Schlagwort-Archive: Biophysik

Physik sorgt für Entwicklungsschub in der Biologie

Geschichte der Biophysik

Physik und Biologie haben gemeinsame Wurzeln und haben sich oft gegenseitig inspiriert. Neue physikalische Messmethoden führten zu einem Entwicklungsschub in der Biologie und Beobachtungen der Biologen dienten als Denkanstöße in der Physik.

Kann die Physik auch prinzipielle Fragen der Biologie klären? Einige Experten hegten einst starke Zweifel. So erklärte der französische Genetiker und Medizin-Nobelpreisträger von 1965, Jacques Monod, lange Zeit, dass Leben zwar mit den Gesetzen der Physik kompatibel sei, aber nicht durch physikalische Gesetze kontrolliert werde. Ernst Walter Mayr, der große Entwicklungsbiologe, behauptete, Physik spiele in der Biologie überhaupt keine Rolle und habe praktisch nichts zur Deutung lebender Materie beigetragen. Die historischen Beispiele zeigen jedoch das Gegenteil.

Mit Physik die Zelle entdecken

Ein erster Begründer der modernen Biologie war der Delfter Kaufmann und Hobbyforscher Antoni van Leeuwenhoek, der um 1670 einfache Mikroskope baute, mit denen er eine bis zu 200-fache Vergrößerung erreichte. Die Mikroskope bestanden aus einer auf einem Kupferring ruhenden Glaskugel, als Beleuchtung diente eine Kerze. Leeuwenhoek beobachtete damit erstmals lebende Zellen – wahrscheinlich sogar große Bakterien.

Historische Skizze des Mikroskops von Robert Hooke.
Mikroskop nach Hooke

Als zweiter Entdecker der Zelle kann der englische Physiker Robert Hooke angesehen werden. Der Experimentator, dessen Name vor allem durch sein Gesetz der Elastizität bekannt ist, beobachttee im 17. Jahrhundert die Struktur von Kork und prägte den Begriff der Zelle. Seine und Leeuwenhoeks Beobachtungen über die Existenz und Bewegung von Zellen wurden von den Biologen lange als Spielerei abgetan und so dauerte es noch gut 200 Jahre, bis die Idee der Zelle vollständig akzeptiert wurde.

Physikalische Prinzipien in der Biologie

Weitere Pioniere der Biophysik waren Thomas Young und Hermann von Helmholtz, die beide über die Medizin zur Physik kamen. Der Augenarzt Thomas Young lieferte Anfang des 19. Jahrhundert mit seinem Beugungsversuch am Doppelspalt den ersten experimentellen Beweis für die Wellennatur des Lichts – gegen den Widerstand des wissenschaftlichen Establishments. In Selbstversuchen lieferte er außerdem den Beweis, dass die Adaption des Auges auf der Verformung der Augenlinse beruht und belegte die Ursache des Astigmatismus, eines optischen Abbildungsfehlers, der sich im Auge als Hornhautverkrümmung äußert. Er stellte auch die Dreifarben-Hypothese des Farbsehens auf, ausgebaut von Helmholtz und heute voll bestätigt. Ebenso wichtig für die Biologie ist Youngs Entdeckung des nach ihm benannten Gesetzes der Kapillarität.

Dargestellt ist die von Helmholtz und Young vermutete Empfindlichkeit des Auges für die drei Farbtöne rot, grün und blau/violett.
Dreifarben-Hypothese

Der Physiologe Helmholtz maß als erster die Transportgeschwindigkeit von Nervensignalen. Seine Formulierung des Energieerhaltungssatzes der Physik und die Entdeckung der zentralen Bedeutung der Zirkulationsströmung für das Fliegen wurden durch die Biologie inspiriert. Dabei ist seine Entwicklung vom Mediziner zum theoretischen Physiker außergewöhnlich: Als Mediziner begründete er die moderne Physiologie und als Physiker legte er den Grundstein für die zum Ende des 19. Jahrhunderts einsetzende enorme Entwicklung der Physik in Deutschland.

Energie und Bewegung

Die prominentesten Beispiele für die Auswirkungen der Biologie auf die Physik sind die Entdeckung des allgemeinen Energieerhaltungsssatzes durch den deutschen Arzt und Physiker Julius von Mayer und den Physiologen Hermann von Helmholtz sowie die Theorie der Brownschen Bewegung durch Albert Einstein. Mayer beobachtete als Schiffsarzt auf Java, dass das in den Venen zum Herzen zurückfließende Blut der Hafenarbeiter in den Tropen heller ist als in gemäßigten Zonen. Er wusste bereits, dass Blut umso heller ist, je mehr Sauerstoff es enthält. Daraus schloss er, dass die Arbeiter in den Tropen bei gleicher Arbeitsleistung weniger Sauerstoff – und damit Energie – verbrauchten als in gemäßigten Zonen, da weniger Wärme an die Umgebung abgegeben wird. Dies brachte ihn auf die Idee, dass Wärme und mechanische Arbeit äquivalente Energieformen sind und er bestimmte aus physiologischen Messungen sogar das mechanische Wärmeäquivalent.

Die Grafik ist zweigeteilt und zeigt statistische Bewegungen von Teilchen, die sich bei höherer Temperatur schneller bewegen.
Brownsche Bewegung

Seine Intuition allein reichte jedoch nicht aus, um der Idee in der Physik zum Durchbruch zu verhelfen. Erst dem Theoretiker Helmholtz gelang 1847 die allgemeine Formulierung des Energieerhaltungssatzes. Seine im Alter von 26 Jahren verfasste Arbeit wurde allerdings nicht zur Publikation in den Annalen für Physik und Chemie angenommen, und so setzte sich der Energieerhaltungssatz eher zögernd durch. Einsteins Deutung der Beobachtung des britischen Botanikers Robert Brown, dass Bärlappsamen in Wasser wirre Bewegungen ausführen, beeinflusste die Physik zu Beginn des Jahrhunderts fast ähnlich stark wie die Plancksche Strahlungsformel. Nach dem experimentellen Beweis der Theorie der Brownschen Bewegung durch den französischen Physiker Jean-Baptiste Perrin, der 1926 den Physik-Nobelpreis erhielt, akzeptierten auch skeptische Physiker das Konzept der atomistischen Struktur der Materie. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

Komponenten des Lebens und ihre Funktion

Die Biophysik bildet die Brücke zwischen der Physik und den Lebenswissenschaften. Sie ist eng mit der Physik Weicher Materie und Komplexer Systeme verknüpft und viele Fragestellungen sind Bestandteil der Statistischen Physik geworden. Dabei verfolgt die Biophysik mehrere Stoßrichtungen.

Die eine versucht, Methoden zu entwickeln, um die Architektur biologischer Materialien von molekularen bis makroskopischen Skalen zu untersuchen und ihre physikalischen Eigenschaften unter möglichst natürlichen Bedingungen zu messen – in „vivo“, sagt der Biologe. Entdeckungsfreudige Physiker finden eine breite Spielwiese, um mit einfachen Methoden wie optischen und magnetischen Pinzetten oder einer Glaspipette, gepaart mit einem guten Mikroskop, die physikalischen Eigenschaften der Zellen zu studieren.

Dreidimensionale Darstellung der Struktur des Proteins GGA1.
Struktur eines Proteins

Große Maschinen hingegen sind notwendig, um die Struktur und Dynamik biologischer Materialien mittels Neutronen- und Röntgenbeugung zu erforschen. Moderne Methoden der Röntgenbeugung mit fokussierten Strahlen eröffnen dabei auch völlig neue Einblicke in die molekulare Architektur von Gewebe, Knochen oder Holz. Zudem verspricht die Entwicklung der Spallations-Neutronenquellen und des Freien Elektronenlasers neue Einsichten in die molekulare Basis des molekularen Erkennens zwischen Proteinen und DNS oder die physikalischen Grundlagen der Proteinfaltung.

Biologie als Vorbild

Eine zweite Forschungsrichtung ist die von der Biologie inspirierte Physik. Sie versucht möglichst realistische Modelle lebender Materie – wie Membranen, Gewebe oder Knochen – aufzubauen, um spezifische biologische Prozesse zu imitieren. Solche Modelle spielen eine wichtige Rolle, um etwa die Verlässlichkeit neuer physikalischer Methoden zu testen oder um nach den wesentlichen physikalischen Parametern zu suchen, welche das biologische Verhalten eines Systems bestimmen.

Parallele Untersuchungen natürlicher Systeme und von Modellen helfen auch, Bezüge zur Physik Kondensierter Materie herzustellen. Im Hintergrund steht der Gedanke, die Strategie der biologischen Selbstorganisation zur Herstellung neuartiger smarter Materialien einzusetzen. Beispiele dieses Bionik genannten Gebietes sind Materialien, die ihre Eigenschaften an wechselnde Umgebungsbedingungen anpassen können, wie selbst reinigende Oberflächen oder bruchfeste Keramiken, wie sie in Prozessen der Biomineralisierung entstehen.

Im Grenzbereich zwischen Physik und Technik sind Bemühungen angesiedelt, Methoden der Navigation in der Tierwelt zu imitieren. Beispielsweise inspirierte die Echoortung der Fledermaus die Radartechniker zum Bau des Zirp-Radars. Auch beim Bau von Robotern lässt man sich gern von der Biologie inspirieren: Zahlreiche Arbeitsgruppen versuchen, die Fähigkeit der Insekten und Salamander des Hochlaufens an Wänden zu imitieren. Roboter zum Fensterputzen wären eine passende Umsetzung des Prinzips.

Ein anderer zukunftsträchtiger Zweig der angewandten Biologischen Physik ist der Bau von Biosensoren durch den Aufbau von Enzymsystemen, Biomembranen oder Nervenzellen auf elektro-optischen Bauelementen. Ein Beispiel sind zweidimensionale Anordnungen von Punkt-Transistoren, die als Nano-Voltmeter fungieren. Hier sitzen auch zahlreiche Querverbindungen zur Nanotechnik oder Mikrooptik, denn die dort entwickelten Methoden eröffnen neue Möglichkeiten zur Messung physikalischer Eigenschaften der Zellen in natürlicher Umgebung.

Komplexe Wechselwirkungen erfassen

Dargestellt ist eine Nervenzelle mit Axonen.
Neuron

Auf fundamentalere Fragen der Biologie zielt die oft als Systembiophysik bezeichnete Erforschung der Regulation biologischer Prozesse durch das Wechselspiel zwischen biochemischen und genetischen Signalkaskaden, der dadurch bedingten Modifikation der Materialeigenschaften und der biologischen Funktion. Hier arbeiten Physiker, Mathematiker und Ingenieure miteinander. Eine besonders faszinierende Fragestellung dieser Kategorie ist die Entwicklung vom befruchteten Ei zum Embryo, oft Morphogenese genannt. Was steuert die Differenzierung der zunächst völlig identisch erscheinenden Zellen des befruchteten Eis in Neuronen oder Muskelzellen und was legt den Zeitplan der embryonalen Entwicklung fest? Ist dies alles im genetischen Code vorbestimmt oder bestimmt die Kopplung zwischen externen äußeren Kräften – wie chemischen Potentialen oder mechanischen Kräften – und dem genetischen Apparat den Prozess der Morphogenese?

Alan Turing, der geistige Vater des Programmierens, lehrte erstmals, wie raum-zeitliche Muster, etwa von Signalmolekülen, die dann die Entwicklung von Organen steuern, allein durch das Zusammenspiel chemischer Potenziale und autokatalytischer Prozesse entstehen können. Zwar ist die Entwicklung vom befruchteten Ei zum ausgewachsenen Lebewesen vor allem durch die zeitliche Folge der Gen-Expression bestimmt, doch zeigt sich auch immer mehr, dass die Zell-Zell-Erkennung und insbesondere mechanische Kräfte die Differenzierung und räumliche Organisation der Zellen steuern können. Die Aufklärung des Wechselspiels zwischen Morphogenese und der Physik der Zelle ist eine besonders reizvolle Aufgabe für Experimentatoren und Theoretiker.

Immer mehr Physiker finden außerdem Interesse an der Hirnforschung und versuchen zu verstehen, wie das Gehirn die Umwelt wahrnimmt. Ein Meilenstein auf dem Weg zur quantitativen Hirnforschung war die Entdeckung, dass optische Muster, die auf die Netzhaut der Augen projiziert werden, im visuellen Cortex als Erregungsmuster abgebildet werden. Diese Experimente brachten der Physik neuronaler Netzwerke einen enormen Aufschwung. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)

Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

Sind Dampfquellen die Wiege des Lebens?

»Die ersten Funken zellulären Lebens sind auf dem Festland entstanden, und zwar in Teichen oder Seen aus kondensiertem geothermalem Dampf«, davon ist Dr. Armen Mulkidjanian, Biophysiker am Fachbereich Physik der Universität Osnabrück, überzeugt. »Damit wird die bislang weithin verbreitete Ansicht widerlegt, das Leben sei im Ozean entstanden«, fasst der Osnabrücker Wissenschaftler eine Studie zusammen (https://www.pnas.org/).

Die heutige Wissenschaft lässt kein Zweifel daran, dass alle zellulären Organismen einen gemeinsamen Ursprung haben. Die neue Disziplin »Vergleichende Genomik« (Comparative Genomics), analysiert ganze Genome und nicht nur einzelne Gene. »Der Vergleich von Hunderten bereits entschlüsselter Genome hat einen Satz von ca. 60 essentiellen Genen aufgedeckt, die in allen zellulären Organismen vorhanden sind«, so der Osnabrücker Biophysiker. »Diese Gene waren definitiv Bestandteil des Genoms des letzten gemeinsamen Vorfahren von allem zellulären Leben.«

Mulkidjanian und seine Kollegen haben nun geprüft, welche anorganischen Ionen für die durch die allgegenwärtigen Gene kodierten Proteine, die in den ersten Zellen mit Sicherheit anwesend waren, funktionell oder strukturell wichtig sind. Kalium ist funktionell wichtig für mehrere dieser Proteine, während Natrium von keinem dieser Proteine benötigt wird.  Diese Ergebnisse stimmen mit der Tatsache überein, dass alle Zellen mehr Kalium als Natrium enthalten. Es ist auch bekannt, dass nicht die absolute Menge an Kalium und Natrium für das Funktionieren einer Zelle wichtig ist, sondern deren relatives Verhältnis.

Die anorganische Zusammensetzung des Inneren der Zellen (des Zytoplasmas) ist dementsprechend in allen Organismen annähernd ähnlich. Daher repräsentiert diese Ähnlichkeit die »innere« Chemie der ersten Zellen. Da die ersten Zellen mit aller Wahrscheinlichkeit undichte oder sogar durchlässige Zell-Hüllen (Membranen) hatten, reflektiert die anorganische Zusammensetzung der allgegenwärtigen Proteine nicht nur die innere Chemie der ersten Zellen, sondern auch die Geologie der Habitate in denen diese lebten«, erläutert der Osnabrücker Biophysiker.

Die ursprünglichen Zutaten für die Entstehung der ersten Zellen waren nie in der richtigen Zusammensetzung im Ozean vorhanden. Die heutige Geologie geht fest davon aus, dass im Meer von Anfang an Natrium gegenüber Kalium vorherrschte. In Proben von Meerwasser, das in 3,5 Milliarden Jahre alten Gesteinen gefangen war, findet man vierzig Mal mehr Natrium als Kalium, genau wie in modernen Ozeanen. Übergangsmetalle, wie Zink, waren ebenfalls nie in großen Konzentrationen in Ozeanen vorhanden.

»Die Brutstätten der ersten Zellen waren daher aller Wahrscheinlichkeit nach auf dem Land, wo aktive geothermale Prozesse chemisch reiche Gase und Dämpfe aus dem Erdinneren auf das junge Festland beförderten«, erklärt Mulkidjanian. Der Dampf kondensierte zu langlebigen urzeitlichen Seen, die zur chemischen Katalyse fähige Mineralien enthielten. Auf den heutigen geothermalen Feldern, zum Beispiel auf der Kamtschatka-Halbinsel oder im Yellowstone Nationalpark (USA), die als Modelle von urzeitlichen geothermalen Systemen dienen, enthält das Dampfkondensat mehr Kalium als Natrium und erhebliche Mengen an Phosphat und Übergangsmetallen.

Unter der ursprünglich sauerstofffreien Atmosphäre entsprach die chemische Zusammensetzung der mit Dampfkondensat gefüllter Seen, so die Autoren, fast genau der anorganischen Chemie heutiger Zellen. Daher bildeten die ursprünglichen geothermalen Felder, wo ebenfalls Sonnenlicht als Energie-Quelle vorhanden war, den natürlichen Startpunkt für die Evolution der essentiellen biochemischen Prozesse des heutigen Lebens. Das vorgeschlagene Modell hat Ähnlichkeit mit Darwins Idee vom Lebensursprung in einem »kleinen warmen Teich«. Den Autoren nach ist das Leben auf dem Festland entstanden und hat erst nachträglich den Ozean bevölkert. (Quelle: idw)

Wieso unser Gehirn Bewusstsein zeigt und wie das zu unsterblichem Bewusstsein führt.

Video: Professor Dr. Wolf Singer, Max Planck Institut Frankfurt über die synchrone Oszillation von Gehirnwellen


(idw). Wie entsteht die Welt in unserem Kopf? Warum erscheint sie uns als einheitliches, zusammenhängendes Phänomen – obwohl doch Neurobiologen seit langem wissen, dass unser Gehirn zum Beispiel Sinneswahrnehmungen in mehreren Dutzend verschiedenen Arealen und zudem in unterschiedlicher Geschwindigkeit verarbeitet? Was “bindet” die Nervenzellen in den oft weit voneinander entfernten Arealen zusammen? Und: Kann die Aktivität vieler solcher Nervenzell-Verbände jenen mentalen Zustand erzeugen, den wir “Bewusstsein” nennen?

Worüber Philosophen wie Renè Descartes (“Ich denke, als bin ich”) seit Jahrhunderten rätselten, rückte in den beiden letzten Jahrzehnten zunehmend ins Zentrum des Interesses der Neurobiologen. Den theoretischen Schlüssel für das Tor zur experimentellen Erkundung des Bewusstseins lieferte ihnen die 1981 von Christoph von der Malsburg formulierte “Korrelationstheorie der Hirnfunktion” – ein radikal neues Konzept, wie der Kosmos im Kopf funktionieren könnte: keine Zentrale und kein starres Programm, dafür eine zeitliche Verknüpfung (die “Korrelation”) der Aktivitäten von Nervenzell-Verbänden, die sich augenblicklich und je nach Bedarf selbst zu Zweckbündnissen zusammenschließen, um bestimmte Aufgaben gemeinsam zu lösen. Damit öffnete sich ein eleganter Weg aus dem “Bindungsproblem” der Hirnforscher.

Diese Idee war vor 20 Jahren allerdings zu revolutionär: Der studierte Physiker von der Malsburg – heute Professor an der Ruhr-Universität Bochum – konnte sie damals nur als weitgehend unbeachteten “Internen Report 81-2” des Max-Planck-Instituts für biophysikalische Chemie in Göttingen, wo er seinerzeit arbeitete, veröffentlichen. Erst 1987 entdeckten Wolf Singer, Direktor am Max-Planck-Institut für Hirnforschung in Frankfurt, und sein US-amerikanischer Forschungsgast Charles Gray ungewöhnliche elektrische Oszillationen im Frequenzbereich um 40 Hertz (Schwingungen pro Sekunde) in einem fürs Sehen zuständigen Hirnrindenbereich narkotisierter Katzen. Ähnliche Phänomene registrierte etwa zur selben Zeit ein Team um Reinhard Eckhorn von der Universität Marburg.

Damit war der Damm gebrochen. Seitdem untermauert eine wachsenden Zahl experimenteller Ergebnisse die Existenz zeitlich synchronisierter Entladungen von Nervenzell-Verbänden – auch neuronale Ensembles genannt – in tierischen und menschlichen Gehirnen. Vor allem die Forschergruppe um Wolf Singer, der auch der studierte Mediziner und Philosoph Andreas Engel bis zum Jahr 2000 angehörte, trug mit ihren Arbeiten wesentlich zur Aufklärung bei, welche Rolle die synchronisierten Oszillationen in hoch entwickelten Gehirnen spielen.

Heute, berichtet Andreas Engel, der inzwischen am Forschungszentrum Jülich arbeitet, “weisen zahlreiche Arbeiten darauf hin, dass diese zeitlichen Korrelationen tatsächlich eine Bindungsfunktion haben” – und das nicht nur bei der Verarbeitung von Sinneseindrücken oder beim Steuern komplizierter Bewegungsabläufe: Die zeitliche Bindung neuronaler Ensembles, die ihre Aktivität höchst präzise im Millisekunden-Bereich synchronisieren, könnte nach Meinung Engels und Singers auch “entscheidend für die Entstehung von Bewusstsein” sein.

Kommentar:
Wenn synchrone Gehirnwellen nicht nur innerhalb eines Gehirns vorkommen, sondern wie von Physikern festgestellt auch transpersonal zwischen verschiedenen Personen übertragen werden, deutet das auf die Existenz eines “Jenseits” und eines unsterblichen Bewusstsein außerhalb des Gehirns hin. Näheres kann dazu im neu erschienenen Buch von Klaus-Dieter Sedlacek “Unsterbliches Bewusstsein” ISBN: 978-3-837-04351-8 nachgelesen werden.

Anderswelt: Glauben Quantenphysiker an Leben nach dem Tod?

Video: Das Geheimnisvolle Reich der Quanten

Quantenphysiker behaupten: „Es gibt ein Jenseits”

(prcenter.de) Es klingt wie ein verspäteter Aprilscherz, doch die These einiger Physiker ist völlig ernst gemeint. Neueste Ergebnisse aus der Quantenphysik lassen darauf schließen, dass es eine physikalisch beschreibbare Seele gibt, die im „Jenseits” weiter existiert.

Das Fundament für die revolutionäre These liefert das quantenphysikalische Phänomen der Verschränkung. Bereits Albert Einstein ist auf diesen seltsamen Effekt gestoßen, hat ihn aber als „spukhafte Fernwirkung” später zu den Akten gelegt. Erst vor kurzem hat der Wiener Quantenphysiker Professor Anton Zeilinger den experimentellen Nachweis dafür geliefert, dass dieser Effekt in der Realität tatsächlich existiert.

Das Verschränkungsprinzip besagt folgendes: Wenn zwei Quantensysteme miteinander in Wechselwirkung treten, müssen diese fortan als ein Gesamtsystem betrachtet werden. Diese Verschränkung bleibt auch dann erhalten, wenn der Zeitpunkt der Wechselwirkung weit in der Vergangenheit liegt und die zwei Teilsysteme inzwischen über große Distanzen getrennt sind. Die Folgen dieses Effekts erinnern bereits an übernatürliche Phänomene, wie ein Gedankenexperiment zeigt.

Bei diesem führt ein Experimentator an einem x-beliebigen Ort der Erde eine Messung an einem Teilchen A durch. Ist dieses Teilchen mit einem anderen Teilchen B verschränkt, so wird Letzteres durch diese Messung simultan beeinflusst. Dabei ist es völlig egal, ob die Entfernung zwischen Teilchen A und B beispielsweise 100 Meter, 1000 Kilometer oder gar Lichtjahre beträgt. Und wie gesagt erfolgt die Beeinflussung gleichzeitig, nicht etwa mit Lichtgeschwindigkeit, sondern unendlich schnell! Einige Physiker schließen nunmehr daraus, dass zumindest Teile der belebten und unbelebten Welt miteinander verschränkt sind und auf subtile Weise miteinander kommunizieren. Als Auslöser für die Verschränkung wird der Urknall genannt.

Professor Dr. Hans-Peter Dürr, ehemaliger Leiter des Max-Planck-Instituts für Physik in München, vertritt heute die Auffassung, dass der Dualismus kleinster Teilchen nicht auf die subatomare Welt beschränkt, sondern vielmehr allgegenwärtig ist. Mit anderen Worten: Der Dualismus zwischen Körper und Seele ist für ihn ebenso real wie der „Welle-Korpuskel-Dualismus” kleinster Teilchen. Seiner Auffassung nach existiert ein universeller Quantencode, in der die lebende und tote Materie eingebunden ist. Dieser Quantencode soll sich über den gesamten Kosmos erstrecken.

Konsequenterweise glaubt Dürr aus rein physikalischen Erwägungen an eine Existenz nach dem Tode. In einem Interview erläuterte er dies wie folgt: „Was wir Diesseits nennen, ist im Grunde die Schlacke, die Materie, also das was greifbar ist. Das Jenseits ist alles Übrige, die umfassende Wirklichkeit, das viel Größere. Das, worin das Diesseits eingebettet ist. Insofern ist auch unser gegenwärtiges Leben bereits vom Jenseits umfangen.”

Auch Dr. Christian Hellweg ist von dem Quantenzustand des Geistes überzeugt. Der Wissenschaftler hat sich nach dem Abschluss seines Physik- und Medizinstudiums am Max-Planck-Institut für biophysikalische Chemie in Göttingen jahrelang mit der wissenschaftlichen Erforschung der Hirnfunktionen beschäftigt. Seine These bringt er wie folgt auf den Punkt:
„Unsere Gedanken, unser Wille, Bewusstsein und Empfindungen weisen Eigenschaften auf, die als Merkmale des Geistigen bezeichnet werden können. Geistiges lässt keine direkte Wechselwirkung mit den bekannten naturwissenschaftlichen Grundkräften – wie Gravitation, elektromagnetischen Kräften etc. – erkennen. Auf der anderen Seite aber entsprechen diese Eigenschaften des Geistigen haargenau denjenigen Charakteristika, die die äußerst rätselhaften und wunderlichen Erscheinungen der Quantenwelt auszeichnen.”

In ein ähnliches Horn stößt der berühmte amerikanische Physiker und Nobelpreisträger John Archibald Wheeler: „Viele Physiker hofften, dass die Welt in gewissem Sinne doch klassisch sei – jedenfalls frei von Kuriositäten wie großen Objekten an zwei Orten zugleich. Doch solche Hoffnungen wurden durch eine Serie neuer Experimente zunichte gemacht.”

Der Text ist ein Exklusivauszug dem gerade erschienenen Buch „Die geheime Physik des Zufalls. Quantenphänomene und Schicksal”

von Rolf Froböse

Kommentar:
Es gibt sogar eine naturwissenschaftliche Theorie vom Jenseits und Beweise.
Mehr dazu im Sachbuch mit dem Titel “Unsterbliches Bewusstsein” ISBN 978-3-837-04351-8

Helfen Biophotonen bei der medizinischen Diagnose?

Wissen Sie über Biophotonen Bescheid? Hier jetzt die Antwort!

In der Biophysik und Alternativmedizin wird von einigen Autoren der Begriff Biophotonen für diejenigen Lichtquanten verwendet, die ein Teil der schwachen elektromagnetischen Strahlung biologischer Zellen sind. In den 1970er Jahren wiesen mehrere Wissenschaftler Photonenstrahlung aus biologischem Gewebe nach, unter anderem der deutsche Physiker Fritz-Albert Popp, der zunächst an der Universität Marburg arbeitete und später ein neues Institut für seine Forschungen gründete. Popp vermaß das Spektrum dieser Strahlung und fand Wellenlängen zwischen 200 und 800 nm mit einer kontinuierlichen Verteilung, sowie Intensitäten von wenigen bis einigen hundert Quanten pro Sekunde und pro Quadratzentimeter Oberfläche.

In der Fortschrittswelt, in der Professor Allmans X-Team sich schließlich materialisiert, dienen Biophotonen zur medizinischen Diagnose.

Weitere Links:
Artikel in Spiegel-Online