Schlagwort-Archive: Elektronen

Warum das Standardmodell der Teilchenphysik nur eine Zwischenlösung ist

Das Problem mit der Feinjustierung

Das Standardmodell ist wohl die umfassendste Theorie, die es jemals gab. Dennoch sehen Teilchenphysiker damit das Ende der Physik noch längst nicht erreicht und suchen eifrig nach neuen Theorien. Dabei motivieren sie nicht etwa irgendwelche inneren Widersprüchen des Modells oder experimentelle Zwänge, sondern allein die Ästhetik.

Ein Physikprofessor soll Max Planck am Ende des 19. Jahrhunderts dazu geraten haben, nicht Physik zu studieren. Schließlich sei dort, abgesehen von wenigen Lücken, bereits alles erforscht. Heute hätte wohl kein Hochschullehrer mehr solche Bedenken. Dieses vorherrschende Gefühl lässt sich allerdings nur teilweise fachlich begründen. Es ist vor allem mit Problemen der Wissenschafts- und Erkenntnistheorie verbunden.

Viele Galaxien vor schwarzem Hintergrund. In der Mitte befindet sich ein hantelfömiger, rosa Klumpen, an dessen beiden Seiten ein blauer Klumpen angrenzt.
Indirekter Nachweis von Dunkler Materie

Obwohl das Standardmodell der Teilchenphysik gegenwärtig wohl die umfassendste Theorie darstellt, kann es einige Phänomene vom Prinzip her nicht beschreiben. Allem voran steht hier die Gravitation. Zudem gibt das Standardmodell keine Antwort auf die Frage nach Dunkler Materie oder Dunkler Energie, auf die astrophysikalische und kosmische Beobachtungen hinweisen. Deshalb sehen die meisten Teilchenphysiker das Standardmodell nur als eine Stufe auf dem Weg zu einer noch umfassenderen und in gewissem Sinne „einfacheren“ oder „schöneren“ Theorie – Begriffe und Ziele, die mehr philosophisch motiviert sind, als aus immanenten Problemen der Wissenschaft zu folgen.

Das Standardmodell wird demnach oft nur als sogenannte effektive Theorie verstanden, die im Bereich niedriger Energien als Grenzfall einer weitreichenderen Theorie fungiert. Dieses Verhalten kennt man bereits aus anderen Teilgebieten der Physik, wie beispielsweise der klassischen Mechanik: Alle physikalischen Phänomene bei Geschwindigkeiten und Abständen des Alltagslebens – also deutlich langsamer als Licht und deutlich größer als ein Atom – werden durch diese Theorie völlig adäquat beschrieben. Heute versteht man die klassische Mechanik aber als Grenzfall der Relativitätstheorie beziehungsweise der Quantenmechanik.

Vom Standardmodell wissen wir nur, dass es bei Abständen von mindestens einem Milliardstel des Atomdurchmessers gilt. Genauer können die heutigen Beschleuniger nicht auflösen. Für Elementarteilchen wird die Gravitation aber erst bei Abständen relevant, die noch etwa eine billiardemal kleiner sind. Die Sensitivität von Teilchenbeschleunigern wird wohl nie auch nur in die Nähe dieser sogenannten Plancklänge vordringen. Alerdings legt die Struktur des Standardmodells nahe, dass man bereits bei deutlich größeren Abständen Hinweise auf eine übergeordnete Theorie finden sollte.

Keine einfache Theorie

Zwar beruht das Standardmodell im Wesentlichen auf wenigen Prinzipien – vor allem der Eichsymmetrie –, aber dennoch sind 27 Parameter notwendig, die nicht a priori durch die Theorie festgelegte Werte besitzen und durch Messungen bestimmt werden müssen. Diese Zahl erscheint einerseits zu groß, um von einer „schönen“ und „einfachen“ Theorie zu sprechen. Andererseits zeigen einige der Parameter gewisse Regelmäßigkeiten oder Hierarchien, die alles andere als zufällig wirken, deren Ursachen man aber derzeit nicht kennt.

Ein Beispiel: Es existieren zwölf Materieteilchen, die sich in drei fast identische Familien einordnen lassen. Warum existieren diese Wiederholungen? Hauptsächlich unterscheiden sich die Familien durch die Massen der zugehörigen Teilchen. Das Topquark ist beispielsweise mehr als eine Trillion Mal schwerer als das leichteste Neutrino. Welche Ursache hat dieses gewaltige Massenspektrum? Der Higgs-Mechanismus „erzeugt“ zwar Massen, leistet für diese Strukturen aber keinerlei Erklärungen.

Für jedes Elementarteilchen gibt es ein Schildchen, auf dem dessen Masse sowie Nachweisjahr notiert sind. Angeordnet sind die Schildchen in einem Diagramm, in dem Masse und Nachweisjahr gegeneinander aufgetragen sind.
Massenspektrum der Elementarteilchen

Diese und noch andere Eigenschaften des Standardmodells weisen darauf hin, dass es eine neue, umfassendere Theorie geben sollte. Die Suche nach dieser neuen Theorie beruht weitgehend auf Prinzipien wie Einfachheit, Schönheit oder Natürlichkeit. Einer der wichtigsten Ansatzpunkte ist hier natürlich der Higgs-Mechanismus. Von vielen Physikern wird dieser nur als Hilfskonstruktion gesehen, der unter Umständen auf einen tiefer liegenden Mechanismus hindeutet. Denn auch hier finden sich noch einige Schönheitsfehler.

Laut der Theorie wäre das Higgs-Boson das einzige fundamentale Teilchen ohne Eigendrehimpuls. Was erst einmal wie eine kleine Randnotiz aussieht, erweist sich als gravierendes theoretisches Problem. Aus der Wechselwirkung mit den allgegenwärtigen quantenmechanischen Fluktuationen des Vakuums – hier entstehen und verschwinden laufend kurzlebige Teilchen-Antiteilchen-Paare – erhält jedes Teilchen einen Beitrag zu seiner Masse. Die Differenz zwischen dieser „Strahlungsmasse“ und der im Experiment beobachteten physikalischen Masse des Teilchens ergibt die „nackte Masse“. Letztere beschreibt also die Masse, die das Teilchen hypothetisch hätte, wenn es keine Vakuumfluktuationen gäbe.

Unter bestimmten Annahmen lässt sich die Strahlungsmasse für jedes Teilchen berechnen. Bei Teilchen mit einem Spin größer als Null, wie etwa Elektronen und Quarks, fällt die Strahlungsmasse klein aus. Die nackte Masse entspricht damit ungefähr der physikalischen Masse. Anders beim Higgs-Teilchen: Hier hängt die Strahlungsmasse vom Quadrat der höchsten Energie ab, an der das Standardmodell noch Gültigkeit besitzt. Sollte das Standardmodell tatsächlich bis zu Abständen von der Größenordnung der Plancklänge gelten, wäre die Strahlungsmasse hundert Billionen Mal größer als die physikalische Masse des neu entdeckten Teilchens von etwa 125 Gigaelektronenvolt. Es sieht also so aus, als ob die nackte Masse und die Strahlungsmasse fast exakt entgegengesetzt gleich groß wären und sich über viele Größenordnungen kompensieren.

Von neuen Symmetrien und Unteilchen

Formal stellt dies zwar kein Problem dar, aber eine solche enorme Feinjustierung schreit förmlich nach einer Erklärung. Schließlich handelt es sich bei nackter und Strahlungsmasse um zwei völlig verschiedene Dinge. Warum sollten sie also über dreißig Größenordnungen denselben Zahlenwert aufweisen? Eine Lösung dieses Feinjustierungsproblems könnte sein, dass das Standardmodell bereits bei relativ niedrigen Energien – beziehungsweise großen Abständen – durch eine übergeordnete Theorie ersetzt wird. In den meisten Fällen resultieren solche Theorien in neuen Teilchen, die dann am LHC entdeckt werden könnten.

Abgebildet ist eine alte Waage mit zwei Waagschalen. Die nackte Masse als Kugel auf der einen, die Strahlungsmasse als Tetraeder auf der anderen Seite. Der Zeiger der Waage steht genau auf 125 Gigaelektronenvolt.
Nackte Masse und Strahlungsmasse

Die neuen Theorien sind also weder durch irgendwelche inneren Widersprüche des Standardmodells noch durch experimentelle Zwänge motiviert, sondern allein durch Ästhetik. Das Feinjustierungsproblem war in den vergangenen Jahrzehnten wohl die wichtigste Triebfeder beim sogenannten Model Building – der Suche nach Modellen jenseits des Standardmodells. Oft entstehen dabei geniale, revolutionäre, mitunter vielleicht sogar abstruse Ideen, die neue Symmetrien, zusätzliche Raumdimensionen oder völlig neuartige Objekte wie beispielsweise „Unteilchen“ postulieren, und natürlich alle möglichen Kombinationen davon. Die Entdeckung des neuen Teilchens am LHC und das gleichzeitige Fehlen von Signalen anderer neuer Teilchen bedeutet für viele dieser Ideen allerdings das abrupte und definitive Ende.

Physiker und Philosophen stellen sich gleichermaßen die Frage, ob das schwer quantifizierbare Problem der Feinjustierung (Wie viel Feinjustierung ist erlaubt?) wirklich das Kriterium für neuartige Theorien sein kann, oder ob es sich dabei nur scheinbar um ein Problem handelt. Auch diese Frage verschärft sich vor dem Hintergrund der bisherigen Ergebnisse des LHC.

Bislang gibt es keinen Hinweis darauf, dass eine der vorgeschlagenen neuen Theorien verwirklicht ist. Viele Theorien, die das Feinjustierungsproblem lösen oder umgehen wollen, führen zu Ergebnissen, die im Widerspruch zu Messungen stehen. Dies bewirkt eine hohen Dynamik bei der Entwicklung von Modellen, die oft auf sehr eleganten Ideen beruhen, dann aber sehr unattraktiven Modifikationen unterworfen werden müssen, um im Einklang mit den Messungen zu bleiben. Theorien werden zwar selten verworfen, aber oft irgendwann nur noch von einigen hartgesottenen Anhängern verfolgt.

Sollte das Feinjustierungsproblem allerdings real sein, dürfte es in einem Energiebereich gelöst werden, in den der LHC in den nächsten fünf bis sechs Jahren vordringen soll. Dann lassen sich auch Teilchen aufspüren, die bis zu zehnmal schwerer sind als das im Juni 2012 entdeckte Boson. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Komponenten des Lebens und ihre Funktion

Die Biophysik bildet die Brücke zwischen der Physik und den Lebenswissenschaften. Sie ist eng mit der Physik Weicher Materie und Komplexer Systeme verknüpft und viele Fragestellungen sind Bestandteil der Statistischen Physik geworden. Dabei verfolgt die Biophysik mehrere Stoßrichtungen.

Die eine versucht, Methoden zu entwickeln, um die Architektur biologischer Materialien von molekularen bis makroskopischen Skalen zu untersuchen und ihre physikalischen Eigenschaften unter möglichst natürlichen Bedingungen zu messen – in „vivo“, sagt der Biologe. Entdeckungsfreudige Physiker finden eine breite Spielwiese, um mit einfachen Methoden wie optischen und magnetischen Pinzetten oder einer Glaspipette, gepaart mit einem guten Mikroskop, die physikalischen Eigenschaften der Zellen zu studieren.

Dreidimensionale Darstellung der Struktur des Proteins GGA1.
Struktur eines Proteins

Große Maschinen hingegen sind notwendig, um die Struktur und Dynamik biologischer Materialien mittels Neutronen- und Röntgenbeugung zu erforschen. Moderne Methoden der Röntgenbeugung mit fokussierten Strahlen eröffnen dabei auch völlig neue Einblicke in die molekulare Architektur von Gewebe, Knochen oder Holz. Zudem verspricht die Entwicklung der Spallations-Neutronenquellen und des Freien Elektronenlasers neue Einsichten in die molekulare Basis des molekularen Erkennens zwischen Proteinen und DNS oder die physikalischen Grundlagen der Proteinfaltung.

Biologie als Vorbild

Eine zweite Forschungsrichtung ist die von der Biologie inspirierte Physik. Sie versucht möglichst realistische Modelle lebender Materie – wie Membranen, Gewebe oder Knochen – aufzubauen, um spezifische biologische Prozesse zu imitieren. Solche Modelle spielen eine wichtige Rolle, um etwa die Verlässlichkeit neuer physikalischer Methoden zu testen oder um nach den wesentlichen physikalischen Parametern zu suchen, welche das biologische Verhalten eines Systems bestimmen.

Parallele Untersuchungen natürlicher Systeme und von Modellen helfen auch, Bezüge zur Physik Kondensierter Materie herzustellen. Im Hintergrund steht der Gedanke, die Strategie der biologischen Selbstorganisation zur Herstellung neuartiger smarter Materialien einzusetzen. Beispiele dieses Bionik genannten Gebietes sind Materialien, die ihre Eigenschaften an wechselnde Umgebungsbedingungen anpassen können, wie selbst reinigende Oberflächen oder bruchfeste Keramiken, wie sie in Prozessen der Biomineralisierung entstehen.

Im Grenzbereich zwischen Physik und Technik sind Bemühungen angesiedelt, Methoden der Navigation in der Tierwelt zu imitieren. Beispielsweise inspirierte die Echoortung der Fledermaus die Radartechniker zum Bau des Zirp-Radars. Auch beim Bau von Robotern lässt man sich gern von der Biologie inspirieren: Zahlreiche Arbeitsgruppen versuchen, die Fähigkeit der Insekten und Salamander des Hochlaufens an Wänden zu imitieren. Roboter zum Fensterputzen wären eine passende Umsetzung des Prinzips.

Ein anderer zukunftsträchtiger Zweig der angewandten Biologischen Physik ist der Bau von Biosensoren durch den Aufbau von Enzymsystemen, Biomembranen oder Nervenzellen auf elektro-optischen Bauelementen. Ein Beispiel sind zweidimensionale Anordnungen von Punkt-Transistoren, die als Nano-Voltmeter fungieren. Hier sitzen auch zahlreiche Querverbindungen zur Nanotechnik oder Mikrooptik, denn die dort entwickelten Methoden eröffnen neue Möglichkeiten zur Messung physikalischer Eigenschaften der Zellen in natürlicher Umgebung.

Komplexe Wechselwirkungen erfassen

Dargestellt ist eine Nervenzelle mit Axonen.
Neuron

Auf fundamentalere Fragen der Biologie zielt die oft als Systembiophysik bezeichnete Erforschung der Regulation biologischer Prozesse durch das Wechselspiel zwischen biochemischen und genetischen Signalkaskaden, der dadurch bedingten Modifikation der Materialeigenschaften und der biologischen Funktion. Hier arbeiten Physiker, Mathematiker und Ingenieure miteinander. Eine besonders faszinierende Fragestellung dieser Kategorie ist die Entwicklung vom befruchteten Ei zum Embryo, oft Morphogenese genannt. Was steuert die Differenzierung der zunächst völlig identisch erscheinenden Zellen des befruchteten Eis in Neuronen oder Muskelzellen und was legt den Zeitplan der embryonalen Entwicklung fest? Ist dies alles im genetischen Code vorbestimmt oder bestimmt die Kopplung zwischen externen äußeren Kräften – wie chemischen Potentialen oder mechanischen Kräften – und dem genetischen Apparat den Prozess der Morphogenese?

Alan Turing, der geistige Vater des Programmierens, lehrte erstmals, wie raum-zeitliche Muster, etwa von Signalmolekülen, die dann die Entwicklung von Organen steuern, allein durch das Zusammenspiel chemischer Potenziale und autokatalytischer Prozesse entstehen können. Zwar ist die Entwicklung vom befruchteten Ei zum ausgewachsenen Lebewesen vor allem durch die zeitliche Folge der Gen-Expression bestimmt, doch zeigt sich auch immer mehr, dass die Zell-Zell-Erkennung und insbesondere mechanische Kräfte die Differenzierung und räumliche Organisation der Zellen steuern können. Die Aufklärung des Wechselspiels zwischen Morphogenese und der Physik der Zelle ist eine besonders reizvolle Aufgabe für Experimentatoren und Theoretiker.

Immer mehr Physiker finden außerdem Interesse an der Hirnforschung und versuchen zu verstehen, wie das Gehirn die Umwelt wahrnimmt. Ein Meilenstein auf dem Weg zur quantitativen Hirnforschung war die Entdeckung, dass optische Muster, die auf die Netzhaut der Augen projiziert werden, im visuellen Cortex als Erregungsmuster abgebildet werden. Diese Experimente brachten der Physik neuronaler Netzwerke einen enormen Aufschwung. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)

Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

Elektronen gleichzeitig an zwei verschiedenen Orten

Nach einem grundlegenden Theorem der Quantenmechanik sind bestimmte Elektronen in ihrem Ort nicht eindeutig bestimmbar. Zwei Physikern der Universität Kassel ist nun gemeinsam mit Kollegen in einem Experiment der Beweis gelungen, dass sich diese Elektronen tatsächlich an zwei Orten gleichzeitig aufhalten.

„Vermutet hat man dieses für den Laien schwer verständliche Verhalten schon lange, aber hier ist es zum ersten Mal gelungen, dies experimentell nachzuweisen“, erläuterte Prof. Dr. Arno Ehresmann, Leiter des Fachgebiets „Funktionale dünne Schichten und Physik mit Synchrotronstrahlung“ an der Universität Kassel. „In umfangreichen Versuchen haben wir an Elektronen von Sauerstoff-Molekülen die zum Beweis dieser Aussage charakteristischen Oszillationen nachgewiesen.“ Dr. André Knie, Mitarbeiter am Fachgebiet und Geschäftsführer des LOEWE-Forschungs-Schwerpunkts „Elektronendynamik chiraler Systeme“, ergänzte: „Dieses Experiment legt einen Grundstein für das Verständnis der Quantenmechanik, die uns wie so oft mehr Fragen als Antworten gibt. Besonders die Dynamik der Elektronen ist ein Feld der Quantenmechanik, dass zwar schon seit 100 Jahren untersucht wird, aber immer wieder neue und verblüffende Einsichten in unsere Natur ermöglicht.“

Die theoretischen Grundlagen für die Entdeckung gehen auf Albert Einstein zurück. Er erhielt für die Beschreibung des sogenannten Photoeffekts 1922 den Physik-Nobelpreis. Danach können Elektronen aus Atomen oder Molekülen mit Hilfe von Licht dann entfernt werden, wenn die Energie des Lichts größer ist als die Bindungsenergie der Elektronen. Einstein hat schon 1905 die mathematische Beschreibung dieses sogenannten Photoeffekts abgeleitet, in dem er damals Unerhörtes annahm: Licht wird dazu als ein Strom aus Lichtteilchen beschrieben und je ein Lichtteilchen („Photon“) übergibt seine Energie an je ein Elektron. Übersteigt diese Energie die Energie, mit dem das Elektron an das Atom gebunden ist, wird das Elektron freigesetzt. Soweit wurde diese Annahme später auch experimentell bestätigt.

Einstein weitergedacht

Darauf aufbauend lässt sich das Verhalten von Elektronen weiter untersuchen. In einem zweiatomigen Molekül, das aus zwei gleichen Atomen zusammengesetzt ist (z. B. das Sauerstoffmolekül O2) gibt es Elektronen, die sehr eng an das jeweilige Atom gebunden sind. Im Teilchenbild könnte man sich vorstellen, dass diese Elektronen um das jeweilige Atom kreisen. Nach der Quantenmechanik sind diese Elektronen allerdings nicht zu unterscheiden. Für ein Photon mit einer Energie, die größer ist als die Bindungsenergie dieser Elektronen (für beide Elektronen ist die Bindungsenergie gleich) stellt sich nun die Frage: An welches dieser beiden für mich als Photon nicht zu unterscheidenden Elektronen gebe ich meine Energie ab? Die Antwort der Quantenmechanik lautet: Das Photon gibt seine Energie zwar an ein einziges Elektron ab, aber dieses befindet sich mit einer gewissen Wahrscheinlichkeit gleichzeitig nahe bei Atom 1 und nahe bei Atom 2 (das Gleiche gilt für das andere Elektron). Und: Elektronen sind auch als Welle verstehbar, genauso wie damals Einstein zur Beschreibung des Lichts Teilchen angenommen hat. Wird nun ein einziges Elektron vom Atom entfernt, so laufen die zugehörigen Wellen sowohl von Atom 1 aus, als auch von Atom 2, da sich dieses Elektron ja gleichzeitig da und dort befindet. Seit langem wurde daher schon vorhergesagt, dass sich diese beiden Wellen überlagern müssen und damit interferieren. Experimentell war der Nachweis dieser Interferenzmuster bis dato noch nicht gelungen.

Genau dies glückte jedoch nun der Forschungsgruppe, an der die Kasseler Physiker Ehresmann und Knie beteiligt waren – ein eindeutiger Beleg, dass sich ein Elektron gleichzeitig an zwei verschiedenen Orten aufhält. Die Experimente wurden an den Synchrotronstrahlungsanlagen DORIS III bei DESY in Hamburg sowie BESSY II in Berlin durchgeführt. Dabei wurde monochromatische Synchrotronstrahlung auf gasförmige Moleküle fokussiert. Diese wurden durch die Strahlung ionisiert und die bei der Ionisation freiwerdenden Elektronen durch sogenannte Elektronenspektrometer winkel- und energieaufgelöst detektiert. (Quelle: idw)

Buchtipps:

 

Proton-Paradoxon: Sind Physiker auf unbekanntes Naturgesetz gestoßen?

Heidelberg. Zwei Experimente lieferten verschiedene Werte für den Radius des Protons. Messfehler halten die Physiker mittlerweile für praktisch ausgeschlossen. Sind sie auf ein bislang unbekanntes physikalisches Phänomen gestoßen?

Das Proton muss doch längst perfekt verstanden sein! Es ist einer der Hauptbestandteile aller Materie, die uns umgibt, der Brennstoff der Sterne im Universum. Es ist der positiv geladene Kern des Wasserstoffatoms, des am besten untersuchten Atoms überhaupt. Das Teilchen wurde in zahllosen Experimenten genauestens vermessen, und auch am Large Hadron Collider (LHC) des europäischen Teilchenforschungszentrums CERN bei Genf sind es Protonen, die wir bei höchsten Energien miteinander kollidieren lassen, um neue Teilchen wie das Higgs-Boson entstehen zu lassen.

Kann das Proton also keine Überraschungen mehr für uns bereithalten? Weit gefehlt. Zusammen mit anderen Physikern haben Jan Bernauer und Randolf Pohl, die Autoren von “Das Proton-Paradox”, Titelgeschichte der April-Ausgabe 2014 von Spektrum der Wissenschaft, in den letzten Jahren die bislang präzisesten Messungen des Radius dieses Partikels vorgenommen. Anfangs erwarteten sie, durch die zwanzigfach höhere Genauigkeit dem lange bekannten Wert des Protonenradius lediglich die eine oder andere Nachkommastelle hinzuzufügen. Das war ein Irrtum. Vielmehr lieferten die beiden Experimente, bei denen unterschiedliche Messverfahren zum Einsatz kamen, zwei Werte, die deutlich voneinander abweichen: nämlich um mehr als das Fünffache der so genannten kombinierten Messunsicherheit. Die Wahrscheinlichkeit, dass dies nur ein Zufall ist, beträgt weniger als eins in einer Million.

Während Jan Bernauer seine Messungen als Doktorand am Institut für Kernphysik der Universität Mainz durchführte – heute forscht er am Laboratory for Nuclear Science des Massachusetts Institute of Technology in Boston –, arbeitete Randolf Pohl vom Max-Planck-Institut für Quantenoptik in Garching an einem Beschleuniger des Paul Scherrer Instituts im schweizerischen Villigen. Immer neue technische und organisatorische Probleme hatten die Realisierung des neuartigen Messverfahrens, auf das er seine Hoffnungen setzte, auf Jahre verzögert. Statt mit gewöhnlichem Wasserstoff arbeitete er mit Wasserstoff, in dem statt eines Elektrons dessen 200-mal schwerer Vetter, ein Myon, das Proton umkreist.

Als aber endlich doch alles funktionierte, war das Resultat frustrierend: Die Forscher maßen kein einziges Signal. “Wir überlegten fieberhaft”, berichtet Pohl. “Könnten die Ursachen unseres Problems tiefer liegen als wir bis dahin vermutet hatten? Was wäre denn, wenn wir nach dem Protonenradius an der falschen Stelle, also bei den falschen Wellenlängen unseres Lasers, suchten? Wir beschlossen, unseren Suchradius zu erweitern. Doch in welche Richtung? Gemeinsam fassten wir den Entschluss, nach einem größeren Protonenradius Ausschau zu halten. Doch etwas später an diesem Abend kam mein Kollege Aldo Antognini in den Kontrollraum des Beschleunigers und meinte, wir sollten stattdessen nach einem kleineren Protonenradius suchen. Zu diesem Zeitpunkt arbeiteten wir längst in 20-Stunden-Schichten.”

Da den Forschern die ihnen am Beschleuniger zugestandene Zeit davonlief, steuerten sie die experimentellen Parameter schließlich sogar in Richtung noch kleinerer Werte, als jemals vermutet worden waren. Dann die Überraschung: Die ersten Hinweise auf ein Signal tauchten auf! Die Wissenschaftler waren elektrisiert – doch das Ergebnis wich um vier Prozent von bisherigen Messungen ab; eine drastische Diskrepanz. Das Proton im myonischen Wasserstoff war deutlich kleiner als irgendjemand erwartet hätte.

In der Forschergemeinde verursachte dies einige Aufregung. Die meisten Physiker glaubten zwar schlicht, dass ein Fehler im Spiel sein müsste. Schon bald meldete sich eine ganze Reihe von ihnen mit Vorschlägen, wo er stecken könnte. Doch eine Erklärung nach der anderen schlug fehl – und jedes Mal wuchs die Bedeutung der Messergebnisse.

Mittlerweile glauben die meisten Forscher, dass die Diskrepanz tatsächlich existiert, und arbeiten an neuen, noch präziseren Experimenten. Ihre große Hoffnung: Die Ergebnisse von Bernauer und Pohl könnten auf bislang unbekannte Naturgesetze hindeuten, indem sie Hinweise auf Teilchen und Kräfte liefern, die über das so genannte Standardmodell der Teilchenphysik hinausgehen. Vielleicht enthält das Universum ja ein bislang unentdecktes Elementarteilchen, das mit Myonen anders wechselwirkt als mit Elektronen? Denn das Myon hat sich auch an anderer Stelle verdächtig gemacht: Messungen seines so genannten magnetischen Moments passen nicht zu den theoretischen Berechnungen.

Im besten Fall stoßen die Wissenschaftler in den kommenden Jahren sogar auf eine Antwort, die beide Rätsel auf einen Schlag löst.  (Quelle: Spektrum der Wissenschaft, April 2014)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Gigantische Versuchsanordnung im arktischen Eis findet Geisterteilchen

Neutrino-Jagd im ewigen Eis: Das Bild zeigt einen von 5.160 hochempfindlichen Lichtsensoren, die am Südpol installiert wurden.  (c) Foto: IceCube Collaboration/NSF
Neutrino-Jagd im ewigen Eis: Das Bild zeigt einen von 5.160 hochempfindlichen Lichtsensoren, die am Südpol installiert wurden.
(c) Foto: IceCube Collaboration/NSF

Darauf hat die IceCube-Kollaboration seit Jahren hingearbeitet. Nun deutet alles darauf hin, dass den Forschern im antarktischen Eis Neutrinos von außerhalb unseres Sonnensystems ins Netz gegangen sind. Unter den gefundenen Ereignissen befinden sich Neutrinos mit Energien, die tausendmal höher sind, als man sie auf der Erde selbst erzeugen kann. Diese kosmischen Neutrinos können einzigartige Informationen über den Aufbau von Supernovas, Gamma-Ray-Blitze oder Schwarzen Löchern liefern.

Das Neutrino-Teleskop IceCube am Südpol ist weltweit einmalig. In einem Kubikkilometer Eis sind insgesamt 5.160 hochempfindliche Lichtsensoren installiert. Wenn doch mal ein Neutrino im Eis wechselwirkt, entstehen geladene Teilchen die mit nahezu Lichtgeschwindigkeiten weiterfliegen. Diese erzeugen ein schwaches bläuliches Licht, das von den Detektoren aufgefangen wird.

„Wir sehen hochenergetische Neutrinos, von denen wir jetzt mit ziemlicher Sicherheit sagen können, dass sie astrophysikalischen Ursprungs sind“, sagt Prof. Dr. Marek Kowalski vom Physikalischen Institut der Universität Bonn. Neutrinos sind ganz besondere Teilchen: Sie können anders als elektromagnetische Strahlung sämtliche Materie durchdringen. Mit ihrer Hilfe lässt sich wie mit einem Röntgenapparat in die verstecktesten Winkel des Universums blicken. Allerdings wechselwirken diese Teilchen kaum und könnten selbst von einer Bleiabschirmung mit 1000 Kilometer Dicke nicht aufgehalten werden. Ihr Nachweis ist deshalb besonders schwierig. Mit der gigantischen Messeinrichtung „IceCube“ in der Antarktis sind nun dennoch zum ersten Mal Hinweise für hochenergetische Neutrinos aus dem Weltall gefunden worden.

Die meisten Neutrinos auf der Erde entstehen bei niedrigen Energien durch Kernfusion in der Sonne, sie können sich aber auch in der Erdatmosphäre bilden. Die Forscher des IceCube Projektes interessieren sich aber besonders für hochenergetische Neutrinos aus astrophysikalischen Quellen – zum Beispiel von Supernovas, Gamma-Ray-Blitzen oder galaktischen Schwarzen Löchern. Denn Neutrinos sind die einzigen Teilchen, die aus dem Inneren dieser Quellen entkommen können und damit einzigartige Informationen über ihren Aufbau liefern.

Morgendämmerung für ein neues Zeitalter der Astronomie

Gelungen ist der Nachweis der Neutrinos einem internationalen Team von rund 250 Wissenschaftlern und Ingenieuren der IceCube-Kollaboration unter Beteiligung der Astroteilchen-Gruppe von Prof. Kowalski. Mit der gigantischen Versuchsanordnung im antarktischen Eis wurden in den vergangenen zwei Jahren insgesamt 28 Neutrinos mit Energien größer als 30 Tera-Elektronenvolt (TeV), darunter zwei Ereignisse mit über 1000 TeV registriert. Dieser Fund war für die Forscher so bedeutsam, dass die Teilchen sogar eigene Namen bekamen: Ernie & Bert – den beiden beliebten Figuren aus der Fernsehserie „Sesamstraße“.

Mit der verbesserten Analyse der Daten, die nun auch die Richtung der Neutrinos liefert, konnten nicht nur diese beiden, sondern ein Großteil dieser Teilchen als potentielle kosmische Fernreisende identifiziert werden. „Das ist der erste Hinweis auf hochenergetische Neutrinos, die von außerhalb unseres Sonnensystems kommen“, sagt Prof. Dr. Francis Halzen, Projektleiter des IceCube-Experiments von der Universität Wisconsin-Madison (USA). „Dies ist die Morgendämmerung für ein neues Zeitalter der Astronomie.“

Ein Rätsel bleiben jedoch noch die Quellen, aus denen die Neutrinos im Weltraum stammen. Eine Möglichkeit sind Supernovas, bei denen die hochenergetischen Teilchen freigesetzt werden. Das Bild, das sich aus dem IceCube-Experiment abzeichnet, stellt sich für die Wissenschaftler noch verschwommen dar. „Wir können die kosmischen Quellen der Teilchen noch nicht nachweisen, weil wir bislang nicht exakt genug bestimmen konnten, aus welcher Richtung die Neutrinos aus dem Weltall in das Eis eindringen“, erklärt Prof. Kowalski. Die Forscher hoffen darauf, demnächst noch mehr Teilchen nachzuweisen, damit sich die Quellen allmählich schärfer abzeichnen.

Publikation: Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science, DOI: 10.1126/science.1242856

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Künstliche Fotosynthese: Lösung aller Energieprobleme?

Heidelberg. Die Sonne ist eine unerschöpfliche und zudem saubere Energiequelle. Fotovoltaikanlagen und Solarthermiekraftwerke zapfen sie bereits an und gewinnen aus Sonnenlicht Strom. Der ist jedoch nur sehr begrenzt speicherbar und muss sofort verbraucht werden. Sein Transport über weite Strecken ist zudem mit großen Verlusten verbunden. Nur über den Umweg der Wasserelektrolyse lässt sich elektrischer Strom in den breiter einsetzbaren Energieträger Wasserstoff umwandeln, was aber sehr ineffektiv ist.

Eine wesentlich elegantere Lösung macht uns die Natur seit jeher vor: die Fotosynthese. Dabei erzeugen Pflanzen, Algen und gewisse Bakterien mit Hilfe von Sonnenlicht aus Kohlendioxid und Wasser direkt energiereiche Zuckermoleküle. Schon seit einiger Zeit versuchen Forscher deshalb, den Vorgang künstlich nachzuahmen. Dabei geht es ihnen vor allem um den ersten Schritt der Fotosynthese: die Spaltung von Wasser in Wasserstoff und Sauerstoff.

Die bisher erzielten Erfolge sind beachtlich. So präsentierte Daniel Nocera vom Massachussetts Institute of Technology vor zwei Jahren ein “künstliches Blatt”. Es besteht aus einer Solarzelle, in der auftreffendes Sonnenlicht freie Elektronen und “Löcher” (Elektronenfehlstellen) erzeugt. Die dem Licht zugewandte Seite ist mit einem cobalthaltigen Katalysator beschichtet, der mit Hilfe der Löcher aus Wasser Sauerstoff freisetzt. Die zurückbleibenden Protonen wandern zur anderen Seite und werden dort von einer Legierung aus Nickel, Molybdän und Zink mit Hilfe der Elektronen zu Wasserstoff reduziert. Der Wirkungsgrad liegt mit 2,5 bis 4,7 Prozent – je nach genauer Konfiguration – schon recht hoch. Pflanzen verwerten das auftreffende Sonnenlicht sogar nur zu 0,3 Prozent.

Allerdings ist dieses “Blatt” wegen der enthaltenen Metalle noch ziemlich teuer und auch nicht lange beständig. Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm hat sich deshalb auf ein anderes Material verlegt, das nicht nur sehr stabil, sondern auch einfach und preiswert herstellbar ist: graphitisches Kohlenstoffnitrid. Schon Justus Liebig kannte die Substanz im 19. Jahrhundert. Sie ist entfernt mit dem Chlorophyll des Blattgrüns verwandt und ähnelt stark dem Graphen – einer maschendrahtartigen Anordnung von Kohlenstoffatomen, der viele eine große Zukunft in der Elektronik vorhersagen.

Kohlenstoffnitrid als solches ist allerdings nicht sehr aktiv, was unter anderem an seinem zu geringen Verhältnis von Oberfläche zu Volumen liegt. Wie Antonietti in Spektrum der Wissenschaft berichtet, konnte seine Gruppe aber bereits eine Steigerung um das Zehnfache erreichen, indem sie gezielt die Porosität des Materials erhöhte.

Eine weitere Verbesserung ließ sich durch Dotieren mit Schwefel oder Barbitursäure erreichen. Auf diese Weise konnten die Forscher die Quantenausbeute der Oxidation von Wasser zu Protonen und Sauerstoff für violette Strahlung einer Wellenlänge von 440 Nanometern immerhin auf 5,7 Prozent steigern. Hilfreich war auch die Zugabe von Nanoteilchen aus Cobaltoxid. Dadurch erhöhte sich die Quantenausbeute für die Wasserspaltung insgesamt auf 1,1 Prozent.

Alles in allem sehen die bisherigen Ergebnisse also ermutigend aus. Zwar veranschlagt Antonietti bis zur praktischen Einsatzreife seines Systems noch mindestens 20 Jahre. Doch die Aussichten wären verlockend. Wenn sich mit künstlichen Fotosynthesesystemen 10 Prozent der Solarenergie nutzen ließen, müssten sie nur 0,16 Prozent der Erdoberfläche bedecken, um den für 2030 vorausgesagten globalen Energiebedarf von 20 Terawattstunden zu decken. Als Standorte kämen dabei in erster Linie Wüsten in Frage, wo die Sonne fast immer scheint und keine Konkurrenz zu Agrarnutzflächen besteht. Ein Zehntel der Sahara, die 1,76 Prozent der Erdoberfläche einnimmt, würde bereits genügen.

Wie heutige Solarzellen ließen sich künstliche Fotosynthesesysteme aber auch auf Dächern installieren. Bei einer Lichtausbeute von 10 Prozent könnten sie beispielsweise 300 Tonnen Methanol pro Hektar und Jahr liefern. “Wären nur 100 Quadratmeter des eigenen Grundstücks damit bedeckt, bräuchte selbst ein leidenschaftlicher Autofahrer bei heutigem Treibstoffverbrauch nie mehr zur Tankstelle”, erklärt Antonietti.  (Quelle: Spektrum der Wissenschaft, September 2013)

Dramatische Sternenexplosion schleudert geheimnisvolle Strahlung ins All

Mehrere astronomische Experimente haben in jüngster Zeit mysteriöse Komponenten von Elementarteilchen im Universum gemessen. Doch der Ursprung der Elektronen und Positronen blieb bislang im Dunkeln. Ist wirklich, wie einige Physiker spekulieren, dunkle Materie die Ursache für diese Strahlung?

Ein internationales Astrophysikerteam um die Bochumer Juniorprofessorin Dr. Julia Becker und den Dortmunder Physiker Prof. Dr. Dr. Wolfgang Rhode haben jetzt eine einfache Erklärung gefunden:
Gigantische Sterne, mindestens fünfzehnmal so schwer wie unsere Sonne, senden bei ihrem Tod in einer finalen Explosion die Elementarteilchen aus.
Der auf Basis dieser Theorie berechnete Fluss an Elektronen und Positronen stimmt mit dem in den astronomischen Experimenten beobachteten und bislang rätselhaften Signal überein. Wie sie die Beobachtungen mit ihrer Theorie der schweren Sternexplosionen erklären, erläutert die sechsköpfige Gruppe von internationalen Forschern in der Physical Review Letters (Ausgabe 7. August 2009).

Elementarteilchen aus dem Universum

In mehreren astronomischen Experimenten wurde kürzlich von der Beobachtung einer mysteriösen Komponente von Elektronen und Positronen aus dem Universum berichtet. Die Quellen dieser Elementarteilchen kann von den Experimenten selbst nicht identifiziert werden: Kosmische Magnetfelder lenken sie von ihren Bahnen ab und verwischen ihre Spur. Seit der Veröffentlichung der Messungen wurden viele Versuche unternommen, den Ursprung dieser Teilchenstrahlung zu erklären. Unter anderem wurde die These aufgestellt, ein solches Signal sei einzig durch die so genannte dunkle Materie erklärbar – eine Materieart, deren Ursprung bisher noch völlig unbekannt ist. “Aber die Natur hat vielleicht eine viel einfachere Erklärung für die beobachteten Teilchen”, sagt Julia Becker, die mit einem Forscherteam von Instituten aus Deutschland, den USA und Schweden zusammenarbeitet. Das Team erklärt die Teilchenstrahlung mit Explosionen von gigantischen Sternen, die mehr als das 15-fache der Masse unserer Sonne besitzen.

Das dramatische Ableben der schwersten Sterne

Ein sterbender Stern mit hoher Masse schleudert die meiste Materie, Plasma genannt, in einer finalen Explosion von sich. Die Folge ist, dass das ausgestoßene Plasma unausweichlich auf die den Stern umgebende Materie zuläuft – den sog. Sternenwind. Dieser bildet sich um die massiven Sterne, da sie schon in einem früheren Stadium einen Teil ihrer Hülle abgeben, bevor sie in der letzten Explosion vergehen. “Bei der Kollision der schnellen Materie aus der finalen Explosion mit dem Plasma früherer Ausstoßungen entstehen dann sog. Schockfronten, ähnlich wie man sie etwa auch bei Überschallflugzeugen beobachten kann”, erklärt der Dortmunder Astrophysiker Wolfgang Rhode: “Fliegt ein Flugzeug schneller als der Schall, wird die das Flugzeug umgebende Luft mit einer Geschwindigkeit nach außen gedrängt, die die Schallgeschwindigkeit überschreitet. Es kommt zum Überschallknall, der sich in Form einer Schockfront ausbreitet.” Als Schockfront bezeichnet man die sprunghafte Änderung der Dichte des Mediums an sich – dort, wo das Flugzeug die Materie wegschiebt, entsteht eine hohe Dichte, während auf der anderen Seite des Schocks die niedrige Dichte der ungestörten Atmosphäre herrscht. Genau dasselbe geschieht, wenn ein Plasma mit hoher Geschwindigkeit in ein langsameres Plasma gedrückt wird, wie es bei den Explosionen der gigantischen Sternen der Fall ist.

Elektronen und Positronen aus schweren Sternexplosionen

Wie nun in den Schockfronten der schweren Sternexplosionen Elektronen und Positronen beschleunigt werden, erklären die Forscher in ihrem Artikel: Indem sich das Plasma seinen Weg durch den Sternenwind bahnt, entstehen zwei unterschiedliche Regionen, in welchen sich jeweils unterschiedliche Schocks bilden. Auf fast der gesamten Oberfläche sind die Magnetfelder des Sterns senkrecht zu der Geschwindigkeit der Schockfront ausgerichtet. Hier entsteht ein niederenergetisches Signal von Elektronen und Positronen. Gleichzeitig ist das Magnetfeld an den Polen des ehemals rotierenden Sterns parallel zur Geschwindigkeit des Schocks ausgerichtet. Hierdurch wird hochenergetische Elektronenstrahlung erzeugt. Beide Komponenten sind in dem beobachteten Spektrum der Elektronen und Positronen sichtbar und die Messungen können mit dem Modell des Forscherteams hervorragend erklärt werden. “Für die dunkle Materie heißt das, dass sie Elektronen und Positronen nicht in gleichem Maße produziert wie die Riesensterne und dass man sie daher an anderer Stelle suchen muss”, folgert Dr. Becker. Quelle: idw

Elektronen auf frischer Tat beim Tunneln ertappt

Was sich wie ein Delikt anhört, nämlich das »Tunneln« ist ein ganz normaler quantenphysikalischer Vorgang. Erstmals ist es nun gelungen Elektronen live zu beobachten, wie sie die Atome verließen, von denen sie gefangen gehalten wurden (Heraustunneln).

Der Tunneleffekt erklärt unter anderem, wie es zur Kernfusion in der Sonne kommt oder auch die Funktionsweise des Raster-Tunnelmikroskops, mit dem man bis zu 100-Millionenfach vergrößern kann. Der Fernsehprofessor der Physik, Harald Lesch, demonstriert in der Bildungssendung Alpha Centauri eindrucksvoll, was es mit diesem Phänomen »Tunneleffekt« auf sich hat. Zu Beginn schwebt er durch die Tafelwand der Fernsehkulisse, so wie ein Geist, den keine Barriere von einem Spuk abhalten kann. Gleich darauf nimmt er wieder eine feste Gestalt an und erklärt, dass der Zuschauer seine Vorführung mit Vorsicht genießen soll. Mit dieser Warnung hat er wohl recht. Denn wenn ein Zuschauer es ihm gleich tun wollte, würde er nur Beulen und blaue Flecke davontragen. Die Wahrscheinlichkeit, dass Menschen durch Wände gehen können, ist verschwindend gering. Nur mikroskopischen Quantenobjekten wie Elektronen oder Protonen gelingt dieses Kunststück mit deutlich höherer Wahrscheinlichkeit.

Man kann den Effekt am Beispiel einer Kugel erklären, die ein Mensch mit Schwung einen Hügel hochrollen lässt. Wenn die Energie, welche der Kugel mitgegeben wird, nicht genügt, rollt die Kugel immer wieder zurück, anstatt die Kuppe zu überwinden und ins nächste Tal zu gelangen. In der Quantenphysik besteht dagegen für Quantenobjekte die Möglichkeit den Potentialwall, wie der Hügel genannt wird, zu durchtunneln. In einem Augenblick befindet sich das Quantenobjekt noch vor dem Potentialwall und im nächsten Augenblick schon dahinter im nächsten Tal. Es ist ein sprunghafter Übergang ohne Zwischenzustände.

Heraustunneln von Elektronen aus Atomen

Noch niemand konnte bisher das Quanten-Tunneln in Echtzeit beobachten. Dieses Kunststück ist nun Physikern des Max-Planck-Instituts für Quantenoptik gelungen. Sie haben das Heraustunneln von Elektronen aus einem Atom erstmals in live verfolgt. Die elektrischen Kräfte innerhalb eines Atoms halten normalerweise jene Elektronen fest, die sich in seinem Inneren aufhalten. Die Kräfte bilden den Potentialwall, den es zu überwinden gilt, wenn sich ein Elektron aus dem Atom herauslösen soll.

Der Trick der Max-Planck-Physiker bestand darin, mit Hilfe von Attosekunden-Laserblitzen die Elektronen näher an den Rand ihres Atomgefängnisses zu bringen. Eine Attosekunde ist milliardster Teil einer milliardstel Sekunde und damit unvorstellbar kurz. Der Laserblitz vergrößert die Wahrscheinlichkeit, dass die Elektronen aus ihrem Atomgefängnis entkommen können. Und tatsächlich, nach einem zweiten Laserblitz, der die Breite des Potentialwalls ein wenig verringerte, nutzen die Elektronen die Gelegenheit, um herauszutunneln.

Atome, denen ein Elektron fehlt, sind positiv geladen. Als die Physiker im Anschluss an das Experiment die positiv geladenen Atome zählten, waren sie nicht schlecht überrascht, dass zahlreiche Elektronen entkommen waren. Noch interessanter ist aber die Feststellung, dass der Zeitbedarf für das Heraustunneln praktisch kaum messbar ist, sodass die Physiker annehmen, der Tunnelprozess benötige überhaupt keine Zeit. Die Erkenntnisse sollen helfen, bessere Röntgenlaser für die medizinische Therapie zu entwickeln.

Tunneleffekt und Hirnforschung

In der Hirnforschung kann das quantenmechanische Tunneln möglicherweise eine Erklärung für die Geschwindigkeit von bewussten Denkprozessen liefern. Die einzelnen Neuronen des Gehirns werden durch Schnittstellen verbunden, die Synapsen heißen. Diese besitzen einen winzigen Spalt, der überwunden werden muss, wenn ein Signal von Neuron zu Neuron übertragen werden soll. Die herkömmliche Theorie besagt nun, dass zur Übertragung von Signalen an den Synapsen, das ursprünglich elektrische Signal in ein chemisches umgewandelt werden muss. Die Theorie kann aber nicht die Geschwindigkeit von bewussten Denkprozessen erklären. Wie jeder weiß, der schon mal einen Akku am Stromnetz geladen hat, benötigt die Umwandlung von elektrischer Energie in chemische erhebliche Zeit. Würde die herkömmliche Theorie stimmen, müsste Denken schneckengleich langsam sein. Weil das der Erfahrung widerspricht, nehmen einige Hirnforscher an, dass der extrem schnelle quantenmechanische Tunneleffekt zur Überwindung des synaptischen Spalts eine Rolle spielt. Sollte man das experimentell bestätigen können, hätte man gleichzeitig eine Verbindung von Bewusstsein zur Welt der Quanten mit all ihren seltsamen Phänomenen gefunden. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs mit dem Titel »Unsterbliches Bewusstsein, Raumzeit-Phänomene, Beweise und Visionen« in dem aufgrund quantenphysikalischer Phänomene die Existenz von Bewusstsein auch außerhalb des Gehirns nachgewiesen wird.

Geist in der Materie entdeckt?

Der Nobelpreisträger Max Planck (1858-1947) war einer der Pioniere der Quantenphysik und deshalb nicht verdächtig einem esoterischen Weltbild anzuhängen. Er vermutete hinter der Kraft, welche die Atomteilchen in Schwingung bringt und die Materie zusammenhält »einen bewussten, intelligenten Geist«. Diesen hielt er für den »Urgrund aller Materie«. Das waren seine Worte auf einem Vortrag, den er 1944 in Florenz hielt. Er sagte außerdem noch, dass es »keine Materie an sich gibt«.

Das materialistische Weltbild des 19. Jahrhunderts, dessen Nachbeben wir bis heute spüren, sah Materie als etwas an, das aus ewigen, unteilbaren und unvergänglichen Atomen aufgebaut ist. Über das, was es mit der angeblichen Unteilbarkeit von Atomen auf sich hat, weiß die Allgemeinheit zumindest seit Hiroshima Bescheid. Was die Allgemeinheit weniger weiß ist, dass die Atomspaltung nicht nur mit Zerstörung gleichzusetzen ist, sondern einhergeht mit Erkenntnissen, denen wir das Handy, den CD-Player, den PC und den Scanner in den Supermarktkassen verdanken. Wie von Zauberhand erscheinen nach dem Scannen der Ware Preise auf dem Kassendisplay. Welchen Vorstellungen von der Materie verdanken wir diese Errungenschaften unserer Wissenschaft, die einen mittelalterlichen Magier zum größten Zauberer seiner Zeit gemacht hätten, wenn er sie nur hätte vorführen können?

Für die heutige Physik gehört alles zur Materie, was aus Elektronen und Quarks und zwar aus Up-Quarks und Down-Quarks aufgebaut ist. Das muss man erst einmal verinnerlichen: Materie ist alles, was aus nur drei elementaren Bestandteilen besteht! Egal ob Gold, Blei, Wasserstoff oder Kohlenstoff. Egal ob ein Holzstuhl oder ein Hamburger. Alles besteht nur aus drei sogenannten Elementarteilchen: den Elektronen und zwei Sorten Quarks.

Elektronen kann man leicht erzeugen und beobachten. Die alten Röhrenfernseher liefern ein Zeugnis davon. Bei den Quarks ist das anders. Noch nie hat jemand Quarks beobachten, geschweige denn vorführen können. Und dennoch sollen die Protonen und Neutronen im Kern des Atoms aus diesen Quarks bestehen. Die Physiker schließen auf die Existenz von Quarks aufgrund von Beobachtungen, die sie machen, wenn sie in den Teilchenbeschleunigern wie CERN Protonen des Atomkerns mit anderen Teilchen und hoher Geschwindigkeit zusammenstoßen lassen. Das ist so, als würde man davon ausgehen, dass ein Fliegengewichtsboxer, der ein Schwergewicht K. O. schlägt, ein Hufeisen in seinem Boxhandschuh versteckt habe. Bevor man nicht in den Boxhandschuh reinschauen kann, weiß man es aber nicht.

Noch seltsamer mutet einem die Vorstellung von Materie an, wenn man weiß, dass Atome fast ausschließlich aus leerem Raum bestehen. Der Atomkern, in dem man die Protonen mit den Quarks finden kann, macht höchstens den zehntausendsten Teil des Atomdurchmessers aus. Der Raum um den Kern herum ist der Bereich, für den es eine größere Wahrscheinlichkeit gibt, dass man dort ein Elektron findet. Aber das gilt nicht als sicher. Die Regeln der Quantenphysik besagen, dass man das Elektron eines bestimmten Atoms genauso gut auch in New York oder sonst wo im Weltall finden kann, wenn auch mit sehr geringer Wahrscheinlichkeit. Aber unmöglich ist es nicht.

Völlig unerklärlich ist, dass Atome, Elektronen oder Protonen bei bestimmten Untersuchungen überhaupt nichts Materielles mehr an sich haben. Sie scheinen Welleneigenschaft zu besitzen und auf dem Beobachtungsschirm tauchen Wellenmuster auf. So verflüchtigt sich auf einmal das noch verbliebene Materielle an der Materie. Wenn es »keine Materie an sich gibt«, wie Planck sagte, was ist es dann, was die Materie ausmacht? Ist es eine Art Geist?

Eine Form von Geist, der in der Materie steckt, ist Information. Das kann man sich klar machen, wenn man ein Beispiel betrachtet, das drei Bausteine zum Gegenstand hat und damit dem Aufbau der Atome aus drei Elementarteilchen entspricht. Beispielsweise kann man sich zwei Kinder, einen Jungen und ein Mädchen vorstellen. Sie besitzen einen Eimer voll mit Lego-Bausteinen. Es sind drei Sorten Steine, nämlich solche mit zwei, vier und acht Noppen. Aus diesen Steinen baut das Mädchen ein kleines Puppenhaus mit zwei Zimmern, Möbeln, Ofen usw. Der Junge baut dagegen eine große Burg mit mächtigen Mauern, Zinnen, Toröffnung und Graben.

Die Frage ist nun, worin sich Puppenhaus und Burg unterscheiden? Beide Bauwerke sind aus den gleichen Steinen hergestellt. Die einzige Unterscheidung zwischen Puppenhaus und Burg ist die Zahl und Anordnung der Steine. Das gleiche gilt für unsere Welt, in der die unterschiedlichen Elemente Gold, Blei, Wasserstoff oder Kohlenstoff usw. sich nur in der Zahl und Anordnung der Elementarteilchen unterscheiden. Da alle Materie aus den Elementen aufgebaut ist, unterscheidet sich alles, was materiell existiert nur durch die Zahl und Anordnung der Elementarteilchen.

Die Anordnung ist nichts anderes als Information. Die Formen, anhand denen man erkennt, ob es sich um ein Puppenhaus oder eine Burg handelt, sind Informationen und auch die unterschiedlichen Formen und Muster der materiellen Welt sind alles Informationen. Aber Information ist sicher nicht der Geist, den Planck meinte. Denn Information ist nichts Lebendiges. Information ist passiv. Planck sprach dagegen von einem bewussten, intelligenten Geist und ein bewusster Geist ist etwas Lebendiges.

Einen Hinweis auf diesen bewussten Geist finden wir in der Interpretation der physikalischen Experimente mit Quanten. Quanten sind winzige Energiepakete, die sich je nach Art der Messung als Wellen oder Teilchen zeigen. Wegen dieses Verhaltens gelten Atome, Elektronen, Photonen (Lichtteilchen) und dergleichen – gleichgültig, ob die Objekte zur Materie zählen oder nicht – alle als Quanten. Zu einem der wichtigsten Experimente der Quantenphysik gehört jenes, bei dem man Lichtteilchen oder Elektronen auf eine Wand schickt, in der sich ein kleiner Doppelspalt befindet. Dahinter fängt man auf einem Beobachtungsschirm auf, was durch die Spalte hindurchkommt. Auf diese Weise beobachtet man das Verhalten der Quantenobjekte und kann es interpretieren.

Um Bewusstsein bei Quanten feststellen zu können, muss man wissen, anhand welcher Kriterien man Bewusstsein überhaupt feststellen kann. Bewusstsein ist kein Untersuchungsgegenstand der Quantenphysik. Deshalb findet man in dieser Disziplin keine geeigneten Kriterien zur Erkennung von Bewusstsein. Hier muss die Psychologie aushelfen. Die Psychologie hat mithilfe geeigneter Kriterien schon bei zahlreichen Tierarten Bewusstsein nachgewiesen. Das Hauptkriterium zur Erkennung einer primären Form von Bewusstsein, das allerdings noch nicht das höhere Ich-Bewusstsein einschließt, ist erstens die Fähigkeit, sich auf unerwartete Veränderungen der Wirklichkeit einzustellen und zweitens ein nicht sicher vorhersehbares, eigengesteuertes Verhalten.

Das ist aber genau das, was man an dem Verhalten von Lichtteilchen oder anderen Quanten feststellen kann, die offensichtlich selbst entscheiden, welchen Weg sie an einem Strahlenteiler durchlaufen oder welche Polarisierung sie bei einer Polarisationsmessung annehmen. Es gibt keine Formeln oder physikalischen Gesetze, anhand derer man dieses Verhalten vorausberechnen könnte. Man hat nur die Möglichkeit das Verhalten mit einer gewissen Wahrscheinlichkeit vorauszusagen. Sicherheit gibt es aber nicht. Und das entspricht beim Kriterium für primäres Bewusstsein, dem nicht sicher vorhersehbaren, eigengesteuerten Verhalten.

Immer wenn Lichtteilchen sich unbeobachtet glauben, bilden sie ein Wellenmuster auf dem Beobachtungsschirm beim Doppelspaltexperiment. Sie sind allerdings sehr eigenwillig: Wenn man nämlich einzelnen Quanten nachspürt, um mehr zu erfahren, verschwindet das Wellenmuster und es bleiben nur noch zwei Streifen übrig. Das gleiche gilt, wenn man abwechselnd einen der Spalte schließt, um mit Sicherheit sagen zu können, durch welchen Spalt ein bestimmtes Lichtteilchen gegangen ist. Die Quanten stellen sich auf alle Veränderungen der Wirklichkeit sofort ein. Ein Psychologe würde aus dem eigenwilligen Verhalten schließen, dass Quanten primäres Bewusstsein zeigen.

Planck kannte natürlich die grundlegenden Experimente der Quantenphysik einschließlich des Doppelspalt-Experiments. So ließ ihn möglicherweise das in den Experimenten offengelegte Verhalten der Materie zu dem Schluss kommen, dass ein bewusster, intelligenter Geist der »Urgrund aller Materie« ist. – Klaus-Dieter Sedlacek

Der Text enthält zum Teil Inhalte aus dem Sachbuch mit dem Titel »Unsterbliches Bewusstsein – Raumzeit-Phänomene, Beweise und Visionen« (ISBN 978-3837043518 )

Elektronen an zwei Orten gleichzeitig

Video: Die Quantenphysik

In einer Art molekularem Doppelspaltexperiment haben Wissenschaftler des Fritz-Haber-Instituts (FHI) der Max-Planck Gesellschaft in Zusammenarbeit mit Forschern vom California Institute of Technology in Pasadena/USA erstmals an Elektronen nachgewiesen, dass diese gleichzeitig Eigenschaften von Welle und Teilchen besitzen und quasi per Knopfdruck zwischen beiden Zuständen hin- und hergeschaltet.

Vor hundert Jahren begann man den in der Naturphilosophie postulierten dualen Charakter der Natur auch auf der Ebene elementarer physikalischer Vorgänge schrittweise zu erkennen. Albert Einstein war der erste, der 1905 diese Konsequenz aus Plancks Quantenhypothese zog. Er ordnete dem eindeutig als elektromagnetische Welle bekannten Photon Teilchencharakter zu. Dies ist die Quintessenz seiner Arbeit zum Photoeffekt. Später war es vor allem deBroglie, der 1926 erkannte, dass alle uns als Teilchen bekannten Bausteine der Natur – Elektronen, Protonen etc. – sich unter bestimmten Bedingungen wie Wellen verhalten.
Die Natur in ihrer Gesamtheit ist also dual; kein einziger ihrer Bestandteile ist nur Teilchen oder Welle. Niels Bohr führte zum Verständnis dieser Tatsache 1923 das Korrespondenz-Prinzip ein, das vereinfacht besagt: Jeder Bestandteil der Natur hat sowohl Teilchen- als auch Wellencharakter und es hängt nur vom Beobachter ab, welchen Charakter er gerade sieht. Anders gesagt: Es hängt vom Experiment ab, welche Eigenschaft – Teilchen oder Welle – man gerade misst. Dieses Prinzip ist als Komplementaritätsprinzip in die Geschichte der Physik eingegangen.

Albert Einstein war diese Abhängigkeit der Natureigenschaften vom Beobachter Zeit seines Lebens suspekt. Er glaubte, es müsse eine vom Beobachter unabhängige Realität geben. Doch die Quantenphysik hat die Tatsache, dass es keine unabhängige Realität zu geben scheint, im Laufe der Jahre einfach als gegeben akzeptiert, ohne sie weiter zu hinterfragen, da alle Experimente sie immer wieder und mit wachsender Genauigkeit bestätigt haben.

Bestes Beispiel ist das Young’sche Doppelspaltexperiment. Bei diesem Doppelspaltexperiment lässt man kohärentes Licht auf eine Blende mit zwei Schlitzen fallen. Auf einem Beobachtungsschirm hinter der Blende zeigt sich dann ein Interferenzmuster aus hellen und dunklen Streifen. Das Experiment kann aber nicht nur mit Licht, sondern auch mit Teilchen wie z. B. Elektronen durchgeführt werden. Schickt man einzelne Elektronen nacheinander durch den offenen Young’schen Doppelspalt, erscheint auf der dahinterstehenden Photoplatte ein streifenförmiges Interferenzmuster, das keinerlei Information über den Weg, den das Elektron genommen hat, enthält. Schließt man jedoch einen der beiden Spalte, so erscheint auf der Photoplatte ein verwaschenes Abbild des jeweils offenen Spaltes, aus dem man den Weg des Elektrons direkt ablesen kann. Eine Kombination aus Streifenmuster und Lagebild ist in diesem Doppelspaltexperiment jedoch nicht möglich, dazu bedarf es eines molekularen Doppelspaltexperiments.

Obwohl jedes Elektron einzeln durch einen der beiden Spalte zu laufen scheint, baut sich am Ende ein wellenartiges Interferenzmuster auf, als ob sich das Elektron beim Durchgang durch den Doppelspalt geteilt hätte, um sich danach wieder zu vereinen. Hält man aber einen Spalt zu oder beobachtet man, durch welchen Spalt das Elektron geht, verhält es sich wie ein ganz normales Teilchen, das sich zu einer bestimmten Zeit nur an einem bestimmten Ort aufhält, nicht aber an beiden gleichzeitig. Je nachdem also, wie man das Experiment ausführt, befindet sich das Elektron entweder an Ort A oder an Ort B oder an beiden gleichzeitig.
Das diese Doppeldeutigkeit erklärende Bohrsche Komplementaritäts-Prinzip fordert aber zumindest, dass man nur eine der beiden Erscheinungsformen zu einer gegebenen Zeit in einem gegebenen Experiment beobachten kann – entweder Welle oder Teilchen, aber nicht beides zugleich. Entweder ist ein System in einem Zustand des wellenartigen “Sowohl-als-auch” oder aber des teilchenartigen “Entweder-oder” in Bezug auf seine Lokalisierung.

In jüngster Zeit hat eine Klasse von Experimenten ergeben, dass diese verschiedenen Erscheinungsformen der Materie ineinander überführbar sind, das heißt, man kann von einer Form in die andere schalten und unter bestimmten Bedingungen wieder zurück. Diese Klasse von Experimenten nennt man Quantenmarker und Quantenradierer. Sie haben in den letzten Jahren an Atomen und Photonen und seit jüngstem auch an Elektronen gezeigt, das es ein Nebeneinander von “Sowohl-als-auch” und “Entweder-oder” für alle Formen der Materie gibt, also eine Grauzone der Komplementarität. Es gibt demzufolge experimentell nachweisbare Situationen, in denen die Materie sowohl als Welle aber auch als Teilchen gleichzeitig in Erscheinung tritt.

Beispiele dafür sind die Atom-Interferometrie, wo dieses Verhalten 1997 erstmalig bei Atomen, d.h. zusammengesetzten Teilchen, gefunden wurde. In der Ausgabe [nature, 29. September 2005] berichten die Berliner Max-Planck-Forscher gemeinsam mit Forschern vom California Institute of Technology in Pasadena/USA nun von molekularen Doppelspaltexperimenten. Diese beruhen darauf, dass sich Moleküle mit identischen und damit spiegelsymmetrischen Atomen wie ein von der Natur aufgebauter mikroskopisch kleiner Doppelspalt verhalten. Dazu gehört Stickstoff, wo sich jedes Elektron – auch die hochlokalisierten inneren Elektronen – an beiden Atomen gleichzeitig aufhält. Ionisiert man nun ein solches Molekül etwa mit weicher Röntgenstrahlung, führt diese Eigenschaft zu einer wellenartig streng gekoppelten Emission eines Elektrons von beiden atomaren Seiten, genauso wie im Doppelspaltexperiment mit Einzelelektronen.

Die Experimente wurden von Mitarbeitern der Arbeitsgruppe “Atomphysik” des FHI an den Synchrotronstrahlungslaboren BESSY in Berlin und HASYLAB bei DESY in Hamburg durchgeführt. Die Messungen mittels einer Multi-Detektoranordnung für kombinierten Elektronen- und Ionen-Nachweis fanden hinter so genannten Undulator-Strahlrohren statt, die weiche Röntgenstrahlung mit hoher Intensität und spektraler Auflösung liefern. Quelle: idw

Wenn sich jedes Elektron an zwei Orten gleichzeitig aufhalten kann, wie im vorletzten Absatz angeführt, dann hat das Folgen für unser Weltbild. Welche Folgen das sind, ist im Sachbuch mit dem Titel  Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen näher beschrieben.