinge machen, die der Messung zugänglich sind. Über den Rest empfahl er zu schweigen. Oder, wie Wolfgang Pauli es formulierte: „Ob etwas, worüber man nichts wissen kann, doch existiert, darüber soll man sich … doch wohl ebensowenig den Kopf zerbrechen, wie über die alte Frage, wieviele Engel auf einer Nadelspitze sitzen können.“ (Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Eine völlig neue Erklärung für das rätselhafte Verhalten der Photonen und für andere Phänomene der Quantenphysik findet sich im Buch Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen. Dort wird wohl zum ersten Mal der physikalische Nachweis geführt, dass Bewusstsein eine Energieart ist, auf der alles was existiert, aufbaut. Mit dieser Erkenntnis bekommt unsere Wirklichkeit eine neues Gesicht.

Die Entdeckung des Zufalls

Als Max Planck vor 100 Jahren mit einem Vortrag vor der Deutschen Physikalischen Gesellschaft in Berlin den Grundstein zur Quantentheorie legte, brachte er damit eine tiefgreifende Umwälzung des physikalischen Weltbilds in Gang. Hatten die Wissenschaftler bis dahin geglaubt, die Natur gleiche einem überdimensionalen Uhrwerk mit vorhersehbaren Abläufen, so wurden sie im Zuge der quantenmechanischen Revolution mit der Entdeckung des Zufalls konfrontiert.
Die Erkenntnis, dass es zum Beispiel für den Zeitpunkt des Zerfalls eines radioaktiven Atoms keinerlei Ursache gibt, war für die Physiker zu Beginn des 20. Jahrhunderts keineswegs erfreulich. Die sogenannte deterministische, klassische Physik hatte es ihnen ermöglicht, die Natur zu verstehen und Ereignisse wie Springfluten oder Mondfinsternisse vorherzusagen. Das gab ihnen über viele Jahrhunderte ein Gefühl von Sicherheit und Macht. Das Ende des Determinismus, der Vorhersagbarkeit, war daher nur schwer zu akzeptieren.
Dabei hatten statistische Theorien, die lediglich Aussagen über die Wahrscheinlichkeit eines Ereignisses machen, die Physiker in früheren Zeiten nicht beunruhigt. Man wusste, hochkomplexe Systeme wie Gase ließen sich nur über statistische Aussagen in den Griff bekommen. Denn es ist einfach unmöglich, die Orte und Geschwindigkeiten aller Teilchen eines Gases zu kennen. Würde aber ein „Superhirn” existieren, das über sämtliche nach dem Urknall entstandenen Teilchen Bescheid wüsste, dann müsste es den Lauf der Welt vorausberechnen können – so die damalige Meinung. Nun stellte sich heraus, dass dem Zufall in der Quantentheorie mit dieser Art von Allwissenheit nicht beizukommen war. Die sogenannte Unbestimmtheitsrelation machte es grundsätzlich unmöglich, Ort und Geschwindigkeit eines Gasatoms zur gleichen Zeit exakt zu messen.
Die Quantentheorie brachte aber nicht nur den Zufall ins Spiel. Es stellte sich heraus, dass quantenmechanische Dinge ein merkwürdig schemenhaftes Dasein führen, das erst durch eine Messung, also den Eingriff eines Beobachters, in einen eindeutigen Zustand überführt wird. Der Zustand eines Elektrons ist ohne eine Messung, die uns diesen Zustand offenbart, nicht nur nicht bekannt, sondern einfach nicht definiert. Hieraus ergab sich die Notwendigkeit, über erkenntnistheoretische Fragen nachzudenken. Denn nachdem sicher war, dass es keine vom Beobachter losgelöste Realität gibt, stellte sich die zentrale Frage, was wir dann überhaupt über die Natur wissen können. Was treibt ein Elektron, wenn ihm keiner zusieht? Auf diese Frage gibt es schlichtweg keine Antwort.
Die Quantenmechanik ist die am besten überprüfte und bestätigte Theorie überhaupt. Gleichzeitig sind ihre möglichen Konsequenzen wie Zeitreisen, „geisterhafte Fernwirkungen” oder die Quanten- Teleportation mit unserem an der Alltagswelt geschulten Verstand kaum zu erfassen. Die Quantentheorie bildet die Grundlage der gesamten modernen Physik, denn erst durch sie wurde ein tieferes Verständnis der Materie möglich. Mit ihrer Hilfe können wir beispielsweise erklären, warum Atome stabil sind, wie ein Laser funktioniert und warum Metalle den Strom besser leiten als die meisten Kunststoffe. Und nicht nur für die Elektronik, Optik oder Nanotechnologie ist die Quantenphysik entscheidend – auch die Vorgänge in der Chemie und Molekularbiologie sind letztlich auf Quanteneffekte zurückzuführen. „Bei der Interpretation der Quantentheorie mag es Schwierigkeiten geben”, schreibt der britische Elementarteilchenphysiker Robert Gilmore, „aber sie funktioniert zweifellos aufs beste.”
(Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Ist Zeit nur eine Illusion? Physiker experimentieren mit der Zeitdehnung

(idw). Die Zeitdehnung ist einer der faszinierendsten Aspekte der speziellen Relativitätstheorie Einsteins, weil er die Vorstellung einer absolut gültigen Zeit abschafft: Uhren in bewegtem Zustand ticken langsamer. Im Experiment konnte die Zeitdehnung zum ersten Mal von Ives und Stilwell 1938 mithilfe des Dopplereffekts beobachtet werden. Physikern der Johannes Gutenberg-Universität Mainz ist es nun gelungen, die Zeitdehnung mit bisher nicht erreichter Genauigkeit zu messen. Die Wissenschaftler verwenden dazu einen Ansatz, der die Speicherung und Kühlung von Lithium-Ionen und die Messung ihrer optischen Frequenzen mit einem Frequenzkamm verbindet. “Die Erforschung der Zeitdehnung ist nicht nur für die Grundlagenphysik von Bedeutung, sondern hat für die satellitengestützte Positionsbestimmung mit GPS und viele andere Anwendungen in der Kommunikationstechnologie eine ganz praktische Funktion”, erklärt Univ.-Prof. Dr. Gerhard Huber von der Universität Mainz dazu. Die Arbeit, die in Kooperation mit Wissenschaftlern aus Heidelberg, Garching und Winnipeg entstanden ist, wurde vom Wissenschaftsmagazin Nature Physics online veröffentlicht.

Seit ihrer Einführung 1905 bildet die spezielle Relativitätstheorie Albert Einsteins die Grundlage für alle Beschreibungen physikalischer Vorgänge. Ein wesentliches Prinzip dieser Theorie besagt, dass die Lichtgeschwindigkeit immer konstant bleibt, unabhängig davon, ob sich ein Beobachter mit eigener Geschwindigkeit bewegt oder nicht. Allerdings ist die Zeit in diesem Konzept nun nicht mehr konstant, sondern in einem bewegten System wie beispielsweise einer Rakete im Weltall verlangsamt. Diese Zeitdilatation oder Zeitdehnung wurde 1938 erstmals gemessen und mit einer Genauigkeit von einem Prozent bestimmt. Die jetzt von Nature Physics publizierte Arbeit ist gegenüber dieser ersten Messung 100.000 Mal genauer. “Das ist eine spektakuläre Genauigkeit, die allerdings auch notwendig ist, wenn wir die Grundlagen der Physik, also das Standardmodell testen wollen”, so Prof. Gerhard Huber.

“Innerhalb einer Messgenauigkeit von 1 zu 10 Millionen konnte am TSR Speicherring in Heidelberg die spezielle Relativitätstheorie bestätigt werden”, fasst Prof. Huber zusammen. Die Messung reiht sich damit in die Serie der Überprüfung des sogenannten Standardmodells der Physik ein, das die Elementarteilchen und die zwischen ihnen wirkenden Kräfte beschreibt, und die auch den Test der Lorentz-Invarianz, also der Gültigkeit der speziellen Relativität, einschließt.

Warum Zeit nur eine Illusion ist und was in Wirklichkeit dahinter steckt, wird im Sachbuch “Unsterbliches Bewusstsein” ISBN 978-3-8370-4351-8 von Klaus-Dieter Sedlacek erklärt.

Flugauto PAL-V: wird jetzt ein Menschheitstraum wahr?

(DailyNet) Nach vielen Misserfolgen kommt der Traum von flugfähigen Autos seiner Realisierung näher: Der Entwickler eines der aussichtsreichen Projekte erwartet in Kürze Finanzierungszusagen, berichtet das Technologiemagazin Technology Review in seiner Ausgabe 10/07.

Die Sehnsucht nach Flugautos ist fast so alt wie die Fliegerei selbst: Das wahrscheinlich erste baute ein Zeitgenosse der Gebrüder Wright schon im Jahr 1917, seitdem hat es mindestens 74 weitere Projekte in dieser Richtung gegeben. In der Szene erzählt man sich, dass selbst BMW und Volkswagen bis vor wenigen Jahren aktiv an Flugautos gearbeitet haben.

Aus den Niederlanden kommt jetzt ein Projekt, dem Beobachter besonders gute Chancen zusprechen: Das “PAL-V” des Ingenieurs John Bakker ist ein sogenannter Tragschrauber, der von einem Heckrotor angetrieben und von einem im Flugwind drehenden Hauptrotor in der Luft gehalten wird. Das Dreirad hat eine für den Flugbetrieb günstige schmale Front, Stabilitätsprobleme auf der Straße werden durch eine spezielle Neigetechnik vermieden. Im Gespräch mit Technology Review kündigte Bakker den Einstieg privater Investoren noch für diesen Herbst an. Auch eine bei der EU beantragte Förderung von drei Millionen Euro wird nach seinen Worten bald zugesagt. Das Pal-V soll vom Jahr 2011 ab für zunächst um 100.000 Euro zu kaufen sein.

In dem EU-Projekt soll zunächst ein Prototyp für das PAL-V entstehen. Daneben soll ein Betriebskonzept entwickelt werden, das ungeübte Piloten unterstützt. So könnten Computersysteme Informationen aus Datenbanken und von anderen Flugzeugen ins Cockpit einspielen, was den Begriff des “Sichtfluges” erweitern würde. Eine Pilotenlizenz für diese Art des Fliegens ist relativ leicht zu erwerben, und es stehen deutlich mehr Flugplätze dafür zur Verfügung als für den schwierigeren Instrumentenflug.