Schlagwort-Archive: bienen

Gedächtnisforschung: Hemmender Botenstoff am Lernprozess beteiligt


Honigbienen lernen sehr schnell und haben ein hervorragendes Gedächtnis. Daher sind sie als Modellorganismen für die Forschung interessant. Da die Lernprozesse beim Menschen ähnlich ablaufen, können Erkenntnisse aus der Bienenforschung übertragen werden. Wissenschaftler der Saar-Uni haben nun erstmals an Nervenzellen von Bienen experimentell belegt, dass der Neurotransmitter Gamma-Aminobuttersäure (GABA) eine bedeutende Rolle bei Lernprozessen spielt. GABA ist einer der wichtigsten hemmenden Botenstoffe im Gehirn und spielt unter anderem bei Krankheiten wie Alzheimer und Epilepsie eine Rolle. Die Studie wurde in der renommierten Fachzeitschrift „Journal of Neuroscience“ veröffentlicht.
Mit einem Gehirn kleiner als ein Stecknadelkopf und mit weniger als einer Million Nervenzellen können sich Bienen hervorragend in der Umgebung orientieren und lernen, wo für sie wichtige Futterquellen liegen. Hierbei verknüpft ihr Nervensystem spezifische Informationen wie Düfte, Farben und Landmarken mit einer Belohnung in Form von Nektar. Dies wird im Gedächtnis gespeichert, sodass die Biene die Futterstelle auch Tage später wiederfindet.
„Bei diesen Lernprozessen spielen chemische Botenstoffe eine wichtige Rolle“, sagt Uli Müller, Professor für Zoologie und Physiologie an der Universität des Saarlandes. „Diese Neurotransmitter übermitteln Informationen zwischen Nervenzellen, wobei zwischen erregenden und hemmenden Transmittern unterschieden wird.“ Ein erregender Botenstoff wie Acetylcholin (ACh) aktiviert die nächste Nervenzelle, während ein hemmender Transmitter wie GABA die Signalübermittlung herunterregelt. Kommen nun zwei Reize wenige Millisekunden hintereinander an einer Nervenzelle an, „verrechnet“ die Zelle diese miteinander. So kann das Signal bei der Verrechnung zweier Reize besonders verstärkt oder abgemildert werden, je nachdem, welche Transmitter beteiligt sind.
Kommt es bei der Reizweiterleitung zu Änderungen, sind Nervenzellen in der Lage, darauf zu reagieren – eine Eigenschaft, die Fachleute als neuronale Plastizität bezeichnen. Sie ist maßgebend für das Lernen und die Gedächtnisbildung.
„Beim Lernen spielt die zeitliche Abfolge der Informationen, also etwa die zeitliche Paarung von Duft und der anschließenden Nektarbelohnung, eine entscheidende Rolle“, so Müller weiter. „Bei bisherigen Untersuchungen von Lernprozessen stand vor allem die zeitliche Verrechnung von erregenden Neurotransmittern im Fokus. Obwohl bekannt war, dass der hemmende Neurotransmitter GABA beim Lernen eine Rolle spielt, wurde er nicht mit diesen Prozessen in Verbindung gebracht.“

Dies ist nun erstmals Müller und seinem Mitarbeiter Davide Raccuglia in ihrer aktuellen Studie gelungen. Die Biologen haben die für das Lernen bei Insekten verantwortlichen Nervenzellen, die Kenyonzellen, isoliert und die zeitliche Verrechnung bei erregenden und hemmenden Botenstoffen untersucht. Dazu haben die Forscher die Zellen von Honigbienen und Fruchtfliegen zuerst mit dem erregenden Transmitter ACh und Sekunden später mit dem hemmenden Botenstoff GABA als auch in umgekehrter Reihenfolge stimuliert. Zur Kontrolle haben sie die Versuche jeweils nur mit dem hemmenden oder dem erregenden Botenstoff durchgeführt. Anschließend haben sie gemessen, ob sich die Signalverarbeitung der Zellen verändert hat.
„Wir haben beobachtet, dass es bei der Stimulation mit beiden Transmittern im Gegensatz zu den Kontrollversuchen noch Minuten später zu Änderungen in der Signalverarbeitung der Kenyonzellen kommt“, sagt der Neurobiologe. Durch diese zeitliche Verrechnung haben die Zellen, so Müller weiter, ein „molekulares Gedächtnis“ gebildet. Dabei hänge das Ausmaß dieser Änderungen davon ab, welcher Transmitter zuerst stimuliert und wie viele Rezeptoren die Zellen für den Neurotransmitter GABA besitzen.
Folgestudien müssen jetzt klären, welche Rolle GABA-Rezeptoren bei der Signalverrechnung beim Lernen genau spielen und ob diese beispielsweise mit Krankheiten wie Alzheimer in Zusammenhang stehen. GABA ist einer der wichtigsten Botenstoffe des menschlichen Zentralnervensystems. Er wird auch mit weiteren neurologischen Krankheiten wie Epilepsie in Verbindung gebracht.
Die Studie wurde in der Fachzeitung „Journal of Neuroscience“
veröffentlicht:
„Temporal Integration of Cholinergic and GABAergic Inputs in Isolated Insect Mushroom Body Neurons Exposes Pairing-Specific Signal Processing”.  DOI: 10.1523/JNEUROSCI.0714-14.2014

Sensationelle Entdeckung: Bienen kommunizieren per Funk

Bienen können unterschiedliche elektrische Ladungen auf der Körperoberfläche ihrer Artgenossen wahrnehmen, unterscheiden und ihre Bedeutung erlernen. Das haben jetzt Wissenschaftler der Freien Universität Berlin um Professor Randolf Menzel und Uwe Greggers herausgefunden. Die Forscher vermuten, dass die Tiere diese „Sinnesfähigkeit“ nutzen, um sich zu orientieren und untereinander zu kommunizieren, etwa beim bekannten Schwänzeltanz, mit dem sich die Bienen Richtung und Entfernung einer guten Futterquelle mitteilen.

Wenn Bienen durch die Luft fliegen, ihre Körper im Stock aneinander reiben oder Teile ihres Körpers gegeneinander bewegen, lädt sich ihr Körper mit elektrischer Ladung auf. Die Wachsoberfläche ihres Körpers verhindert, dass die Ladung abfließt, wenn sie landen und in den Stock zurückkehren. Die Forscher zeigen in ihrer Untersuchung, dass Bienen auf unterschiedlich geladene elektrische Felder mit spezifischen Bewegungen ihrer Antennenfühler reagieren. Mithilfe der Sinneszellen, die auf diesen Antennen liegen, nehmen sie die Ladungen wahr und unterscheiden sie. „Die Bewegung der Antennen haben wir in Zusammenarbeit mit der Arbeitsgruppe von Professor Martin Göpfert von der Universität in Göttingen mit einer speziellen Kamera aufgezeichnet und deren Bilder ausgewertet“ sagt Uwe Greggers, einer der Autoren der Studie. Außerdem haben die Forscher gezeigt, dass Bienen lernen können, unterschiedliche elektrische Felder und ihre zeitlichen Muster zu unterscheiden.

Die Gruppe um Menzel zieht aus ihren Experimenten außerdem den Schluss, dass die elektrischen Felder eine wichtige Rolle bei der sozialen Kommunikation im Stock spielen, z.B. beim Schwänzeltanz. Die nachlaufenden Bienen registrieren die von der Tänzerin ausgehenden zeitlichen Muster der elektrischen Felder und erkennen daraus die Entfernung der Futterquelle. Auf diese Weise ist zum ersten Mal nachgewiesen worden, dass bei einem landlebenden Tier elektrische Ladungen der Körperoberfläche zu elektrischen Feldern führen, und damit eine neue Wahrnehmungswelt eröffnen. Bisher war das nur von im Wasser lebenden Tieren bekannt, wie etwa dem Zitteraal. (Quelle: idw)

Verblüffende Mathematikfähigkeiten von Bienen

(idw). Ein Mensch bekommt ganz kurz eine Schachtel mit Bohnen gezeigt. Er soll sagen, wie viele es sind. Liegen bis zu vier Bohnen drin, stimmt die Antwort immer, bei fünf und mehr Bohnen ist sie meist falsch. Ein ähnliches Experiment haben Forscher nun mit Bienen gemacht – das Ergebnis ist verblüffend.

Dass Menschen eine Menge aus vier oder weniger Objekten stets fehlerfrei schätzen, ist seit 1871 bekannt. Es war der englische Ökonom W.S. Jevons, der das Bohnen-Experiment durchführte und die Ergebnisse im Wissenschaftsjournal Nature publizierte. Ab fünf und mehr Bohnen konnten seine Versuchspersonen die genaue Menge nur dann nennen, wenn sie länger in die Schachtel sehen und die Bohnen zählen durften.

Mengen aus weniger als fünf Gegenständen auf einen Blick erfassen und voneinander unterscheiden: Mit dieser Fähigkeit steht der Mensch nicht alleine da. Auch Affen, Tauben und andere Wirbeltiere können das, wie spätere Untersuchungen gezeigt haben.

Sogar Honigbienen sind dazu in der Lage. Das berichten Forscher vom Biozentrum der Universität Würzburg mit Kollegen aus Canberra (Australien) im Online-Journal PLoS ONE. “Damit haben wir erstmals nachgewiesen, dass auch wirbellose Tiere zahlenkompetent sind”, sagt Professor Jürgen Tautz von der Würzburger Beegroup.

Ablauf der Experimente

Wie die Wissenschaftler das herausfanden? Sie ließen ihre Bienen zu zwei nebeneinander stehenden Tafeln fliegen, die optisch unterschiedlich gestaltet waren. Auf der einen Tafel waren zwei Objekte abgebildet, auf der anderen nur eines.

Jede Tafel hatte außerdem ein Loch, durch das die Bienen fliegen konnten. Hinter der Tafel mit den zwei Objekten drauf fanden sie stets eine Belohnung, nämlich ein Schälchen mit zuckersüßem Wasser. Schnell hatten sie gelernt, wo das Futter versteckt war, und flogen nur noch zur Tafel mit den zwei Objekten.

Nun stellten die Forscher die Bienen auf die Probe. Sie veränderten die Anordnung der Tafeln sowie Anzahl, Farbe und Form der darauf abgebildeten Objekte.

Ergebnis: Die Bienen flogen immer zu der Tafel, auf der zwei Objekte zu sehen waren. Ob die Tafel rechts oder links stand, ob es sich bei den Gegenständen um rote Äpfel oder gelbe Punkte handelte, war ihnen egal – nur zwei mussten es sein. Zwei Objekte bedeuten Futter, das hatten die Bienen zuvor gelernt. Die richtige Tafel konnten sie auf Anhieb identifizieren.

Diesen Versuch spielten die Forscher wieder und wieder durch. Sie trainierten die Bienen mal auf Tafelpaare mit zwei und drei Objekten, dann auf welche mit drei und vier Objekten. Immer fanden die Bienen schnell heraus, zu welcher Tafel sie fliegen mussten. Erst bei Tafelpaarungen mit vier und fünf oder höheren Objektmengen scheiterten sie.

Vorteil für die Bienen

Kleine Mengen korrekt zu schätzen – worin könnte die biologische Bedeutung dieser Leistung für den Bienen-Alltag liegen? Vielleicht machen die Insekten davon Gebrauch, um schnell die Zahl der Blüten an einem Zweig oder die Zahl anderer Bienen auf einer Blüte abschätzen zu können. Und um sich dann ebenso schnell zwischen den Optionen “Landen” oder “Durchstarten” zu entscheiden.

Wozu die Bienen diese neu entdeckte Fähigkeit wirklich nutzen, das erforscht der Würzburger Doktorand Mario Pahl. Er hält sich zurzeit in Canberra auf – dort ist jetzt Sommer, und so kann er im Freiland mit Bienen experimentieren.

Antike Hochkulturen: Bruch zwischen vier und fünf

Auf eine kulturelle Besonderheit weist Professor Hans Joachim Gross, Mitglied der Beegroup und emeritierter Inhaber des Würzburger Lehrstuhls für Biochemie, angesichts des neuen Forschungsergebnisses hin: In vielen antiken Hochkulturen gibt es einen auffallenden Bruch beim Übergang von der Zahl 4 zur Zahl 5.

In der frühesten römischen Antike beispielsweise wurden die Ziffern 1 bis 8 so geschrieben: I, II, III, IIII, V, VI, VII, VIII. Im antiken Südarabien schrieben die Menschen I, II, III, IIII, U, UI, UII, UIII. Und bei den Maya in Mittelamerika sahen die Zahlen von 1 bis 8 so aus:*, **, ***, ****, I, *I, **I, ***I.

“In diesen Hochkulturen mit einem entwickelten Kalender- und Rechnungswesen hat man bewusst oder unbewusst gefühlt oder verstanden, dass Objektzahlen bis vier ohne zu zählen richtig und fehlerfrei erkannt werden und dass bereits bei fünf Punkten oder Strichen gezählt werden muss. So hat man für die Zahl fünf eigene, neue Zeichen erfunden”, so die Wissenschaftler.

Schneller rechnen: Eigene Zeichen für fünf und zehn

Der Mensch von heute? Wenn er mit Strichlisten zählt, dann macht er bis zur Zahl vier jeweils einen Strich (I, II, III, IIII). Aber statt IIIII für fünf zu schreiben, streicht er einfach die IIII mit einem Querstrich durch – und hat damit ein neues Zeichen geschaffen, das ihm das Abzählen von fünf Strichen erspart.

“Die Erfindung eines eigenen, neuen Zeichens für die Fünf beziehungsweise die Zehn macht es dem Menschen möglich, auch Zahlen wie VII und VIII auf einen Blick als sieben oder acht zu erkennen – ohne zählen zu müssen”, sagen die Forscher. Auf diese Weise könne man erheblich schneller rechnen. Dasselbe gelte für XII, XIII oder XXII etc.

“Number-based visual generalisation in the honeybee”, Hans J. Gross, Mario Pahl, Aung Si, Hong Zhu, Jürgen Tautz & Shaowu Zhang, PLoS ONE 4(1): e4263. doi:10.1371/journal.pone.0004263. Online publiziert am 28. Januar 2009

Weitere Informationen: Prof. Dr. Jürgen Tautz, T (0931) 31-84319, tautz@biozentrum.uni-wuerzburg.de, und Prof. Dr. Hans Joachim Gross, T (0931) 31-84027, https://www.beegroup.de