Schlagwort-Archive: Dunkle Energie

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Den Wächter im Gehirn entdeckt

Der Chefdirigent im Gehirn schläft nie

Das “Hintergrundrauschen” haben Forscher bisher nur nicht verstanden
“Im Kopf herrscht niemals Ruhe”. Unter diesem Titel berichtet die Juni-Ausgabe von „Spektrum der Wissenschaft“ von der Entdeckung eines Netzwerks im Gehirn, das gerade dann am intensivsten arbeitet, wenn wir dösend vor uns hin träumen, schlafen oder sogar, wenn wir unter Narkose sind. Schelmisch nennen Forscher diese Aktivität “dunkle Energie des Gehirns” – in Anlehnung an die bisher noch hypothetische Dunkle Energie im Universum.

Der Autor des Artikels, der amerikanische Hirnforscher Marcus E. Raichle von der Washington University in St. Louis (Missouri), gehört zu den Entdeckern eines zentralen Systems im Gehirn, das im Hintergrund arbeitet und darum früher übersehen wurde. Denn beispielsweise tauchen bei einem EEG (Elektroenzephalogramm), bei dem Hirnwellenmuster außen am Schädel erfasst werden, auch besonders langsame Wellen auf. Bislang haben die Experten sie vernachlässigt. Sie hielten das schlicht für ein diffuses, nichtssagendes Hintergrundrauschen.Doch mittlerweile konnten Hirnforscher belegen, dass augenblicklich scheinbar nicht aktive Hirngebiete sehr regelmäßige langsame Wellen produzieren. Diese sind sogar zwischen weit auseinander liegenden Gebieten, etwa zwischen den beiden Hirnhälften, aufeinander abgestimmt.

Am meisten aber verblüffte, dass ein großes Netzwerk über mehrere weit auseinander liegende Hirngebiete existiert, welches seine Aktivität herunter fährt, solange wir eine konkrete Tätigkeit ausführen, zum Beispiel lesen. Die Forscher nennen es „Ruhestandardnetz“ (oder englisch „Default Mode Network“, kurz DMN). Wenn wir dagegen “abschalten” und in den Tag träumen, steigert jenes Ruhenetzwerk seine Aktivität. Weil diese Zufallsentdeckung überhaupt nicht zu den herrschenden Vorstellungen passte, hatten Raichle und seine Mitstreiter zunächst große Schwierigkeiten, ihre Arbeit überhaupt zu veröffentlichen.

Heute steht aber fest: Das Gehirn besitzt einen Chefdirigenten. Der schläft nie, denn er muss dafür sorgen, dass wir jederzeit auf eine plötzliche Störung angemessen reagieren, dass also die passenden Hirnregionen schnell wieder aufwachen. Alle anderen Hirnsysteme stehen im Grunde ebenfalls immer in Bereitschaft. Auch das zeigen die langsamen Wellen. Ganz schnell können diese Hirngebiete dann jeweils auf Befehl des Ruhenetzes hochschalten.

Dieses übergreifende System scheint nach Raichle auch über manche Hirnerkrankungen und -störungen Aufschluss geben. Wie es aussieht, degenerieren bei der Alzheimerdemenz gerade Gebiete, die zu den Hauptzentren jenes zentralen Ruhenetzes gehören. Bei Depressionen bestehen zwischen diesen Zentren teils weniger Verbindungen. Bei Schizophrenie wiederum fällt auf, dass manche der Zentren auffallend viele Signale senden.

Die bewusste Auseinandersetzung mit der Außenwelt macht nur einen kleinen Teil der Hirnaktivität aus. Das wissen Hirnforscher schon lange. Doch den Rahmen für das kleine Bewusstseinsfenster liefert, so Raichle, die bisher übersehene „dunkle Energie“ des Gehirns. Wenn Forscher das Ruhenetz von Versuchspersonen im Hirnscanner beobachten, erkennen sie bis zu eine halbe Minute im Voraus, ob der- oder diejenige gleich in einem Computertest einen Fehler machen wird – nämlich dann, wenn dieses früher übersehene System die Kontrolle übernimmt. (Quelle: Spektrum der Wissenschaft, Juni 2010)

Dramatische Sternenexplosion schleudert geheimnisvolle Strahlung ins All

Mehrere astronomische Experimente haben in jüngster Zeit mysteriöse Komponenten von Elementarteilchen im Universum gemessen. Doch der Ursprung der Elektronen und Positronen blieb bislang im Dunkeln. Ist wirklich, wie einige Physiker spekulieren, dunkle Materie die Ursache für diese Strahlung?

Ein internationales Astrophysikerteam um die Bochumer Juniorprofessorin Dr. Julia Becker und den Dortmunder Physiker Prof. Dr. Dr. Wolfgang Rhode haben jetzt eine einfache Erklärung gefunden:
Gigantische Sterne, mindestens fünfzehnmal so schwer wie unsere Sonne, senden bei ihrem Tod in einer finalen Explosion die Elementarteilchen aus.
Der auf Basis dieser Theorie berechnete Fluss an Elektronen und Positronen stimmt mit dem in den astronomischen Experimenten beobachteten und bislang rätselhaften Signal überein. Wie sie die Beobachtungen mit ihrer Theorie der schweren Sternexplosionen erklären, erläutert die sechsköpfige Gruppe von internationalen Forschern in der Physical Review Letters (Ausgabe 7. August 2009).

Elementarteilchen aus dem Universum

In mehreren astronomischen Experimenten wurde kürzlich von der Beobachtung einer mysteriösen Komponente von Elektronen und Positronen aus dem Universum berichtet. Die Quellen dieser Elementarteilchen kann von den Experimenten selbst nicht identifiziert werden: Kosmische Magnetfelder lenken sie von ihren Bahnen ab und verwischen ihre Spur. Seit der Veröffentlichung der Messungen wurden viele Versuche unternommen, den Ursprung dieser Teilchenstrahlung zu erklären. Unter anderem wurde die These aufgestellt, ein solches Signal sei einzig durch die so genannte dunkle Materie erklärbar – eine Materieart, deren Ursprung bisher noch völlig unbekannt ist. “Aber die Natur hat vielleicht eine viel einfachere Erklärung für die beobachteten Teilchen”, sagt Julia Becker, die mit einem Forscherteam von Instituten aus Deutschland, den USA und Schweden zusammenarbeitet. Das Team erklärt die Teilchenstrahlung mit Explosionen von gigantischen Sternen, die mehr als das 15-fache der Masse unserer Sonne besitzen.

Das dramatische Ableben der schwersten Sterne

Ein sterbender Stern mit hoher Masse schleudert die meiste Materie, Plasma genannt, in einer finalen Explosion von sich. Die Folge ist, dass das ausgestoßene Plasma unausweichlich auf die den Stern umgebende Materie zuläuft – den sog. Sternenwind. Dieser bildet sich um die massiven Sterne, da sie schon in einem früheren Stadium einen Teil ihrer Hülle abgeben, bevor sie in der letzten Explosion vergehen. “Bei der Kollision der schnellen Materie aus der finalen Explosion mit dem Plasma früherer Ausstoßungen entstehen dann sog. Schockfronten, ähnlich wie man sie etwa auch bei Überschallflugzeugen beobachten kann”, erklärt der Dortmunder Astrophysiker Wolfgang Rhode: “Fliegt ein Flugzeug schneller als der Schall, wird die das Flugzeug umgebende Luft mit einer Geschwindigkeit nach außen gedrängt, die die Schallgeschwindigkeit überschreitet. Es kommt zum Überschallknall, der sich in Form einer Schockfront ausbreitet.” Als Schockfront bezeichnet man die sprunghafte Änderung der Dichte des Mediums an sich – dort, wo das Flugzeug die Materie wegschiebt, entsteht eine hohe Dichte, während auf der anderen Seite des Schocks die niedrige Dichte der ungestörten Atmosphäre herrscht. Genau dasselbe geschieht, wenn ein Plasma mit hoher Geschwindigkeit in ein langsameres Plasma gedrückt wird, wie es bei den Explosionen der gigantischen Sternen der Fall ist.

Elektronen und Positronen aus schweren Sternexplosionen

Wie nun in den Schockfronten der schweren Sternexplosionen Elektronen und Positronen beschleunigt werden, erklären die Forscher in ihrem Artikel: Indem sich das Plasma seinen Weg durch den Sternenwind bahnt, entstehen zwei unterschiedliche Regionen, in welchen sich jeweils unterschiedliche Schocks bilden. Auf fast der gesamten Oberfläche sind die Magnetfelder des Sterns senkrecht zu der Geschwindigkeit der Schockfront ausgerichtet. Hier entsteht ein niederenergetisches Signal von Elektronen und Positronen. Gleichzeitig ist das Magnetfeld an den Polen des ehemals rotierenden Sterns parallel zur Geschwindigkeit des Schocks ausgerichtet. Hierdurch wird hochenergetische Elektronenstrahlung erzeugt. Beide Komponenten sind in dem beobachteten Spektrum der Elektronen und Positronen sichtbar und die Messungen können mit dem Modell des Forscherteams hervorragend erklärt werden. “Für die dunkle Materie heißt das, dass sie Elektronen und Positronen nicht in gleichem Maße produziert wie die Riesensterne und dass man sie daher an anderer Stelle suchen muss”, folgert Dr. Becker. Quelle: idw

Dunkle Energie: Welches Schicksal erwartet unser Universum?

Geheimnisse des Universums: Dunkle Energie

Umstrittene Dunkle Energie

Gibt es eine Alternative, die beschleunigte Expansion des Weltalls zu erklären?
Das Universum scheint sich beschleunigt auszudehnen. Ursache dafür soll eine seltsame neue Energieform sein, Fachleute nennen sie die Dunkle Energie. Das Problem: Niemand weiß wirklich, was diese Dunkle Energie wirklich ist. Bisher suchen sie jedenfalls vergeblich nach Erklärungen für das rätselhafte Verhalten des Kosmos.

Kein Wunder, dass immer wieder alternative Modelle entwickelt werden, um vielleicht ohne exotischen Energieformen auszukommen. Wie zwei Kosmologen von der Oxford University im aktuellen August-Heft von “Spektrum der Wissenschaft” in der Titelgeschichte beschreiben, könnte ein solches Alternativmodell so aussehen: Falls wir kosmisch gesehen inmitten einer Region leben, in der weniger Sterne und andere Materie zu finden sind als anderswo, dann würde sich der astronomische Befund vom gleichmäßig beschleunigten Universum anders darstellen. Dann variiert nämlich die kosmische Expansionsrate mit dem Ort – und das würde den Astronomen eine kosmische Beschleunigung nur vorspiegeln, ohne es wirklich zu sein.

Könnte es also sein, dass wir im Universum nicht in einer gleich verteilten Ansammlung von Sternen und Galaxien leben, wie das kosmische Standardmodell annimmt? Eine riesige Leere um die Erde und ihr Milchstraßensystem herum kommt den meisten Kosmologen deshalb auch sehr unwahrscheinlich vor, doch einige Forscher ziehen sie der mysteriösen Dunklen Energie vor. Was spricht dafür? Was spricht dagegen?

Die Entdeckung des beschleunigten Universums kündigte sich vor vor elf Jahren an. Aus einer winzigen Abweichung in der Helligkeit explodierender Sterne folgerten die Astronomen, sie hätten keine Ahnung, woraus über 70 Prozent des Kosmos bestehen. Sie konnten nur feststellen, dass der Raum anscheinend von einer ganz unvergleichlichen Substanz erfüllt wird, welche die Expansion des Universums nicht bremst, sondern vorantreibt. Diese Substanz erhielt damals den Namen Dunkle Energie.

Inzwischen ist ein Jahrzehnt vergangen, und die Dunkle Energie gibt noch immer so viele Rätsel auf, dass einige Kosmologen die grundlegenden Postulate, aus denen ihre Existenz gefolgert wurde, in Zweifel ziehen. Eines dieser Postulate ist das kopernikanische Prinzip. Ihm zufolge nimmt die Erde keinen zentralen oder sonst wie ausgezeichneten Platz im All ein. Wenn wir dieses Grundprinzip preisgeben, bietet sich eine überraschend einfache Erklärung für die neuen Beobachtungen an.

Wir haben uns längst an die Idee gewöhnt, dass unser Planet nur ein winziger Fleck ist, der irgendwo am Rand einer durchschnittlichen Galaxie einen typischen Stern umkreist. Nichts scheint unseren Ort inmitten von Milliarden Galaxien, die sich bis an unseren kosmischen Horizont erstrecken, besonders auszuzeichnen. Doch woher nehmen wir diese Bescheidenheit? Und wie könnten wir herausfinden, ob wir nicht doch einen speziellen Platz einnehmen? Meist drücken sich die Astronomen um diese Fragen und nehmen an, unsere Durchschnittlichkeit sei offensichtlich genug. Die Idee, wir könnten tatsächlich einen besonderen Ort im Universum bewohnen, ist für viele undenkbar. Dennoch ziehen einige Physiker dies seit Kurzem in Betracht.

Zugegeben: Die Annahme, wir seien kosmologisch unbedeutend, erklärt viel. Mit ihrer Hilfe können wir von unserer kosmischen Nachbarschaft auf das Universum im Großen und Ganzen schließen. Alle gängigen Modelle des Universums beruhen auf dem kosmologischen Prinzip. Die beschleunigte Expansion war also die große Überraschung, mit der die aktuelle Revolution in der Kosmologie begann.

Angenommen, die Expansion verlangsamt sich überall, weil die Materie an der Raumzeit zieht und sie bremst. Nehmen wir ferner an, dass wir in einer gigantischen kosmischen Leere leben – in einem Gebiet, das zwar nicht völlig leer gefegt ist, wo aber die mittlere Materiedichte nur etwa halb so groß ist wie anderswo. Je leerer eine Raumregion ist, desto weniger Materie bremst dort die räumliche Expansion, und entsprechend höher ist die Expansionsgeschwindigkeit innerhalb des Leerraums. Am höchsten ist sie in der Mitte; zum Rand hin, wo sich die höhere Dichte des Außenraums bemerkbar macht, nimmt sie ab. Zu jedem Zeitpunkt expandieren verschiedene Raumpartien unterschiedlich schnell – wie der ungleichmäßig aufgeblasene Luftballon.

Wie ausgefallen ist diese Idee einer monströsen Abnormität? Auf den ersten Blick sehr. Sie scheint in eklatantem Widerspruch zur kosmischen Hintergrundstrahlung zu stehen, die bis auf Hunderttausendstel genau gleichförmig ist, ganz zu schweigen von der im Großen und Ganzen ebenmäßigen Verteilung der Galaxien. Doch bei näherer Betrachtung muten diese Indizien weniger zwingend an. Die Gleichförmigkeit der Reststrahlung erfordert nur, dass das Universum in jeder Richtung nahezu gleich aussieht. Wenn eine Leere ungefähr kugelförmig ist und wir einigermaßen nahe ihrem Zentrum sitzen, muss sie nicht unbedingt den Beobachtungen widersprechen.

In kommenden Jahren werden Himmelsbeobachtungen zwischen beiden Erklärungen entscheiden.
Quelle: Spektrum der Wissenschaft, August 2009

Löst dunkle Energie das Rätsel der Zeit?

Video: Woher kommt die Welt?

In unserem Universum läuft die Zeit immer nur in eine Richtung – aber muss das überall so sein?
Wer ein Ei zerschlägt, erwartet nicht, dass es sich von selbst wieder zusammenfügt, und wer ins Schwimmbecken hechtet, wird nie erleben, dass das Wasser ihn zurück aufs Trampolin schnellt. Solche Vorgänge sind irreversibel, das heißt zeitlich nicht umkehrbar. Die Asymmetrie der Zeit erfahren wir als das Natürlichste von der Welt – doch den Physikern und Kosmologen bereitet sie gehöriges Kopfzerbrechen.
Alle fundamentalen Gesetze der Physik sind nämlich zeitsymmetrisch, von den Formeln der Himmelsmechanik bis zu den Grundgleichungen der Quantentheorie. Die Mechanik schreibt nicht vor, ob die Erde so oder anders herum um die Sonne läuft, und auch die Quantenmechanik kennt keinen Unterschied zwischen Zukunft und Vergangenheit. Warum weist dann der Zeitpfeil immer nur in eine Richtung?

Darauf antworten die Physiker: das kommt von der Entropie. Sie ist ein Maß für die Unordnung eines Systems, und da ein sich selbst überlassenes System von selbst immer unordentlicher wird, nimmt die Entropie mit der Zeit zu. Zwar ist es physikalisch nicht prinzipiell ausgeschlossen, dass ein zerschlagenes Ei sich wieder ordentlich zusammensetzt – aber es ist extrem unwahrscheinlich. Sehr glücklich sind die Kosmologen mit dieser Erklärung für den Zeitpfeil nicht, denn eine ständig wachsende Entropie bedeutet, dass sie früher einmal extrem klein gewesen sein muss: Der Urknall muss ein unwahrscheinlich ordentlicher Zustand gewesen sein. Man wüsste gern einen physikalischen Grund dafür.

Der amerikanische Kosmologe Sean Carroll schlägt nun einen radikalen Ausweg aus dieser Verlegenheit vor. Wie er in der August-Ausgabe [2008] von Spektrum der Wissenschaft argumentiert, muss unser Universum nicht mit einem Zustand abnorm niedriger Entropie begonnen haben, wenn wir es als Teil eines Multiversums betrachten. In diesem Über-Universum entstehen spontan Babyuniversen, wobei die Zeit in manchen so gerichtet ist wie bei uns, in anderen entgegengesetzt – und im Mittel ist das Multiversum zeitsymmetrisch. Freilich muss Carroll eine hochspekulative Hypothese aufstellen, um die Bildung solcher Babyuniversen plausibel zu machen. Damit sie dauerhaft aus Fluktuationen der Raumzeit entstehen, beruft Carroll sich auf die Dunkle Energie – eine rätselhafte Kraft, mit der die Kosmologen erklären, warum unser Universum beschleunigt expandiert. Erst wenn über das Wesen der Dunklen Energie mehr bekannt ist, lässt sich sagen, ob sie eine Antwort auf das Rätsel der Zeit zu liefern vermag.

Jedenfalls, so tröstet Carroll, betreiben wir schon heute jedes Mal, wenn wir ein Ei zerschlagen, beobachtende Kosmologie. (Quelle: Spektrum der Wissenschaft, August 2008)

Über die Illusion der Zeit und die Lösung scheinbar unerklärlicher Phänomene findet man mehr im Buch Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Dunkle Energie: größtem Rätsel der Astrophysik auf der Spur

Video: Dunkle Materie dunkle Energie

Ist die Dunkle Energie der fundamentale Baustein des Universums oder ist es Bewusstsein, wie im Buch “Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen” dargestellt? Oder hängt beides womöglich zusammen? Das astrophysikalische Institut in Potsdam (AIP) wird ab 2010 verstärkt nach der geheimnisvollen dunklen Energie fahnden und zur Lösung der Rätsel durch einen innovativen Multikanalspektrographen beitragen.

(idw), Am dunklen Nachthimmel über West-Texas beobachtet das 9.2m große Hobby-Eberly Teleskop (HET) des McDonald Observatoriums die Tiefen des Weltalls. Es ist einem der größten Rätsel der Astrophysik auf der Spur: der sogenannten “Dunklen Energie”, einem Phänomen das eng mit der Zukunft unseres Weltalls verknüpft ist. Die Wissenschaftler wollen nun durch die Vermessung von Millionen Galaxien erstmals Näheres über die Eigenschaften der mysteriösen Dunklen Energie in Erfahrung bringen . Ein speziell am Astrophysikalischen Institut Potsdam (AIP) entwickeltes Glasfaserbündel ermöglicht die gleichzeitige Erfassung und Spektroskopie von hunderten von Punkten eines Himmelsauschnitts für dieses ehrgeizige Projekt. Um die Entfernungen zu den Galaxien bestimmen zu können, müssen die Astronomen diese Objekte nicht nur finden, sondern ihr Licht auch spektroskopisch analysieren, d.h. in seine Anteile verschiedener Wellenlängen zerlegen. Dafür wird das Teleskop mittels des Faserbündels an einen leistungsfähigen Multikanalspektrographen (genannt VIRUS) angeschlossen. Ein Prototyp des VIRUS Faserbündels und des Spektrographen wurde nun erstmals erfolgreich am Teleskop eingesetzt. Ab 2010 soll eine großräumige Durchsuchung des Himmels beginnen.

“Wenn es gelingt, die statistische Verteilung von entfernten Galaxien in Raum und Zeit zu bestimmen, so lässt dies Rückschlüsse auf die Natur der Dunklen Energie zu”, erklärt Andreas Kelz, der als Wissenschaftler des AIP an der Entwicklung des Instruments beteiligt ist. Bis vor kurzen glaubten Astronomen, dass es für das Schicksal des Universums zwei mögliche Szenarien gibt: Entweder enthält das Universum so viel Materie, dass ihre Anziehungskraft die gegenwärtig zu beobachtende Ausdehnung bremst und das Universum letztendlich in sich kollabieren läßt, oder die Expansion geht, wenn auch verlangsamt, unendlich weiter.

Neuere Beobachtungen hingegen legen nahe, dass sich das Universum vielmehr beschleunigt ausdehnt, es also eine Art Anti-Schwerkraft gibt, welche das Universum auseinandertreibt. Diese ‘Dunkle Energie’ genannte Kraft ist noch völlig unverstanden, auch wenn angenommen wird, dass sie 70% der Gesamtenergie des Universums ausmacht.
“Die Idee einer Energie, welche der Schwerkraft entgegenwirkt ist nicht neu.”, berichtet Matthias Steinmetz, wiss. Vorstand des AIP und Co-Ermittler. “Bereits Einstein postulierte sie 1920, hatte seine kosmologische Konstante dann aber wieder als ‘größte Eselei’ seines Lebens verworfen. Durch die aktuellen Messungen bekommt sie aber wieder neue Brisanz.”