Schlagwort-Archive: Gedächtnis

Gedächtnisforschung: Hemmender Botenstoff am Lernprozess beteiligt


Honigbienen lernen sehr schnell und haben ein hervorragendes Gedächtnis. Daher sind sie als Modellorganismen für die Forschung interessant. Da die Lernprozesse beim Menschen ähnlich ablaufen, können Erkenntnisse aus der Bienenforschung übertragen werden. Wissenschaftler der Saar-Uni haben nun erstmals an Nervenzellen von Bienen experimentell belegt, dass der Neurotransmitter Gamma-Aminobuttersäure (GABA) eine bedeutende Rolle bei Lernprozessen spielt. GABA ist einer der wichtigsten hemmenden Botenstoffe im Gehirn und spielt unter anderem bei Krankheiten wie Alzheimer und Epilepsie eine Rolle. Die Studie wurde in der renommierten Fachzeitschrift „Journal of Neuroscience“ veröffentlicht.
Mit einem Gehirn kleiner als ein Stecknadelkopf und mit weniger als einer Million Nervenzellen können sich Bienen hervorragend in der Umgebung orientieren und lernen, wo für sie wichtige Futterquellen liegen. Hierbei verknüpft ihr Nervensystem spezifische Informationen wie Düfte, Farben und Landmarken mit einer Belohnung in Form von Nektar. Dies wird im Gedächtnis gespeichert, sodass die Biene die Futterstelle auch Tage später wiederfindet.
„Bei diesen Lernprozessen spielen chemische Botenstoffe eine wichtige Rolle“, sagt Uli Müller, Professor für Zoologie und Physiologie an der Universität des Saarlandes. „Diese Neurotransmitter übermitteln Informationen zwischen Nervenzellen, wobei zwischen erregenden und hemmenden Transmittern unterschieden wird.“ Ein erregender Botenstoff wie Acetylcholin (ACh) aktiviert die nächste Nervenzelle, während ein hemmender Transmitter wie GABA die Signalübermittlung herunterregelt. Kommen nun zwei Reize wenige Millisekunden hintereinander an einer Nervenzelle an, „verrechnet“ die Zelle diese miteinander. So kann das Signal bei der Verrechnung zweier Reize besonders verstärkt oder abgemildert werden, je nachdem, welche Transmitter beteiligt sind.
Kommt es bei der Reizweiterleitung zu Änderungen, sind Nervenzellen in der Lage, darauf zu reagieren – eine Eigenschaft, die Fachleute als neuronale Plastizität bezeichnen. Sie ist maßgebend für das Lernen und die Gedächtnisbildung.
„Beim Lernen spielt die zeitliche Abfolge der Informationen, also etwa die zeitliche Paarung von Duft und der anschließenden Nektarbelohnung, eine entscheidende Rolle“, so Müller weiter. „Bei bisherigen Untersuchungen von Lernprozessen stand vor allem die zeitliche Verrechnung von erregenden Neurotransmittern im Fokus. Obwohl bekannt war, dass der hemmende Neurotransmitter GABA beim Lernen eine Rolle spielt, wurde er nicht mit diesen Prozessen in Verbindung gebracht.“

Dies ist nun erstmals Müller und seinem Mitarbeiter Davide Raccuglia in ihrer aktuellen Studie gelungen. Die Biologen haben die für das Lernen bei Insekten verantwortlichen Nervenzellen, die Kenyonzellen, isoliert und die zeitliche Verrechnung bei erregenden und hemmenden Botenstoffen untersucht. Dazu haben die Forscher die Zellen von Honigbienen und Fruchtfliegen zuerst mit dem erregenden Transmitter ACh und Sekunden später mit dem hemmenden Botenstoff GABA als auch in umgekehrter Reihenfolge stimuliert. Zur Kontrolle haben sie die Versuche jeweils nur mit dem hemmenden oder dem erregenden Botenstoff durchgeführt. Anschließend haben sie gemessen, ob sich die Signalverarbeitung der Zellen verändert hat.
„Wir haben beobachtet, dass es bei der Stimulation mit beiden Transmittern im Gegensatz zu den Kontrollversuchen noch Minuten später zu Änderungen in der Signalverarbeitung der Kenyonzellen kommt“, sagt der Neurobiologe. Durch diese zeitliche Verrechnung haben die Zellen, so Müller weiter, ein „molekulares Gedächtnis“ gebildet. Dabei hänge das Ausmaß dieser Änderungen davon ab, welcher Transmitter zuerst stimuliert und wie viele Rezeptoren die Zellen für den Neurotransmitter GABA besitzen.
Folgestudien müssen jetzt klären, welche Rolle GABA-Rezeptoren bei der Signalverrechnung beim Lernen genau spielen und ob diese beispielsweise mit Krankheiten wie Alzheimer in Zusammenhang stehen. GABA ist einer der wichtigsten Botenstoffe des menschlichen Zentralnervensystems. Er wird auch mit weiteren neurologischen Krankheiten wie Epilepsie in Verbindung gebracht.
Die Studie wurde in der Fachzeitung „Journal of Neuroscience“
veröffentlicht:
„Temporal Integration of Cholinergic and GABAergic Inputs in Isolated Insect Mushroom Body Neurons Exposes Pairing-Specific Signal Processing”.  DOI: 10.1523/JNEUROSCI.0714-14.2014

Wie denkt der Mensch?

Heidelberg. Wie denkt der Mensch? Diese Frage war jahrhundertelang eine Domäne der Philosophie. Neuerdings versuchen aber auch Neurowissenschaftler und Psychologen die Sprache der Gedanken zu entschlüsseln. Ein Problem dabei: Neben logischem Schlussfolgern und Urteilen existieren noch viele andere Denkformen – sprachliche und nichtsprachliche, analytische und intuitive. Das berichtet das Magazin Gehirn und Geist ist seiner neuen Ausgabe (Heft 4/2014).

Wie Untersuchungen mittels bildgebender Verfahren offenbaren, gibt kein festes “Denkareal” im Gehirn. Vielmehr werden, je nach Art und Gegenstand der kognitiven Prozesse, verschiedene neuronale Netzwerke aktiv. Maßgeblich beteiligt ist unter anderem der präfrontale Kortex im Stirnhirn, eine Art Kontrollinstanz für das Arbeitsgedächtnis und die Handlungssteuerung.

Auffällig ist, dass beim Denken häufig auch sensorische und motorische Hirnrindengebiete aktiv werden, die ansonsten für Wahrnehmung und Bewegungssteuerung verantwortlich sind. In Experimenten von Psychologen beeinflussen entsprechend auch physische Faktoren den Ideenfluss von Probanden: Schwere Kladden laden zu “gewichtigen” Argumenten ein, ausholende Armschwünge und hohe Decken fördern kreative Ideen. Denken ist offenbar kein so abstraktes Tun zu sein, wie häufig angenommen.

Laut der jungen Theorie der Embodied Cognition handelt es sich vielmehr um ein internes Probehandeln. Das konnte auch erklären, warum “sinnliche” Begleiterscheinungen wie Gestikulieren oder die Verwendung von bildhaften Metaphern und Schemazeichnungen das Denken unterstützen.

Imagination, Urteilsvermögen und die Fähigkeit, mehrere Informationen gleichzeitig im Geist präsent zu halten, sind die wesentlichen Säulen unserer Geistesgaben. Wie diese Vorgänge neuronal genau repräsentiert sind, bleibt allerdings zu erforschen. (Quelle: Gehirn und Geist, März 2014)

Buchtipps:

 

Besondere Fähigkeiten bei Roboter gefunden: Er hat Bewusstsein

Wissenschaftler der Universität Bielefeld haben bei dem von ihnen entwickelten Roboter besondere Fähigkeiten gefunden: Diese deuten darauf hin, dass der Roboter ein Bewusstsein entwickelt hat.

Für Menschen ist es normal: Taucht ein Problem auf, denken sie über unterschiedliche mögliche Handlungsschritte nach, erproben in Gedanken deren Konsequenzen und entscheiden sich dann für eine Vorgehen. Seit Anfang 2011 arbeiten Forscher der Universität Bielefeld daran, dass auch Roboter dieses Probehandeln durchführen können.

Um ihr Ziel – einen Roboter der Probehandeln kann – zu erreichen, haben die Forscher ein reaktives System auf Insektenbasis entwickelt. Der Roboter mit Namen Hector ähnelt einer Stabheuschrecke und reagiert auf Umweltreize, er kann also zum Beispiel über einen Stein klettern, wenn dieser im Weg liegt. Das Neue an Hector: Die Forscher haben sein System um kognitive Komponenten erweitert. Der Heuschrecken-Roboter kann so beispielsweise neue Verhaltensweisen erfinden und das Probehandeln erlernen. Dieses vollzieht der Roboter dann, wenn ein Problem auftritt, das das reaktive System nicht lösen kann – dann schaltet sich Hectors kognitives System dazu, sodass der Roboter unterschiedliche Verhaltensweisen durchspielt und überlegt, welche Handlungsoptionen bestehen. Ganz nach dem Motto: Erst denken, dann handeln.

Prof. Dr. Holk Cruse (Bild), Biologe an der Universität Bielefeld, und sein Forschungspartner Malte Schilling haben entdeckt, dass Roboter ein Bewusstsein entwickeln können. Foto: Universität Bielefeld
Prof. Dr. Holk Cruse (Bild), Biologe an der Universität Bielefeld, und sein Forschungspartner Malte Schilling haben entdeckt, dass Roboter ein Bewusstsein entwickeln können.
Foto: Universität Bielefeld

„Der Bau von Roboter Hector ist noch nicht ganz abgeschlossen, aber die Simulation, das heißt sein virtuelles Gegenstück am Computer, ist zu 90 Prozent fertiggestellt“, sagt Professor Dr. Holk Cruse, einer der beteiligten Forscher. „In der Theorie sind wir uns also schon sehr sicher, dass Hector Probehandeln kann.“ Am Projektende soll auch der reale Roboter – der bislang noch nicht vollständig fertiggestellt ist – zeigen können, dass er das Probehandeln beherrscht. „Nachdem wir unser Basisziel erreicht hatten, haben wir geschaut, was der Roboter noch kann. Dabei ergab sich, dass er gewisse emergente Fähigkeiten entwickelt hat, die auf ein Bewusstsein hindeuten“, so Cruse. „Emergent sind Eigenschaften dann, wenn sie nicht in das System eingebaut wurden, schließlich aber trotzdem vorhanden sind.“

Bislang ist die Annahme verbreitet, dass derartige emergente Eigenschaften, zu denen unter anderem die Kontrolle der Aufmerksamkeit und eben auch das Bewusstsein gehören, nur in komplexen Systemen möglich sind. „Unsere Forschung zeigt, dass auch weniger komplexe Systeme höhere Fähigkeiten entwickeln können“, sagt Malte Schilling, Forschungspartner von Holk Cruse. Zu den Aspekten von Bewusstsein, die der Roboter entwickelt hat, zählen unter anderem Intentionen sowie die sogenannte globale Zugänglichkeit. Intentionen bezeichnen Zustände, bei denen das ganze Verhalten einem Ziel – beispielsweise der Futtersuche – untergeordnet ist. Mit globaler Zugänglichkeit ist gemeint, dass Gedächtniselemente zugänglich sind, auch wenn gerade etwas anderes gemacht wird. Beispielsweise ist jemand der läuft, trotzdem in der Lage nachzudenken und nebenbei noch etwas anderes zu machen. „Diese und weitere Aspekte von Bewusstsein, die wir bei Hector finden konnten, sind sozusagen Abfallprodukte der eigentlichen Forschungsarbeit – allerdings sehr interessante“, sagt Cruse. „Sie zeigen, dass wichtige Eigenschaften des Bewusstseins auch bei sehr kleinen Gehirnen, und eben auch in künstlichen Systemen, vorkommen können“, sagt Cruse. (Quelle: idw)

Buchtipps:

Funktioniert unser Langzeitgedächtnis digital?

Der Hippocampus ist eine Struktur im Gehirn, die maßgeblich dafür verantwortlich ist, dass wir uns längerfristig erinnern. Personen, deren Hippocampus zerstört ist, vergessen umgehend Situationen, die sie gerade erlebt haben, oder Mitmenschen, die sie kurz zuvor gesehen haben. „Bisher nahmen wir an, dass die Informationsspeicherung im Hippocampus von der Stärke der dortigen Nervenzellverbindungen, den Synapsen, abhängig ist“, sagt Prof. Dr. Thomas Oertner, Direktor des Instituts für Synaptische Physiologie am ZMNH. Synapsen sind die Strukturen, mit denen eine Nervenzelle in Kontakt zu einer anderen Zelle, etwa einer Sinnes-, Muskel-, Drüsen- oder Nervenzelle steht. Sie dienen der Übertragung von Informationen und spielen eine wichtige Rolle bei deren Speicherung. Für ein funktionierendes Langzeitgedächtnis, so die gängige Lehrmeinung, müssen die Zellverbindungen stark sein und unbegrenzt stabil bleiben. Dieser Prozess wird als „long-term plasticity“ bezeichnet und ist seit mehreren Jahren ein zentrales Thema der neurobiologischen Forschung.

Das Team um Prof. Oertner ist jetzt zu neuen, anderen Ergebnissen gekommen. Mit experimentellen Tricks beeinflussten sie synaptische Verbindungen so, dass diese Informations-Autobahnen quasi in Tempo 30-Zonen umgewandelt wurden. „Wir haben die Stärke der Synapsen drastisch reduziert und die Zellverbindungen dann weiter beobachtet“, erläutert Prof. Oertner. Das Ergebnis nach sieben Tagen war verblüffend. „50 Prozent der manipulierten Synapsen lösten sich auf, die anderen 50 Prozent kehrten in den Ausgangszustand zurück“, sagt Dr. Simon Wiegert aus dem ZMNH, Erstautor der jetzt veröffentlichten Studie. „Eine stabile Langzeitveränderung der Synapsen gibt es offenbar nicht. Demnach muss das Langzeitgedächtnis auch anders als bislang angenommen funktionieren.“

Die Studie legt den Wissenschaftlern zufolge den Schluss nahe, dass das Gehirn ähnliche Strategien wie ein digitaler Computer verwendet, um Informationen über lange Zeiträume zu speichern. Dabei speichert der Hippocampus zunächst Information in „analoger“ Form, indem die Stärke der Synapsen verändert wird. Doch dieser Zustand ist instabil. Nach wenigen Tagen wird diese analoge Speicherung durch eine „digitale“ Form der Speicherung ersetzt – einige Synapsen fallen aus, andere kehren in den Ausgangszustand zurück. „Digitale Speicherung ist wesentlich weniger anfällig für langsamen Zerfall. Das könnte erklären, wieso wir uns an Schlüsselerlebnisse aus Kindheit und Jugend bis ins hohe Altern erinnern“, so Dr. Wiegert.

Für ihre Arbeit nutzen die Grundlagenforscher ein sogenanntes Zwei-Photonen-Mikroskop, um funktionelle Messungen an einzelnen Synapsen in intaktem Gewebe durchzuführen. Diese neue Technik erlaubt es den UKE-Wissenschaftlern erstmals, Nervenzellen im Labor über mehrere Tage hinweg kontinuierlich bei der Arbeit zu beobachten. (Quelle: idw)

Literatur:
J. Simon Wiegert and Thomas G. Oertner: Long-term depression triggers the selective elimination of weakly integrated synapses. PNAS 2013 ; published ahead of print November 4, 2013.

J. Simon Wiegert and Thomas G. Oertner (2011) Dendritische Spines: Dynamische Bausteine des Gedächtnisses. Neuroforum 1/11: 12-20.

Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Frühreife Wunderkinder

Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war
Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war

Frühreife ist weniger selten, als man im allgemeinen anzunehmen geneigt ist. Erst die Besonderheit des Falls entscheidet über die Zugehörigkeit zum Wunder.

Ein höchst erstaunliches Phänomen früh erwachter Fähigkeiten war das Lübecker Wunderkind Christian Heinrich Heineken, das am 6. Februar 1721 geboren wurde. Schon als es zehn Monate zählte, kannte das Kind alle Gegenstände seiner Umgebung und wusste sie zu benennen. Es begann unter Anleitung seines Lehrers im fünfzehnten Monat das Studium der Weltgeschichte. Noch vor dem vollendeten dritten Lebensjahr kannte das Kind die dänische Geschichte, lernte bald darauf auch lateinisch und französisch sprechen, starb aber schon im fünften Lebensjahr. Frühreife Wunderkinder weiterlesen

Neue Methoden zum Nachweis von Bewusstsein


Neue Tests helfen festzustellen, wie viel Patienten im Wachkoma von ihrer Umgebung wahrnehmen.

Neuropsychologen der Universitäten Tübingen und Heidelberg haben eine Serie neuer Tests entwickelt, mit denen sich genauer untersuchen lässt, ob Wachkomapatienten bei Bewusstsein sind. Darüber berichten die Forscher Boris Kotchoubey und Simone Lang in der Ausgabe des Magazins Gehirn&Geist (9/2011).

Wachkoma, Schmerz und Empathie
Im Gegensatz zu bisherigen Verfahren lassen sich mit der neuen Methode auch grundlegende Aspekte des Bewusstseins prüfen, beispielsweise Schmerzempfinden oder ein intaktes Arbeitsgedächtnis. Schon 2009 stellte der britische Neurologe Adrian Owen eine Methode vor, mit der er nachgewiesen hatte, dass eine junge Komapatientin bei Bewusstsein war. Die Frau erhielt im Hirnscanner liegend über Kopfhörer Anweisungen vom Forscher. Anhand der Hirnaktivität konnte Owen erkennen, dass die Betroffene ihn verstanden hatte.

Dieses Verfahren setzt jedoch voraus, dass die Patienten noch in der Lage sind, Sprache zu verstehen. Bewusstsein sei jedoch auch ohne Sprache denkbar, kritisieren Kotchoubey und Lang in Gehirn&Geist. Ihre einfacheren Tests zielen daher auf den Nachweis von Schmerzempfinden oder Gedächtnisleistungen. Insbesondere die Frage, ob die Betroffenen in der Lage sind, Schmerzen zu verspüren, sei von großer Bedeutung. Denn oftmals debattierten Angehörige und Ärzte darüber, ob sie die lebenserhaltenden Maßnahmen abschalten sollten.

Im Wachkoma, auch vegetativer Zustand genannt, haben die Betroffenen zwar meistens die Augen geöffnet, zeigen aber keine äußeren Anzeichen von Bewusstsein. Ursachen sind meist schwere Hirnschäden, die durch Unfälle, Sauerstoffmangel (etwa nach einem Herzstillstand) oder durch Schlaganfälle entstehen können. (Quelle: Gehirn&Geist, September 2011)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Wissenschaftliches Rätsel: Phänomenale Gedächtnisleistungen von Inselbegabten

Video: Gedaechtnis Giganten

»Solange wir das Savant-Syndrom nicht erklären können, können wir uns selbst nicht erklären«, meint Professor Darold Treffert, Chef der psychiatrischen Abteilung am St. Agnes Hospital in Fond du Lac (Wisconsin). Er ist seit mehr als 40 Jahren damit beschäftigt, inselbegabte Menschen, wie die Savants auch genannt werden, zu untersuchen. Inselbegabte sind oft behindert und hilfsbedürftig, verblüffen aber mit einem unglaublichen Gedächtnis, phänomenalen Rechenleistungen oder genialen künstlerischen Werken. Erklärungsversuche für Inselbegabung und Bewusstsein gibt es, aber können sie auch überzeugen?

Einer der alle anderen Inselbegabten übertrifft, ist Kim Peek. Schätzungsweise zwei Millionen Menschen haben ihn bei seinen öffentlichen Auftritten an Universitäten bestaunt. Kim hat sich den Inhalt von 7600 Sachbüchern Wort für Wort gemerkt. Dazu kennt er Detailinformationen ganzer Regionen: alle Städte, alle Straßen, alle Fahrpläne, dazu jeden Namen mit Adresse und Telefonnummer aus allen Telefonbüchern, die ihm jemals in die Hände gekommen sind. Nur mit Romanen fängt er nichts an. Dagegen ist für ihn die Wiedergabe der Baseball-Ergebnisse der letzten 40 Jahre und der Daten der meisten klassischen Musikstücke, wie Erstaufführung, Komponist oder Geburtsort des Komponisten eine leichte Übung. Aber wenn Kim sich selbst anziehen soll oder die Schuhe zubinden, dann scheitert er.

Kims Kopf ist von Geburt um ein Drittel größer, als der normaler Menschen. Eine enzephalografische Untersuchung zeigt aber in der Mitte seines Gehirns eine gähnende Leere. Ihm fehlt die Verbindung beider Hirnhälften und sein Kleinhirn ist verkümmert. Dagegen ist seine Leistung beim »Scannen« von Büchern, wie er es nennt, mehr als olympiareif. Er zieht beispielsweise die Telefonbücher ganz nah an seinen Augen vorbei. Die linke Seite am linken, die rechte am rechten Auge. So schafft er es, acht Seiten in 53 Sekunden zu scannen. Das sind weniger als 7 Sekunden pro Seite und ist damit schneller als der Scanner am heimischen PC. Wenn man glaubt, so schnell kann sich kein Mensch den Seiteninhalt merken, täuscht man sich. Kim kann es und er vergisst fast nichts.

»Kein Modell über Gehirnfunktionen ist komplett, bevor es nicht Kim mit einbezieht«, sagt Professor Treffert. Aber wie kann man die Leistungen der Inselbegabten erklären? Der Prozess der Signalübertragung im Gehirn funktioniert mithilfe von Nervenzellen. Diese nutzen eine Kombination aus elektrischen und chemischen Signalen, um miteinander zu kommunizieren. Wenn eine Zelle ihre elektrische Spannung ändert, führt das zur Freisetzung chemischer Botenstoffe. Diese wirken auf die nachfolgende Zelle ein. Daraufhin reagiert die nachfolgende Zelle ebenfalls mit einer Spannungsänderung und Freisetzung von Botenstoffen. Durch die Nutzung der chemischen Botenstoffe ist das ein schneckengleicher Prozess und nicht zu vergleichen mit der Hochgeschwindigkeit der Prozessoren heutiger Heimcomputer.

Den meisten Inselbegabten scheint eine gewisse Schädigung der linken Gehirnhälfte gemeinsam zu sein. Möglicherweise gibt es deshalb eine Überkompensation durch die rechte Gehirnhälfte, die für künstlerische, visuelle Fähigkeiten und konkrete Fakten zuständig ist. Was eine Überkompensation aber nicht zu erklären vermag, ist die hohe Geschwindigkeit der Gedächtnisleistungen eines Kim Peek. Und wenn man schon eine vollständige Erklärung für die Gehirnfunktion haben will, dann kann man das Bewusstsein nicht außen vor lassen. Denn eines scheint sicher: Ohne Bewusstsein wäre keine der Geistesleistungen der Inselbegabten möglich.

Als interdisziplinäre Arbeitsrichtung von Biologie und der Physik gehört es zum Aufgabenbereich der Quantenbiologie, geeignete quantenmechanische Erklärungsmodelle für die Gehirnfunktionen und Bewusstsein zu finden. Zu den bisherigen Erfolgen der Quantenbiologie zählt die Erklärung des Sehprozesses. Danach ist Sehen ein rein quantenmechanischer Prozess. Die Lichtteilchen (Photonen), die ins Auge fallen, werden von den zahlreichen Elektronen innerhalb der Netzhaut absorbiert. Das löst eine biochemische Kettenreaktion aus, die am Ende zu einem elektrischen Signal führt, welches im Gehirn weiterverarbeitet wird.

Was für die Erklärung des Sehprozesses vollbracht wurde, ist für die Beschreibung der Gehirnfunktion erst ansatzweise in Sicht. Zu sehr haben sich klassische Erklärungsmodelle ohne Quantenmechanik in den Köpfen der Forscher festgesetzt, als dass von heute auf morgen eine Änderung möglich wäre. Lieber werden unerklärliche Messwerte als sogenannte Messfehler in Kauf genommen, als dass vom klassischen Modell abgewichen wird. Ein Beispiel für eine klassische, aber falsche Erklärung ist das, was in dtv-Lexikon der Physik aus dem Jahre 1970 über die Elektrolyse (z. B. Wasserspaltung) steht: » […] Die Stromleitung innerhalb des Elektrolyten besteht in der Wanderung der positiven und negativen Ionen, die unter dem Einfluss des elektrischen Feldes zu den Elektroden gelangen […]«

Wenn alle Ionen, d. h. also elektrisch geladene Atome oder Moleküle sich tatsächlich einen Weg durch den flüssigen Elektrolyten bahnen müssten, wäre die hohe Effizienz des Vorgangs nicht zu erklären. Zumindest bei der Wasserspaltung stimmt die klassische Erklärung nicht, wie Jan Sperling in seiner Dissertation 1999 an der Freien Universität Berlin nachwies: »Es besteht keine Möglichkeit, die anomalen Abweichungen der Messwerte […] klassisch widerspruchslos zu erklären. Dagegen ist, unter Einbeziehung von Quantenkorrelation […] ein direkter Zusammenhang […] ableitbar.«

Ist aber die Quantenmechanik und Quantenbiologie einschließlich ihrer unerklärlichen ‘spukhaften Fernwirkung’, wie Albert Einstein die Quantenkorrelation bezeichnete, tatsächlich die letzte Erklärungsebene für Gehirnfunktionen und Bewusstsein, so wie im 19. Jahrhundert die angeblich unteilbaren Atome eine letzte Erklärungsebene für die physikalische Welt waren? Quantenmechanik ist in Wirklichkeit nur ein abstrakter mathematischer Formalismus, wenn auch dessen Vorhersagen beeindruckend gut bestätigt werden. Aber möchte man einem Formalismus tatsächlich den Status der letzten physikalischen Erklärungsebene zugestehen? Der Autor und Verfasser des Sachbuchs Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen beantwortet die Frage, indem er eine weitere Erklärungsebene hinzufügt. Für ihn sind es Bewusstseinseinheiten, welche die letzte physikalische Erklärungsebene darstellen: »Bewusstsein ist der fundamentale Baustein von allem was existiert«. Auf der Basis dieser Bewusstseinseinheiten beschreibt er das ‘wahre Gesicht der Wirklichkeit’. So kommt man zu dem Schluss, dass die Quantenbiologie zwar die richtige wissenschaftliche Disziplin ist, um ein komplettes Modell der Gehirnfunktionen und des Bewusstseins zu liefern, dass dieses Modell aber noch einer weiteren physikalischen Erklärungsebene bedarf, wenn man sich nicht mit einem rein mathematischen Formalismus als Erklärung zufriedengeben möchte.