Schlagwort-Archive: Fortschritt

Einzigartiger Weg zur Wasserstofferzeugung aus Wasser gefunden

Professor David Milstein Weizmann Institute of Science
Professor David MilsteinWeizmann Institute of Science
(idw). Die Entwicklung eines effizienten künstlichen Katalysators, mit dessen Hilfe durch Sonnenlicht Wasser in Sauerstoff und Wasserstoff aufgespalten werden kann, ist ein Hauptziel in der Erforschung sauberer, erneuerbarer Energiequellen. Wissenschaftler vom Weizmann Institut haben ein neues Verfahren entwickelt, bei dem in mehreren Einzelschritten und ohne Zusatz von schädlichen Chemikalien Wasser durch Sonnenlicht in Sauerstoff und Wasserstoff aufgespalten wird.

Die Entwicklung eines effektiven, mit Sonnenlicht angetriebenen Systems zur Aufspaltung von Wasser in Wasserstoff und Sauerstoff gehört heute zu den wichtigsten Herausforderungen der wissenschaftlichen Forschung, insbesondere mit Hinblick auf das Langzeitpotenzial von Wasserstoff als sauberen, umweltfreundlichen Treibstoff. Die existierenden künstlich entwickelten Systeme sind sehr ineffizient und benötigen zumeist den Einsatz zusätzlicher chemischerWirkstoffe, weshalb die Entwicklung neuer Methoden zur Aufspaltung von Wasser so wichtig ist.

Prof. David Milstein und seine Kollegen vom Fachbereich Organische Chemie am Weizmann Institut haben einen einzigartigen Ansatz entwickelt, der wichtige Stufen zur Bewältigung dieser Herausforderung bietet. Das Forschungsteam konnte eine neue Art der Bindungsentstehung zwischen Sauerstoffatomen nachweisen und sogar ihren Mechanismus bestimmen. Den Flaschenhals beim Aufspaltungsprozess von Wasser stellt eigentlich die Erzeugung von Sauerstoffgas durch die Formation einer Bindung zwischen zwei Sauerstoffatomen aus Wassermolekülen dar. Die Forschungsergebnisse des Teams wurden kürzlich in Science veröffentlicht.

Die Natur hat einen anderen Weg eingeschlagen und dabei ein sehr produktives Verfahren entwickelt: die Photosynthese in den Pflanzen ist die Quelle allen Sauerstoffs auf der Erde. Obwohl es deutliche Fortschritte im Verständnis der Photosynthese gegeben hat, ist noch immer unklar, wie dieses System funktioniert; weltweit bemüht man man sich intensivst – jedoch ohne große Erfolge – um die Entwicklung eines künstlicher photosynthetischer Systeme, welche auf Metallkomplexen basieren, die als Katalysatoren dienen. (Ein Katalysator ist eine Substanz, die eine chemische Reaktion steigern kann, ohne selbst verbraucht zu werden.)

Der neue Ansatz des Weizmann-Teams unterteilt sich in eine Serie von aufeinanderfolgenden thermalen und durch Licht beeinflussten Reaktionen, die zur Freilassung von Wasserstoff und Sauerstoff in Stufen führen. Die Reaktionen werden durch einen einzigartigen Zusatz katalysiert: ein besonderer Metallkomplex, den das Milstein-Team in vorherigen Forschungsstudien entwickelte. Darüber hinaus ist der von ihnen entworfene Metallkomplex, der auf dem Element Ruthenium beruht, ein “schlauer” Komplex, in dem das Metallzentrum und der angeheftete organische Teil bei der Aufspaltung des Wassermoleküls zusammenwirken.

Das Team fand heraus, dass beim Vermischen des Komplexes mit Wasser, die Bindung zwischen einem Wasserstoffatom und dem Sauerstoffatom im Wassermolekül aufbricht, wobei das Wasserstoffatom sich an den organischen Teil anbindet, während das verbliebene Wasserstoff- und Sauerstoffatom (OH-Gruppe) sich an das Metallzentrum des Komplexes binden.

Diese modifizierte Version des Komplexes stellt die Grundlage für den nächsten Abschnitt in dem Verfahren dar: der “Heizabschnitt”. Wenn die Wasserlösung auf 100 Grad Celsius erhitzt wird, wird das Wasserstoffgas aus dem Komplex freigelassen (eine potenzielle Quelle für sauberen Treibstoff ) und eine weitere OH-Gruppe wird dem Metallzentrum hinzugefügt.

“Aber der interessanteste Abschnitt ist der dritte, der “Lichtabschnitt”,” sagt Milstein. “Wenn wir diesen dritten Komplex bei Zimmertemperatur dem Licht aussetzten, wird nicht nur Sauerstoffgas produziert, sondern der Metallkomplex fällt zurück in seinen Ursprungszustand und läßt sich dann für weitere Reaktionen wieder verwenden.”

Diese Ergebnisse sind deshalb so bemerkenswert, weil die Erzeugung einer Bindung zwischen zwei Sauerstoffatomen durch einen künstlich hergestellten Metallkomplex ein sehr seltenes Ereignis ist und bisher unklar war, wie dies überhaupt geschieht. Auch haben Milstein und sein Team es geschafft, einen bisher unbekannten zugrundeliegenden Mechanismus solcher Verfahren zu identifizieren. Weitere Experimente haben gezeigt, dass in diesem dritten Abschnitt Licht die notwendige Energie bietet, um die beiden OH-Gruppen zusammen zu bringen, die dann Wasserstoffperoxid (H2O2) bilden, dass schnell in Sauerstoff und Wasser auseinander bricht. “Weil Wasserstoffperoxid als ein relativ instabiles Molekül bekannt ist, haben Wissenschaftler diesen Abschnitt stets mißachtet und als implausibel erachtet; aber wir haben das Gegenteil bewiesen,” sagt Milstein. Darüber hinaus hat das Forschungsteam gezeigt, dass die Anbindung zwischen den beiden Sauerstoffatomen in einem einzigen Molekül entsteht – und nicht zwischen den Sauerstoffatomen in separaten Molekülen, wie bisher angenommen – und dass sie von einem Metallzentrum ausgeht.

Die Entdeckung eines effizienten künstlichen Katalysators für die von Sonnenlicht angetriebene Aufspaltung von Wasser in Sauerstoff und Wasserstoff ist ein Hauptziel der Erforschung erneuerbarer, sauberer Energie. Bisher hat Milsteins Team einen Mechanismus für die Bildung von Wasserstoff und Sauerstoff aus Wasser vorgeführt, mit Hilfe von Licht und ohne den Einsatz eines chemischen Wirkstoffs. Für ihre nächste Studie planen sie diese Abschnitte miteinander zu verbinden, um ein effektives Katalysatorsystem zu schaffen, das die Erforschung alternativer Energien einen wichtigen Schritt in Richtung ihrer praktischen Anwendung voranbringen soll.

Baukastenprinzip: Uralter Welterfolg bedeutet die Zukunft für Roboter-Modelle!

Weinheim (ptx) – „ Patent-Anspruch: Die Herstellung von Modellbauten aus Leisten verschiedener Länge, welche in einer gleichmäßigen Längeneintheilung vielfach gelocht und mittelst gerader oder gekrümmter V-förmiger Splintnadeln und dazu gehöriger Keile verbunden werden, während die Flächenfüllung durch Einschieben von Platten in die an Leisten angebrachten Nuthen bewirkt wird.“ Mit diesen schlichten Worten aus einer Patentschrift des Kaiserlichen Patentamts beginnt am 8. April 1888 vor genau 120 Jahren ein beispielloser Welterfolg: der Konstruktionsbaukasten.

In einem Jahr in dem Heinrich Rudolf Hertz die Grundlagen der drahtlosen Telegrafie entdeckt, George Eastman den Rollfilm-Fotoapparat erfindet, Dunlop den Luft gefüllten Reifen einführt und der Amerikaner Burroughs sich die Additionsmaschine patentieren lässt, kommt das interessanteste technische Spielzeug vieler Generationen gerade zur rechten Zeit. Die Industrialisierung und der gewaltige technische Fortschritt in der zweiten Hälfte des 19. Jahrhunderts lassen ein Verständnis-Vakuum bei der Bevölkerung entstehen, das ausgefüllt werden muss. Besonders die in dieser Umbruchzeit heranwachsenden Kinder sind auf die technischen Neuerungen in ihrem Umfeld neugierig. So ist es auch nicht verwunderlich, dass die Patentbeschreibung des 1. Konstruktions-baukastens mit dem Satz beginnt: „Die Erfindung bezweckt, durch ein leicht zusammenfügbares und wieder auseinander nehmbares Material Bauten der verschiedensten Art herzustellen, welche sowohl als Modelle, als auch zu lehrreichem Spielzeug dienen können.“ Auch heute im Zeitalter der Elektronik ist der Konstruktionsbaukasten als Spielzeug nicht wegzudenken.

Als Erfinder ist Otto Lilienthal genannt. Das ist im ersten Moment eine Überraschung. Aber beim genauen Hinsehen entpuppen sich die Gebrüder Otto und Gustav Lilienthal nicht nur als Flugpioniere, sondern sind auch der Pädagogik und künstlerischen Erziehung zugetan. Besonders Gustav Lilienthal arbeitet in einem reformerischen Arbeitskreis mit, der Schriften wie „Die Schulen der weiblichen Handarbeit“ oder „Jugendspiel und Arbeit“ herausgibt. Zudem entsteht in Zusammenhang mit diesen Tätigkeiten 1880 der Steinbaukasten, der später unter dem Namen „Richters Anker-Steinbaukasten“ weltberühmt wird. Der Architekt und Kinderfreund Gustav Lilienthal dürfte deshalb auch –wie es aus Briefwechseln hervorgeht- der wirkliche Erfinder des 1. Konstruktonsbaukastens gewesen sein, nur kann er nicht in Erscheinung treten, da er zu diesem Zeitpunkt ohne Vermögen und somit nicht kreditwürdig ist. Bruder Otto, der Ingenieur, muss also herhalten.

Auf der Leipziger Messe 1888 zeigen die Lilienthals neben verschiedenen architektonischen Modellen auch eine Windmühle. Die Beweglichkeit über die drehende Achse ist der erste konkrete Hinweis auf entsprechende weitere Modelle, die die technische Wirklichkeit darstellen können. Doch wahrscheinlich bricht in der Folgezeit der engagierte Architekt in Gustav durch, denn seine wichtigsten Vorzeige-Modelle beschränken sich auf den Eiffelturm, die damals kühnen Konstruktionen aus Glas und Stahl und auf pompös gestaltete Bahnhöfe.

Richtig Bewegung und somit Technik bringen dann andere Hersteller wie Matador, Walthers Stabilbaukasten und Meccano Anfang des 20. Jahrhunderts ins Spiel. Heute würde man allerdings von Me-Too-Produkten sprechen, denn das übernommene Basisprinzip eines Konstruktionsbaukastens mit gelochten Leisten in gleichmäßigen Abständen und passenden Verbindungselementen haben die Lilienthals erfunden. Normalerweise wird derjenige vom Leben bestraft, der zu spät kommt. Im Fall Lilienthal ist es genau umgekehrt: Sie sind zu früh und wohl auch mit zu wenig Kapital ausgestattet. Das erfinderische und vertriebliche Know-How nutzen schließlich andere und ernten die Früchte der Lilienthals.

Neben dem Stabilbaukasten von Walther macht besonders der Metallbaukasten von Meccano Furore. 1901 in England von Frank Hornby entwickelt, wird er auch bald in Deutschland zum Kassenschlager. Allerdings dauert der Siegeszug nur bis zum 1. Weltkrieg. Dann kassiert der deutsche Staat die in Berlin angemeldeten Meccano-Patente und verkauft sie an Märklin weiter. Die Zoll-Maße bei den Lochabständen weisen noch heute auf den Ursprung hin.

Der Metallbaukasten ist jahrzehntelang der Traum aller Jungen. Da wird getüftelt, geschraubt und konstruiert. Das ist nach 1945 schnell vorbei, denn neue Werkstoffe verändern auch die Welt der Spielzeuge. Mit Kunststoffen werden die Spielzeuge unempfindlicher und zudem ist die Verformung einfacher und die Einsatzmöglichkeiten sind vielseitiger. Die Spielwaren-Industrie erkennt diesen Trend schnell und folgt ihm. Vieles, was bisher aus Holz oder Metall gefertigt war, entsteht nun aus Kunststoff. Als erstes kommt Lego auf den Markt, allerdings lediglich als „Klötzchenspiel“, denn es sind fast nur architektonische Modelle ohne Bewegung möglich. Die Technik findet dort erst richtig im Laufe der 70er Jahre statt.

Fast 80 Jahre hält das Lilienthal’sche Konstruktionsbaukasten-Prinzip aus gelochten Leisten. Erst 1964/65 kommt mit dem fischertechnik-System von Artur Fischer im wahrsten Sinn des Wortes Bewegung in die Baukastenwelt Und das natürlich gleich aus Kunststoff. Statt gelochter Leisten oder Bleche, die mit Schrauben und Muttern verbunden werden, setzt er das Prinzip der Schwalbenschwanzbefestigung ein, bei dem Zapfen in Nuten geschoben werden. So erreicht er einen hohen Grad an Modellfestigkeit und Vielseitigkeit der einzelnen Bauteile. Die sichere Befestigung ist für Fischer kein unbekanntes Gebiet, denn als einer der weltgrößten Dübelhersteller hat er schon immer mit diesem Thema zu tun gehabt. Im übrigen ist auch die Entwicklung des fischertechnik-Systems eng mit dem Dübel verbunden: Nämlich immer wenn es weihnachtet, ärgert sich Fischer über die langweiligen und einfallslosen Weihnachtsgeschenke, die er von seinen Lieferanten bekommt, und die er letztlich auch seinen Kunden überreicht. So entsteht die Idee, ein Befestigungsmittel für Kinder zu entwickeln, das gleichzeitig ein Spielzeug sein soll. An eine kommerzielle Auswertung ist zunächst gar nicht gedacht. Das Ergebnis der Tüftelei ist ein Baustein, der an allen sechs Seiten mit dem nächsten Stein zu verbinden ist. Bereits nach zwölf Monaten ist aus diesem Stein ein ganzer Bau-kasten mit unterschiedlichen Elementen geworden.

Nach über 40 Jahren auf dem Markt hat fischertechnik nicht nur bei Kindern und Jugendlichen technisches Wissen vermittelt, sondern auch ganze Generationen von Technikern in ihrer Berufswahl beeinflusst und geformt. Bei Wettbewerben wie „Jugend forscht“ spielt es immer wieder eine Rolle und in vielen Schulen sorgt das Material im Technik- oder Werkunterricht für den technischen Durchblick. Maschinenbaubetriebe setzen aus fischertechnik gebaute Nachbildungen ihrer Großanlagen zur gefahrlosen Erprobung der notwendigen elektronischen Steuerung ein. Selbst die Nachwuchsförderung in der IT-Branche erfolgt unter Einsatz von fischertechnik-Modellen. So arbeitet der Software-Konzern Microsoft mit dem Forschungszentrum Informatik an der Universität Karlsruhe zusammen und lehrt Studenten, wie Roboter-Modelle aus dem Konstruktionsbaukasten mit passgenauen Programmen zum Laufen zu bringen sind.

Die Gebrüder Lilienthal gelten als die Luftfahrtpioniere. Dass sie den Konstruktionsbaukasten erfunden haben, ist weitgehend unbekannt oder wird in der Bedeutung vernachlässigt. Doch beide Erfindungen bzw. Pioniertaten können in der Weiterentwicklung als gleichbedeutend betrachtet werden, denn viele der heute bedeutenden Konstrukteure und Ingenieure haben ihre ersten Schritte in das Reich der Technik mit einem Konstruktionsbaukasten begonnen.
Dieter Tschorn

Wie die Uhrwerkhemmung zu einem gewaltigen Innovationsschub führte

Die Geburtsstunde des neuen Zeitalters. WISSEN DER ZUKUNFT berichtet :

Kirchturmuhr
Prof. Dohrn-van Rossum mit einem alten Uhrwerk, das einst vermutlich eine Kirchturmuhr in Hannover antrieb und später als technisch veraltet in einer Dorfkirche landete. Der Professor bewahrte es vor der Verschrottung.

(idw). Sie ist so wichtig wie das Rad, die Dampfmaschine oder das Feuermachen: die Uhrwerkhemmung, erfunden um 1270. Erst sie machte es möglich, die Zeit genau zu messen – damit wurde sie zur Geburtshelferin der modernen Gesellschaft mit all ihren Vor- und Nachteilen. Wie der Mensch auf die Zeit kam, das erforscht seit Jahren der Chemnitzer Historiker Prof. Gerhard Dohrn-van Rossum.

Ohne sie würden wir Verabredungen verpassen und zu spät zur Arbeit kommen. Flugzeuge würden ohne uns starten und Züge ohne uns abfahren. Auch die Tagesschau müßte auf uns als Zuschauer verzichten, und mit dem morgendlichen Aufstehen wäre es noch schlimmer als ohnehin schon. Gemeint ist natürlich die Uhr, die “Schlüsselmaschine der Neuzeit”, die “wichtiger als die Dampfmaschine” sei, so der amerikanische Techniksoziologe Lewis Mumford schon 1934. Wie keine andere Erfindung ordnet und regelt sie unser Leben. Und oft genug fühlen wir uns auch von ihr bevormundet.

Wie die Uhr vom späten Mittelalter an unser Leben bestimmte, wie die Teilung des Tages in 24 gleich lange Stunden erfunden wurde und welche Folgen dies für den Lauf der Geschichte hatte, das erforscht der Chemnitzer Historiker Prof. Gerhard Dohrn-van Rossum seit Jahren. Und er hat darüber auch ein Buch verfaßt: “Die Geschichte der Stunde – Uhren und moderne Zeitordnungen”, das mittlerweile auch in Französisch und Englisch vorliegt. Eine japanische Übersetzung ist gerade in Arbeit. Wenn das Buch eines Wissenschaftlers derart beachtet wird, dann spricht das für sich. Tatsächlich erlaubt das Werk einen Blick in das späte Mittelalter und die frühe Neuzeit, wie wir sie so nicht kennen.

Für die Menschen früherer Epochen spielte die Zeitmessung keine Rolle – sie standen auf, wenn es hell wurde und gingen bei Dunkelheit zu Bett. Immerhin gab es schon eine künstliche Beleuchtung, etwa in Form von Kienspänen, Öllampen oder Kerzen, aber die waren für den normalen Bürger ohnehin zu teuer. Die Arbeit wurde meist nach Tagen bezahlt. Zwar konnten auch schon die alten Griechen und Römer die Zeit messen: Sie benutzten dazu Sonnen- oder Wasseruhren. Die aber waren schwierig zu bauen, noch schwieriger zu regulieren. Deshalb waren sie recht ungenau und hatten besonders in Mitteleuropa ihre Nachteile. Auch die Einteilung des Tages in 2 mal 12 Stunden war schon in der Antike bekannt. Dazu wurden der Tag und die Nacht jeweils in zwölf etwa gleich lange Abschnitte geteilt, was schon schwierig genug war. Die Nacht begann, wenn die Sonne unterging, der Tag bei ihrem Aufgang. Als Folge davon waren die Tag- und die Nachtstunden je nach Jahreszeit unterschiedlich lang. Dieser Effekt verstärkte sich noch, je weiter man nach Norden kam.

Für eine Menschengruppe allerdings war es wichtig, die genaue Zeit zu kennen: die mittelalterlichen Mönche, die ihre Gebetsstunden einhalten mußten. Tagsüber war das kein Problem, doch war auch ein Gebet um Mitternacht vorgeschrieben, und dieser Zeitpunkt war
schwierig zu bestimmen. Zwar versuchten die Mönche, die antiken Wasseruhren zu verbessern, freilich mit mäßigem Erfolg. Also behalfen sie sich, etwa mit genau abgewogenen Kerzen, die außen Zeitmarkierungen oder auch Nägel trugen, die beim Abbrennen der Kerze mit einem Geräusch zu Boden fielen.

Doch die Lage änderte sich schlagartig gegen Ende des 13. Jahrhunderts. Wer genau die zündende Idee hatte, die letztendlich die Welt verändern sollte, verliert sich im Dunkel der Zeiten – vermutlich wurde sie in einem Kloster geboren, und ebenso vermutlich gleich mehrfach und unabhängig voneinander. Die Grundprinzipien des mechanischen Uhrwerks waren schon in der Antike bekannt: Der Antrieb durch ein Gewicht an einem Seil, Zahnräder zur Übersetzung und ein Anzeigewerk, das beispielsweise einen Zeiger bewegen konnte. Solche Zeigerwerke hatte man auch schon mit Wasseruhren oder anderen Instrumenten verbunden. Mit einem Gewichtsantrieb über eine Welle konnte man zwar einen Mechanismus in Gang setzen, er hatte aber einen Nachteil – er ließ sich nicht regulieren. Einmal in Gang gesetzt, fällt das Gewicht immer schneller, der Bewegungsablauf läßt sich nicht mehr aufhalten. Was fehlte, war mithin eine Vorrichtung, die solch eine Regulierung des Fallens des Gewichts ermöglicht, die Uhrwerkhemmung. Dabei ist auf der Welle mit dem Gewicht ein Zahnrad montiert, in das in regelmäßigen Abständen abwechselnd zwei auf einer Spindel angebrachte, rechtwinklig zueinander stehende Metallzungen, die Spindellappen, eingreifen. Die Spindel selbst, die in ihrer einfachsten Form oben einen Waagbalken mit zwei Regulierungsgewichten trägt, schwingt dabei hin und her. Der Zug des Gewichts verursacht immer dann, wenn einer der Spindellappen das Zahnrad freigibt, einen kurzen Vorwärtsruck: Das ist das Ticken der Uhr.

Uhrwerkhemmung Diese Hemmung kann kaum hoch genug eingeschätzt werden. Sie muß zwischen 1271 und etwa 1300 erfunden worden sein. 1271 nämlich hatte der an der Pariser Universität lehrende Engländer Robertus Anglicus in einem Kommentar zu einem Astronomielehrbuch geschrieben: “Die Macher von Uhrwerken arbeiten an einem Mechanismus, der sich einmal am Tag dreht, aber sie haben es bisher noch nicht geschafft” – zu diesem Zeitpunkt existierte die Hemmung also noch nicht. Andererseits sind uns Berichte von Chronisten überliefert, die um 1300 solche Hemmungen bezeugen. Etwa ab 1330 werden dann auch die ersten Schlagwerke erwähnt.

Mit der Erfindung der Uhrwerkhemmung bricht ein neues Zeitalter an. Die Zeit wird in gleichmäßige Abschnitte eingeteilt, die “Stunde” im heute gebräuchlichen Sinne also gleich mit erfunden. In den folgenden hundert Jahren (so lange etwa dauerte es auch später bei der Dampfmaschine) breiten sich die mechanischen Uhrwerke in ganz Europa aus, zunächst in den reichen Klöstern, den großen Kathedralen, an den Herrscherhöfen. Doch der Bau ist für die damaligen Verhältnisse extrem aufwendig, zudem verschleißen die aus Weicheisen hergestellten Zahnräder schnell und die Wartung ist teuer. In Bologna etwa murren die Bürger, als ihnen für den Uhrwerksbau eine Sondersteuer auferlegt wird. Dennoch schließen sich aus Prestigegründen die großen deutschen und französischen Städte an, bis 1400 folgen auch die kleineren. Anfangs dienen die Uhrwerke meist nicht zur Zeitmessung, sie treiben vielmehr Glocken- und Figurenspiele an. Die Kirchen zum Beispiel wollen mit ihnen Neugierige anlocken, die die Mechanik und damit die Schöpfung bewundern sollen.

Die Folgen der Erfindung gehen freilich weit darüber hinaus: Galten die Europäer bisher als primitiv und zurückgeblieben, waren die islamischen Länder und China technisch am weitesten fortgeschritten, so geht der Vorsprung nun auf Europa über. Den Menschen wird plötzlich bewußt, was in den zwei, drei Jahrhunderten zuvor schon alles erfunden wurde, ohne daß sie es groß bemerkt hätten – die Windmühle etwa, das Zaumzeug oder die Sporen. Daß es die früher nicht gab, wußte man, weil sie bei den antiken Schriftstellern nicht erwähnt wurden. Das schafft ein Gefühl für den eigenen Wert. Damit wird plötzlich auch die Person des Erfinders, sein geistiges Eigentum, anerkannt – folglich nennt und bewahrt man auch seinen Namen. Mit anderen Worten: Man erfindet die Idee des Individuums. Das ist neu, das hat es weder in anderen Kulturen noch vorher in Europa gegeben. In China, im Islam, im Frühmittelalter waren Erfinder noch namenlos. Allenfalls hieß es da “unter der Regierung des Kalifen Harun Ar Raschid”, oder es wird der Name eines kaiserlichen Beamten genannt, der gar nicht der eigentliche Urheber war. Wer die Windmühle oder das Spinnrad erfand, beide seit etwa 1200 in Europa verbreitet – wir wissen es nicht. Der erste Brillenschleifer, nur hundert Jahre später, ist dagegen bekannt.

Mit der Anerkennung des Erfinders und der geistigen Leistung ändert sich auch die Einstellung gegenüber Innovationen. Galt noch im frühen Mittelalter alles Neue als schlecht, als des Teufels – schließlich kamen Uhren in der Bibel nicht vor – so setzte sich nun der Gedanke durch, daß, was neu ist, auch gut ist. Diese Haltung führt ab 1330 zu einem gewaltigen Innovationsschub – an allen Ecken und Enden wird plötzlich Neues erfunden. Die Menschen spürten: Es gibt so etwas wie den Fortschritt, wir können unsere eigenen Probleme lösen. Dieses Gefühl hielt bis in die Vorkriegszeit, ja bis zum Club of Rome an – der allgemeine Technikpessimismus ist, von Splittergruppen abgesehen, jüngeren Datums.

Mit der Zeit wandelten sich die Figuren- und Glockenspiele der Anfangsjahre immer mehr zu “richtigen” Uhren. Der öffentliche Stundenschlag von der Rathausuhr auf dem Marktplatz regelte jetzt das Leben. Damit bürgen sich auch feste Zeiten für allerlei Verrichtungen ein. Ratssitzungen beispielsweise konnten auf feste Stunden angesetzt werden, wer zu spät kam, mußte eine Geldstrafe zahlen. Vorher dauerten solche Sitzungen oft sehr lange und konnten dadurch die Existenz der Ratsherren, die oft Handwerker waren, gefährden. In den Schulen tauchen die ersten Stundenpläne auf, zu Ende des 14. Jahrhunderts gibt es in Hamburg die ersten Verordnungen über Beginn und Ende der Arbeit – das Wort “Arbeitszeit” hingegen erscheint erst nach 1800 in unserer Sprache. Damit gibt es auch erstmals so etwas wie Freizeit – die wird erst dadurch möglich, daß sich die Arbeitszeit messen läßt. Zeiteinheit ist dabei immer die Stunde, allenfalls die Viertelstunde. Erst mit den Eisenbahnen gelangt um die Mitte des 19. Jahrhunderts auch die Minute ins Bewußtsein der Menschen. Die Sekunde muß sogar bis an den Rand des 20. Jahrhunderts warten, als die Zeitungen anfangen, über Sportereignisse zu berichten. Etwa ab 1880 sind auch “normale” Menschen, etwa der kleine Handwerker, nicht mehr auf öffentliche Uhren angewiesen: Uhren werden nicht mehr in Handarbeit, sondern als industrielles Massenprodukt hergestellt.

Sogar vor der Folter machte die neue Zeitrechnung nicht halt: Lagen nämlich keine Beweise, sondern lediglich Indizien vor, konnte ein Angeklagter nur nach einem Geständnis verurteilt werden. Dieses sollte durch die Folter erzwungen werden, die von sadistischen Richtern teilweise exzessiv angewandt wurde. Doch Bedenken dagegen gab es auch damals. Man löste sie zunächst, indem man je nach Schwere des Verbrechens verschiedene Grade der Folter einführte. Nun kam eine zeitliche Befristung hinzu, die meist mit einer Sanduhr kontrolliert wurde – freilich galt dies nicht für Hexenprozesse. Der mutmaßliche Täter durfte die Uhr aber nicht sehen, damit er das Ende nicht abschätzen konnte. Es ist verbürgt, daß Angeschuldigte damals ihre Richter fragten: “He! Wie lange läuft die Uhr noch?”

Diese Beispiele haben eines gemeinsam, so Prof. Dohrn-van Rossum: Sie ersetzen eine Sachdiskussion durch eine formale Diskussion. “Dadurch werden zwar die Probleme nicht lösbar, aber immerhin verhandelbar”, so der Wissenschaftler. Inhaltlich könne man über manche Probleme nicht diskutieren, das sei aber möglich, wenn man sie in Zeitprobleme verwandle. Stundenpläne etwa klären nicht, welches Fach das wichtigere ist, sondern weisen statt dessen jedem Fach eine feste Zeitspanne zu. Ein Untersuchungsausschuß kann einen Sachverhalt zwar meist auch nicht aufhellen, er macht aber deutlich: Wir nehmen uns Zeit für ein Problem. Mit Hilfe der Zeit und ihrer Messung lernen die Europäer seit dem Spätmittelalter, wie man organisiert – andere Kulturen haben ein solches Zeitgefühl nicht entwickelt.

(Autor: Hubert J. Gieß)

Biobenzin: Ist Benzin aus Biomasse eine neue spannende Perspektive?

Was ist besser: Biobenzin oder Ethanol? WISSEN DER ZUKUNFT berichtet über das Wunderwelt Wissen und eine neue Perspektive.

Hamburg (ptx) – Shell und Virent Energy Systems, Inc., (Virent) aus Madison in Wisconsin, USA, haben ein gemeinsames Forschungs- und Entwicklungsvorhaben angekündigt, das zum Ziel hat, pflanzlichen Zucker statt in Ethanol direkt in fertiges Benzin oder Benzinkomponenten umzuwandeln.
Die Zusammenarbeit hat das Potential, die Verfügbarkeit neuer Biokraftstoffe deutlich zu verbessern. Denn das neue Biobenzin kann dem herkömmlichen Ottokraftstoff in hohen Mischungsanteilen beigegeben werden. Eine spezialisierte Infrastruktur, neue Motortechnik und die erforderlichen Anlagen zur Beimischung würden dadurch überflüssig. Die Technologie der BioForming-Plattform von Virent wandelt pflanzliche Zucker mit Hilfe von Katalysatoren in Kohlenwasserstoffmoleküle um, wie sie auch in einer Erdölraffinerie erzeugt werden. Bisher wurden pflanzliche Zucker zu Ethanol fermentiert und destilliert. Die neuen “Biobenzin”-Moleküle haben einen höheren Energieinhalt als Ethanol (oder Butanol) und bieten eine bessere Kraftstoffeffizienz. Sie lassen sich zu herkömmlichem Benzin mischen, das sich nicht von Benzin auf Erdölbasis unterscheidet, oder können mit ethanolhaltigem Benzin kombiniert werden.

Zur Gewinnung der Zucker eignen sich neben Weizen, Mais und Zuckerrohr auch Reststoffe/Bioabfälle wie Maisstroh, Stroh und Zuckerrohrbagasse. Shell und Virent haben bereits ein Jahr lang gemeinsam geforscht. Mit der BioForming- Technologie wurden schnelle Fortschritte erzielt und die gesteckten Ziele für Ertrag, Produktzusammensetzung und Kosten übertroffen. In Zukunft soll vor allem die Technologie weiter verbessert und zur kommerziellen Produktion größerer Mengen tauglich gemacht werden.

“Die technischen Eigenschaften der heutigen Biokraftstoffe erschweren ihre Einführung auf breiter Front”, so Dr. Graeme Sweeney, Shell Executive Vice President Future Fuels and CO2.

“Die Autoindustrie und Kraftstoffanbieter sind zwar im Begriff, die Vertriebsinfrastruktur und die Automotoren an die heutigen Biokraftstoffe anzupassen, aber die jetzt aufkommenden neuen Kraftstoffe wie die von Virent, die dieselben Eigenschaften wie Benzin und Diesel aufweisen oder diesen sogar überlegen sind, geben eine neue Perspektive, was ich sehr spannend finde.”

Dr. Randy Cortright, Chief Technology Officer, Mitbegründer und geschäftsführender Vizepräsident von Virent: “Virent hat bewiesen, dass sich pflanzlicher Zucker in dieselben Kohlenwasserstoff-Komponenten umwandeln läßt, die in den heutigen Benzinmischungen verwendet werden. Unsere Produkte sind Benzin auf Erdölbasis in Funktionalität und Leistung ebenbürtig. Der einzigartige Katalyseprozess von Virent erzeugt Biobenzin aus unterschiedlichen Biomasse-Rohstoffen zu wettbewerbsfähigen Kosten. Die Ergebnisse, die uns heute vorliegen, rechtfertigen eine beschleunigte Kommerzialisierung dieser Technologie.”

RoboCup: Technologie-Schub durch Roboter-Fußball

Neun Ligen gibt es beim Roboter-Fußball. WISSEN DER ZUKUNFT  berichtet über  den RoboCup.

Video: RoboCup 2007

(idw). Für eine Maschine ist das Fußballspiel eine höchst komplexe Aufgabe: Die Roboter müssen Ball, Seitenauslinie und Torkasten zuverlässig erkennen und Mitspieler von Gegnern unterscheiden können. Dazu sind sie mit allerlei Hightech gespickt: Kameras und Sensoren erfassen die Umwelt, bordeigene Prozessoren verarbeiten die Daten und errechnen Spielzüge und Abwehrmaßnahmen, innovative Antriebe lassen die kickenden Automaten über das Feld sprinten und in Gegners Nähe unerwartete Haken schlagen.

Mittlerweile gibt es neun Ligen, jede mit einem eigenen technischen Schwerpunkt. In der Middle-Size-Liga bewegen sich die Automaten auf Rädern fort. Vier Spieler und ein Torwart kicken auf einem 20 mal 14 Meter großen Spielfeld auf normale Fußballtore. Sie müssen komplett autonom sein, haben Kamerasysteme mit Echtzeit-Verarbeitung an Bord und schaffen bis zu zwei Meter pro Sekunde.

Andere Kick-Maschinen wie der Roboterhund Aibo von Sony laufen auf vier mechanischen Pfoten. Seit 2005 treten beim RoboCup auch automatische Zweibeiner gegeneinander an: “Diese humanoiden Roboter machen in den letzten Jahren sehr große Fortschritte”, sagt Dr. Ansgar Bredenfeld, der am IAIS für den RoboCup zuständig ist. “Wie richtige Spieler fallen sie hin und stehen wieder auf, suchen sich selbständig den Ball und schießen Tore.”

Doch der RoboCup steht nicht nur für Roboterfußball. Seit 2006 gibt es eine Liga namens “RoboCup@Home” – ein Wettbewerb für Serviceroboter. In einem nachgebauten Zimmer müssen die Maschinen Kühlschränke ansteuern, Müll aufsammeln und Personen erkennen. Und in der “RoboCup-Rescue”-Liga werden Rettungsroboter auf einen Hindernisparcours geschickt. “Vom RoboCup geht ein enormer Technologie-Schub aus, den man anders gar nicht bewirken könnte”, sagt Prof. Dr. Stefan Wrobel, geschäftsführender Direktor des IAIS. “Viele Bauteile, die ursprünglich für den Roboterfußball entwickelt wurden, finden sich heute in anderen Anwendungen wieder, etwa bei der Lokalisierungstechnologie für Inspektionsroboter.” Auch Roboter, die automatisch den Rasen mähen oder für Meeresforscher Bodenproben nehmen, haben RoboCup-Technologie an Bord.

Mehrere Großturniere stehen in diesem Jahr an, vor allem die “RoboCup German Open”: Vom 21. bis 25. April werden über 80 Forscherteams aus mehr als 15 Ländern in Halle 25 der Hannover-Messe erwartet, um in mehreren Ligen den Stand der Entwicklung zu demonstrieren. Initiiert und ausgetragen wird das Turnier vom Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS in Sankt Augustin.