Schlagwort-Archive: eisen

Das Gottesteilchen eingekreist


Noch nicht gefunden – aber alle Zeichen deuten auf seine Existenz hin: Das Higgs-Teilchen, welches die Physikerinnen und Physiker am CERN, dem Europäischen Laboratorium für Teilchenphysik in Genf jagen, wird eingekreist. Das vermelden die beteiligten Forschungskollaborationen. Aufgrund der Daten, die sie in den 18 Monaten seit dem Start des weltgrössten Teilchenbeschleunigers «Large Hadron Collider» (LHC) gesammelt haben, liegen den Wissenschaftlern Hinweise zur Existenz des im Standardmodell vorhergesagten Teilchens vor. Das Higgs-Feld, das nach dem schottischen Physiker Peter Higgs benannt wird, soll allen Teilchen ihre Masse verleihen. Das macht das Higgs-Teilchen zu einem wichtigen Bestandteil im geltenden Verständnis der Physik und deshalb wird es manchmal auch das «Gottesteilchen» genannt.

Die Analyse der bisherigen Daten zeigt, dass bei einem bestimmten Massenwert (125 Gigaelektronenvolt) «mehr charakteristische Ereignisse auftauchen, als es geben würde, wenn das Higgs-Teilchen nicht existierte», erklärt der am ATLAS-Experiment beteiligte Berner Physiker Hans Peter Beck. Die Wissenschaftler stellen aber klar, dass «es zu früh für Schlussfolgerungen ist»: Es braucht mehr Daten, um den noch offenen Massenbereich von 116 bis 130 Gigaelektronenvolt endgültig abzudecken. Das ist der Bereich, in dem das Higgs-Teilchen sich überhaupt noch tummeln kann, die anderen Bereiche wurden gründlich «abgesucht». Beck rechnet damit, dass bis Ende nächstes Jahr definitiv klar ist, ob das Higgs-Teilchen existiert oder nicht. «Mit etwas Glück gehts sogar schneller.»

Der LHC-Teilchenbeschleuniger und die vier Detektoren

Um in bislang unerreichte Dimensionen im Verständnis der Elementarteilchen vorzudringen, lassen die Physikerinnen und Physiker des CERN im 27 Kilometer langen unterirdischen LHC Protonenstrahlen mit je 3,5 Teraelektronenvolt kreisen und mit beinahe Lichtgeschwindigkeit kollidieren. Bei dieser höchsten jemals künstlich erzeugten Kollisionsenergie simulieren sie den Urknall vor rund 14 Milliarden Jahren – und erhoffen sich ein besseres Verständnis über den Aufbau des Universums. Um das Higgs-Boson – und andere neue Kleinstteilchen – zu entdecken und nachzuweisen, wurden vier riesige Detektoren (ATLAS, CMS, LHCb und ALICE) um die vier Kollisionsstellen am LHC aufgebaut; der grösste würde die Kathedrale Notre-Dame in Paris zur Hälfte füllen, während der schwerste mehr Eisen enthält als der Eiffelturm.
Mit dem ATLAS-Detektor mit seinen sensiblen und ausgeklügelten Spurendetektoren, Kalorimetern, Müon-Spektrometern und hochpotenten Magnetfeldern versucht eine internationale Forschungskollaboration mit Berner Beteiligung den Kleinstteilchen auf die Schliche zu kommen, welche aus den Proton-Proton-Kollisionen entstehen. Das stellt die Wissenschaft schon von Beginn weg vor grosse Herausforderungen: Von den 600 Millionen Proton-Proton-Kollisionen, die pro Sekunde im ATLAS-Detektor stattfinden, sind nur gerade 200 interessant genug, um deren Daten zu analysieren. Bei dieser Datenselektion ist der Physiker Hans Peter Beck federführend, er spielt seit 1997 bei der Systemarchitektur der Ereignisselektion und deren Inbetriebnahme eine führende Rolle. Sigve Haug erstellte in Bern einen grossen Grid-Computer-Cluster (500 CPU cores und 200 Terabytes an Diskspeichern), um die riesige Daten-Menge zu bewältigen. (Quelle: idw)

Buchtipp:
Supervereinigung: Wie aus nichts alles entsteht. Ansatz einer großen einheitlichen Feldtheorie

Rätsel zur Entstehung des Lebens gelöst

Damit in den Sternen Kohlenstoff, die Grundlage des Lebens, entstehen kann, spielt eine bestimmte Form des Kohlenstoffkerns eine entscheidende Rolle. Physiker der Universität Bonn und der Ruhr-Universität Bochum haben jetzt gemeinsam mit US-Kollegen diesen legendären Kohlenstoffkern berechnet. Damit haben sie ein Problem gelöst, das die Wissenschaft seit mehr als 50 Jahren vor Rätsel gestellt hat.

„Seit 1954 hat man vergeblich versucht, den Hoyle-Zustand zu berechnen“, berichtet Professor Dr. Ulf-G. Meißner (Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn), „und wir haben es jetzt geschafft!“ Der Hoyle-Zustand ist eine energiereiche Form des Kohlenstoffkerns. Er ist der Bergpass, über den man von einem Tal ins andere gelangt: von drei Kernen des Gases Helium zum sehr viel größeren Kohlenstoffkern. Diese Verschmelzungsreaktion findet im heißen Inneren schwerer Sterne statt. Gäbe es den Hoyle-Zustand nicht, hätten im Weltall nur sehr wenig Kohlenstoff oder andere höhere Elemente wie Sauerstoff, Stickstoff und Eisen entstehen können. Ohne diese Art von Kohlenstoffkern wäre daher vermutlich auch kein Leben möglich gewesen.

Die Suche nach dem „Nebensender“

Bereits im Jahr 1954 hat man den Hoyle-Zustand experimentell nachgewiesen, aber seine Berechnung scheiterte stets. Denn diese Form des Kohlenstoffs besteht lediglich aus drei sehr lose gebundenen Heliumkernen − ein eher wolkiger diffuser Kohlenstoffkern. Und er liegt nicht einzeln vor, sondern stets zusammen mit anderen Formen von Kohlenstoff. „Das ist, wie wenn sie ein Radiosignal untersuchen wollen, bei dem ein Hauptsender und mehrere schwächere Sender überlagert sind“, erläutert Prof. Dr. Evgeny Epelbaum (Institut fuer Theoretische Physik II der Ruhr-Universität Bochum). Der Hauptsender ist der stabile Kohlenstoffkern, aus dem unter anderem auch der Mensch aufgebaut ist. „Wir interessieren uns aber für einen der instabilen, energiereichen Kohlenstoffkernen, also müssen wir irgendwie mit einem Rauschfilter den schwächeren Radiosender von dem dominierenden Signal abtrennen.“

Möglich wurde das mit einer neuen, besseren Rechenmethode der Forscher, welche die Kräfte zwischen mehreren Kernbausteinen präziser als zuvor berechnet. Mit JUGENE, dem Supercomputer am Forschungszentrum Jülich, stand auch das passende Werkzeug parat. Eine knappe Woche hat JUGENE gerechnet. Das Rechenergebnis stimmt so gut mit den experimentellen Daten überein, dass die Forscher sicher sein können, den Hoyle-Zustand tatsächlich von Grund auf berechnet zu haben.

Mehr über die Entstehung des Universums

„Jetzt können wir diese spannende und wichtige Form von Kohlenstoffkern ganz genau untersuchen“, erläutert Prof. Meißner. „Wir werden schauen, wie groß er ist und wie er aufgebaut ist. Und damit können wir jetzt auch die gesamte Kette der Elemententstehung unter die Lupe nehmen.“

Sogar philosophische Fragen sind in Zukunft vermutlich wissenschaftlich zu beantworten. Seit Jahrzehnten gilt der Hoyle-Zustand als Paradebeispiel für die Theorie, dass die Naturkonstanten bei der Entstehung unseres Universums genauso und nicht anders aufeinander abgestimmt sein mussten, da wir sonst nicht hier wären, um das Universum zu beobachten (Anthropisches Prinzip). „Für den Hoyle-Zustand heißt das: Er muss genau diese Energie haben, die er hat, weil es uns sonst nicht gäbe“, sagt Prof. Meißner. „Wir können jetzt berechnen, ob in einer veränderten Welt mit anderen Parametern der Hoyle-Zustand im Vergleich zur Masse von drei Heliumkernen tatsächlich eine andere Energie hätte.“ Wenn dem so ist, spräche das für das anthropische Prinzip. (Quelle: idw)

Sind wir die Einzigen im Umkreis von Lichtjahren?

Sternhaufen

Entdecken wir bald die Geschwister der Sonne?
Die Sonne ist eine Einzelgängerin, was fast ein bißchen schade ist. Denn befände sich das Sonnensystem in einem Sternhaufen mit Hunderten oder gar Zehntausenden Familienmitgliedern, würden sich am Nachthimmel dicht an dicht strahlende Lichter drängen. Manche unserer stellaren Nachbarn wären sogar am Tage leicht mit bloßem Auge zu entdecken. Tatsächlich aber sind Astronomen im Umkreis von 10 Lichtjahren auf gerade einmal elf Sonnen gestoßen.

Nun jedoch hat sich der niederländische Astronom Simon F. Portegies Zwart, wie er in der Titelgeschichte von Spektrum der Wissenschaft (März-Ausgabe 2009) berichtet, auf eine Reise in die ferne Vergangenheit begeben. Denn immer mehr Indizien sprechen dafür, so der Forscher von der Universität Amsterdam, dass die Sonne erst allmählich in ihre abgeschiedene Lage geriet: Auch unser Zentralgestirn könnte einst gemeinsam mit vielen anderen in einem ganzen Schwarm von Sternen geboren worden sein. Dessen Mitglieder hätten sich dann zwar im Lauf von Milliarden von Jahren allmählich über die Galaxis zerstreut. Doch einige dieser stellaren Geschwister der Sonne sollten sich, so hofft er nun, selbst heute noch in unserer Nachbarschaft finden lassen.

Den bislang überzeugendsten Beleg dafür, dass unsere Sonne tatsächlich solche engen Verwandten besitzt, hatten Forscher im Jahr 2003 entdeckt. In Meteoriten aus der Frühzeit des Sonnensystems stießen sie auf das Isotop Nickel-60, das Zerfallsprodukt des radioaktiven Eisen-60. Doch eigentlich hatten sie mit dem Fund von Eisen-60 gerechnet, weil nur dieses die entdeckten chemischen Verbindungen eingehen kann. Ihre Schlussfolgerung: Einst gelangte das radioaktive Eisen unmittelbar nach seiner Synthese in unser gerade erst im Entstehen begriffenes Sonnensystem und wurde dort in die Meteoriten eingebaut. Erst anschließend zerfiel es zu Nickel-60, sonst wären die gefundenen Verbindungen gar nicht erst entstanden. Das aber bedeutet, dass all dies in einem kosmisch gesehen extrem kurzen Zeitraum in der Größenordung der Eisen-60-Halbwertszeit geschehen sein muss: in rund 2,6 Millionen Jahren.

Das Eisen gelangte also aus der unmittelbaren Nachbarschaft ins Sonnensystem, und als wahrscheinlichste Quelle gilt ein explodierter Stern: eine Supernova, in vielleicht weniger als einem Lichtjahr Entfernung! Geriet also ein massereicher Stern zufällig in die Umgebung der jungen Sonne, um just dort zu explodieren? Das ist so unwahrscheinlich, dass Portegies Zwart und andere Forscher nun annehmen, dass die junge Sonne und der explodierte Stern vielmehr ein und demselben dicht gepackten Sternhaufen angehörten, der aus etwa 1500 bis 3500 Sternen bestand und einen Durchmesser von drei bis zehn Lichtjahren besaß.

Aus seinen bisherigen Überlegungen zieht der niederländische Astronom faszinierende und weitreichende Schlüsse. Die Sonne umkreist das galaktische Zentrum mit einer Geschwindigkeit von 234 Kilometer pro Sekunde und hat es seit seiner Entstehung rund 27 Mal umrundet. Mit ihr müssten aber ihre stellaren Geschwister unterwegs sein, die einst im selben Sternhaufen entstanden waren und sich wie die Sonne im Lauf der Zeit von diesem lösten. Zwar hat sich der ursprüngliche Sternschwarm langsam zu einem gestreckten Bogen ausgebreitet, der sich mittlerweile über die Hälfte einer Umlaufbahn erstrecken dürfte. “Meine Berechnungen zeigen aber, dass sich innerhalb eines Radius von 300 Lichtjahren um unsere gegenwärtige Position noch immer etwa 50 Geschwister der Sonne aufhalten”, so Portegies Zwart. “Sucht man in bis zu 3000 Lichtjahren Entfernung, könnte man sogar auf 400 solcher Sterne stoßen!”

Einer seiner Studenten fahndet nun bereits in einem Katalog von Sternen, die der europäische Satellit Hipparcos in den frühen 1990er Jahren ausfindig gemacht hat. Doch die größten Hoffnungen setzt Portegies Zwart auf den Satelliten Gaia, den die europäische Raumfahrtorganisation Esa 2012 starten will: Binnen fünf Jahren und mit höchster Genauigkeit soll er die Raumpositionen und Geschwindigkeiten von etwa einer Milliarde Sterne messen. Diese “Volkszählung” wird nahezu alle Sterne erfassen, die sich in einem Radius von mehreren tausend Lichtjahren um die Sonne aufhalten. In diesen Daten können die Forscher dann nach Sternen Ausschau halten, die sich in der Nähe der vergangenen und künftigen Bahn der Sonne befinden, und anschließend deren Zusammensetzung überprüfen. Sie sollte jener der Sonne ähneln, da die einstige Supernova natürlich nicht nur das junge Sonnensystem, sondern auch andere Sternsysteme im Haufen mit schweren Elementen angereichert hat.

“Identifizieren wir auch nur einen einzigen Geschwisterstern der Sonne”, sagt der Forscher, “würde uns dies wertvolle Informationen über die Frühzeit des Sonnensystems verschaffen – eine Epoche, über die wir bislang kaum etwas wissen.” Und nicht zuletzt bieten die Geschwister der Sonne exzellente Voraussetzungen für die Suche nach lebensfreundlichen Planeten. Auch wenn die Sonne heute relativ isoliert durchs Weltall treibt: Viele ihrer Besonderheiten – und nicht zuletzt die Tatsache, dass ihr Licht auch auf einen bewohnten Planeten fällt – lassen sich nur im Kontext ihrer Familiengeschichte begreifen.
Quelle: Spektrum der Wissenschaft, März 2010, Foto: © N. Walborn (NASA/STScI), J. Maíz-Apellániz (NASA/STScI) und R. Barbá (La Plata Observatory, Argentina)

Wie ein Magnetresonanztomograph (MRT) unsere geheimsten Gedanken verrät

Wissen Sie was ein MRT kann? Hier jetzt ein Bericht, wie er unsere geheimsten Gedanken verrät!

München – Mit einem Magnetresonanztomographen (MRT) blicken Forscher von Siemens und der Harvard-Universität ins menschliche Gehirn und schauen ihm beim Denken zu. Die Psychologen erkennen dadurch, wie die Nervenzellen des Gehirns während des Sehpro­zesses arbeiten. Allgemein zeigten Wahrnehmungsexperimente, dass das Gehirn optische Signale sehr wohl registriert, obwohl sie dem Bewusstsein nicht zugänglich sind. Die Forscher bewiesen nun, dass es einen Informationsfluss zwischen Gehirnzellen und Augen gibt, der dem Bewusstsein verborgen bleibt, wie sie in der renommierten Zeitschrift Psychological Science schreiben. Die funktionelle Magnetresonanztomographie (fMRT) betrachtet den Stoffwechsel im Gehirn und erstellt durch Überlagerung mit den Bildern eines MRT-Geräts eine Karte erhöhter Aktivität. Feuernde Neuronen brauchen mehr Sauerstoff, deshalb fließt in aktive Areale mehr Blut. Hier erhöht sich die Konzentration von sauerstoffreichem gegenüber sauerstoffarmem Blut, was sich im MRT als Signaländerung bemerkbar macht. Die eigentliche Messgröße ist das Eisen im Hämoglobin der roten Blutkörperchen.

Bei den Experimenten zeigten die Forscher von Siemens Corporate Research in Princeton im US-Staat New Jersey und der Harvard-Universität ihren im MRT liegenden Versuchspersonen für kurze Zeit einfache Muster und überlagerten die Sinneseindrücke mit weiteren kurzen optischen Reizen. In den Bildern des MRT war unabhängig von den Aussagen der Versuchspersonen ihre tatsächliche Wahrnehmung in bestimmten Gehirnarealen abzulesen. Die räumliche Auflösung des Siemens-MRT mit drei Tesla Magnetfeldstärke beträgt dabei etwa einen Kubikmillimeter.

Die fMRT ist in jüngster Vergangenheit ins Blickfeld gerückt, weil mit Hilfe der Technik neue Lügendetektoren auf den Markt kommen sollen. Die Siemens-Forschungen sind bislang reine Grundlagenforschung, eröffnen aber eine Perspektive für handfeste Anwendungen. Bewusste Falschaussagen von Testpersonen wären durch Vergleiche von fMRT-Bildern objektiv überprüfbar. Siemens-Entwicklungen könnten auf vielfältige Weise von dem präzisen Blick ins Gehirn profitieren. Weil mit fMRT überprüft werden kann, welche Entscheidungen Menschen treffen und auch Aussagen gemacht werden können, wie sie sich dabei fühlen, könnten solche Studien helfen, bessere Hörgeräte zu konstruieren. Ältere Personen haben oft Schwierigkeiten, sich an die Sinneseindrücke mit einem neuen Hörgerät zu gewöhnen, jüngeren Menschen fällt das dagegen leichter. Mit fMRT ließe sich klären, ob dabei Wahrnehmungsphänomene im Gehirn eine Rolle spielen oder physiologische Faktoren, die sich mit dem Alter ändern.
Quelle: pressetext.de

Kommentar:
Auch wenn man dem Gehirn beim Denken zuschauen kann, bedeutet das nicht, dass es der Ursprung des Bewusstseins ist.
Bewusstsein existiert vielmehr unabhängig vom Gehirn. Dies wird im Sachbuch mit dem Titel “Unsterbliches Bewusstsein” bewiesen. ISBN 978-3-837-04351-8 (Neuerscheinung Juli 2008).

Link: Gedankenlesen per Gehirnscan