Schlagwort-Archive: Gewebe

Intelligente Roboter: Horror oder Segen?

Heidelberg. Roboter – das sind doch diese geschwätzigen, blinkenden Blechdosen? Oder tumbe Maschinenmenschen, die nichts können, als mit sehr eckigen Bewegungen dem in sie einprogrammierten Killerbefehl zu folgen? Oder – außerhalb des Kinos – diese überaus beweglichen Geräte, die in der Autoproduktion schwere Arbeiten mit größter Präzision verrichten, aber statt eines Kotflügels mit Gleichmut auch einen Menschen lackieren oder anschweißen würden, der ihnen versehentlich in die Finger gerät?

Alles falsch. Die modernen Roboter sind überaus feinfühlig und krümmen niemandem ein Haar, es sei denn, das wäre ihre Aufgabe; denn sie haben einen perfekten Überblick über ihre Umgebung. So beschreibt es Gerd Hirzinger in einem umfangreichen Artikel in “Spektrum der Wissenschaft” – und er muss es wissen: Hirzinger war 20 Jahre lang Chef des Instituts für Robotik und Mechatronik in Oberpfaffenhofen, das seinerseits zum Deutschen Zentrum für Luft- und Raumfahrt (DLR) gehört.

Aus seinem Institut stammen so erstaunliche Entwicklungen wie das System MiroSurge, das in der minimal-invasiven Chirurgie die Instrumente präziser und zitterfreier führt, als der Arzt selbst es könnte. Der wiederum bewegt anstelle der Instrumente Handgriffe zur Fernsteuerung – aber die lassen ihn den Widerstand spüren, den das Gewebe auf die echten Instrumente ausübt. Zugleich sieht er auf dem großen Bildschirm, was die Mikrokamera vom Operationsfeld zeigt, und wird damit eingebettet in eine virtuelle Realität, in der er besser sehen und arbeiten kann als in der echten.

Die Roboter aus Hirzingers Werkstatt haben einen menschenähnlichen Oberkörper, und die neuesten Modelle können sogar auf zwei Beinen laufen. Wichtiger noch: Alle ihre “Muskeln” und “Gelenke” sind drehmomentgesteuert. Jede Bewegung wird wie beim Menschen von einem Paar antagonistischer (gegeneinander arbeitender) Muskeln ausgeführt und zugleich die dabei ausgeübte Kraft – genauer: das Drehmoment – gemessen. Dadurch kann der Roboter seine Kräfte so präzise dosieren, dass er ein rohes Ei oder eine gefüllte Kaffeetasse heil von A nach B bringt; und er lässt sich von einem erfahrenen Menschen die Hände führen und lernt dadurch diese Bewegung.

In der Autofabrik muss man ihn nicht mehr in den früher üblichen Käfig stecken; denn aus den beiden Digitalkameras in seinen “Augen” errechnet er in Echtzeit ein räumliches Bild seiner Umgebung und vermeidet mit dessen Hilfe jede Kollision.

Dieselbe Technik verhilft auch einem Elektroauto namens “ROboMObil”, sich ohne Fahrer unfallfrei durch den Verkehr zu bewegen; diesmal mit 18 rundum verteilten Kameras. Und von dort bis zum autonomen unbemannten Fluggerät – Flugzeug, Hubschrauber oder “Quadrocopter” (Rahmen mit vier Propellern) – ist es nicht mehr weit. Ein unter dem Hubschrauber montierter Greifarm liefert Lebensmittel und Verbandszeug an in Not geratene Bergsteiger oder repariert sogar eine Hochspannungsleitung.

Natürlich haben die Robotiker vom DLR derart komplexe Systeme nicht von Grund auf neu entworfen. Es gab einfachere Vorläufer, und deren Arbeitsplatz war – der Weltraum. Dringender als auf der Erde ist dort der Bedarf nach einem “Monteur”, der nicht essen oder atmen muss und dem extreme Hitze oder Kälte nicht viel ausmacht. Aber einigermaßen selbstständig arbeiten muss er schon können, vor allem auf dem Mars. Wenn ein Funksignal hin und zurück eine Viertelstunde unterwegs ist, würde eine Fernsteuerung von der Erde aus eine sehr zähe Veranstaltung.

Für den Einsatz im Weltraum haben die Techniker gelernt, jedes Gramm Gewicht einzusparen – die Kosten für den Transport per Rakete sind immens. Diese Erfahrungen machen sich nun auf der Erde bezahlt. Je leichter der Arm ist, desto eleganter kann der Roboter ihn schwingen. “Aber die Roboter nehmen uns doch die Arbeitsplätze weg!”
Gegen diesen häufig geäußerten Einwand weiß Hirzinger ein schlichtes Gegenargument anzuführen: Der Automobilindustrie, die massiv die mechanischen Helfer einsetzt, geht es hierzulande noch ganz gut, während die Unterhaltungselektronik-Industrie, die solches nie ernsthaft versucht hat, inzwischen fast vollständig nach Fernost abgewandert ist.

Und die Horrorszenarien aus der Science-Fiction, in denen die Roboter dank ihrer überlegenen Körperkraft und Intelligenz die Weltherrschaft übernehmen? Die sind so weit entfernt, dass es darüber nicht nachzudenken lohnt. Oft genügt ein geringfügiger Wechsel der Umgebungsbeleuchtung, um einen Roboter aus dem Konzept zu bringen. (Quelle: Spektrum der Wissenschaft, Oktober 2013)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Funktioniert unser Langzeitgedächtnis digital?

Der Hippocampus ist eine Struktur im Gehirn, die maßgeblich dafür verantwortlich ist, dass wir uns längerfristig erinnern. Personen, deren Hippocampus zerstört ist, vergessen umgehend Situationen, die sie gerade erlebt haben, oder Mitmenschen, die sie kurz zuvor gesehen haben. „Bisher nahmen wir an, dass die Informationsspeicherung im Hippocampus von der Stärke der dortigen Nervenzellverbindungen, den Synapsen, abhängig ist“, sagt Prof. Dr. Thomas Oertner, Direktor des Instituts für Synaptische Physiologie am ZMNH. Synapsen sind die Strukturen, mit denen eine Nervenzelle in Kontakt zu einer anderen Zelle, etwa einer Sinnes-, Muskel-, Drüsen- oder Nervenzelle steht. Sie dienen der Übertragung von Informationen und spielen eine wichtige Rolle bei deren Speicherung. Für ein funktionierendes Langzeitgedächtnis, so die gängige Lehrmeinung, müssen die Zellverbindungen stark sein und unbegrenzt stabil bleiben. Dieser Prozess wird als „long-term plasticity“ bezeichnet und ist seit mehreren Jahren ein zentrales Thema der neurobiologischen Forschung.

Das Team um Prof. Oertner ist jetzt zu neuen, anderen Ergebnissen gekommen. Mit experimentellen Tricks beeinflussten sie synaptische Verbindungen so, dass diese Informations-Autobahnen quasi in Tempo 30-Zonen umgewandelt wurden. „Wir haben die Stärke der Synapsen drastisch reduziert und die Zellverbindungen dann weiter beobachtet“, erläutert Prof. Oertner. Das Ergebnis nach sieben Tagen war verblüffend. „50 Prozent der manipulierten Synapsen lösten sich auf, die anderen 50 Prozent kehrten in den Ausgangszustand zurück“, sagt Dr. Simon Wiegert aus dem ZMNH, Erstautor der jetzt veröffentlichten Studie. „Eine stabile Langzeitveränderung der Synapsen gibt es offenbar nicht. Demnach muss das Langzeitgedächtnis auch anders als bislang angenommen funktionieren.“

Die Studie legt den Wissenschaftlern zufolge den Schluss nahe, dass das Gehirn ähnliche Strategien wie ein digitaler Computer verwendet, um Informationen über lange Zeiträume zu speichern. Dabei speichert der Hippocampus zunächst Information in „analoger“ Form, indem die Stärke der Synapsen verändert wird. Doch dieser Zustand ist instabil. Nach wenigen Tagen wird diese analoge Speicherung durch eine „digitale“ Form der Speicherung ersetzt – einige Synapsen fallen aus, andere kehren in den Ausgangszustand zurück. „Digitale Speicherung ist wesentlich weniger anfällig für langsamen Zerfall. Das könnte erklären, wieso wir uns an Schlüsselerlebnisse aus Kindheit und Jugend bis ins hohe Altern erinnern“, so Dr. Wiegert.

Für ihre Arbeit nutzen die Grundlagenforscher ein sogenanntes Zwei-Photonen-Mikroskop, um funktionelle Messungen an einzelnen Synapsen in intaktem Gewebe durchzuführen. Diese neue Technik erlaubt es den UKE-Wissenschaftlern erstmals, Nervenzellen im Labor über mehrere Tage hinweg kontinuierlich bei der Arbeit zu beobachten. (Quelle: idw)

Literatur:
J. Simon Wiegert and Thomas G. Oertner: Long-term depression triggers the selective elimination of weakly integrated synapses. PNAS 2013 ; published ahead of print November 4, 2013.

J. Simon Wiegert and Thomas G. Oertner (2011) Dendritische Spines: Dynamische Bausteine des Gedächtnisses. Neuroforum 1/11: 12-20.

Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Nachwachsende Gliedmaßen – neue Perspektiven der regenerativen Medizin

Regeneriertes Glied des Axolotl mit GFP (green fluorescent protein) angefärbten Schwann Zellen, die sich um die Nervenzellen wickeln. Nur Zellen um die Nervenfasern herum sind grün. Dr. Martin Kragl

Dresdner Wissenschaftler eröffnen mit ihrer Studie zur Regeneration von Gliedmaßen beim Salamander Axolotl völlig neue Perspektiven für die Regenerative Medizin: wachsen Gliedmaßen nach, entwickeln sich diese nicht aus pluripotenten Alleskönnern, sondern aus Zellen, die – ähnlich wie beim Säugetier – in ihrer Entwicklungsfähigkeit eingeschränkt sind.

Der mexikanische Schwanzlurch Axolotl (Ambystoma mexicanum) hat eine erstaunliche Fähigkeit, die uns Menschen verloren gegangen ist: ihm wachsen Gliedmaßen, Organe und sogar Teile des Gehirns vollständig und funktionstüchtig nach. Bisher wurde angenommen, dass sich während der Regeneration Gewebe von Gliedmaßen in Alleskönner-Zellen zurückentwickeln und aus diesen sich dann alle Zellen neu bilden. In ihrer Studie, die in der Ausgabe [Juli 2009] von Nature erscheint, rollte Prof. Dr. Elly Tanaka vom DFGForschungszentrum für Regenerative Therapien Dresden (CRTD) die Frage nach der Entwicklungsfähigkeit der Zellen neu auf.

Das Ergebnis der Untersuchungen bricht mit den bisherigen Vorstellungen von Regeneration.

Prof. Tanaka erklärt: “Die Zellen entwickeln sich nicht in ein pluripotentes Stadium zurück und behalten eine starke Erinnerung an ihre Herkunft.” Im Detail zeigen die Ergebnisse: Hautgewebe produziert bei der Regeneration zwar Knorpel und Sehnen, aber keine Muskelzellen oder Schwann-Zellen. Knorpel bildet kein Muskelgewebe, sondern meistens wieder Knorpel. Muskel hingegen entwickelt kein Knorpel- oder Epidermisgewebe sondern beschränkt sich hauptsächlich oder exklusiv auf die Bildung von Muskel. Die meisten Zellen sind somit auf ihre eigene Gewebeidentität beschränkt, wobei das Hautgewebe das flexibelste von allen ist.

Für sich regenerierendes Gewebe ist es essentiell zu wissen, an welche Position in den Gliedmaßen die einzelnen Zellen gehören. In der vorliegenden Studie wurde auch untersucht, ob Blastema-Zellen [Vorläuferzellen] von verschiedenen Geweben dieselben molekularen und zellulären Eigenschaften bezüglich dieser Positions-Identität besitzen. “Wir haben auch hier Erstaunliches gefunden”, so Tanaka. “Die Positions-Identität ist ein spezifisches Merkmal von Zelltypen des Blastemas. Blastema-Zellen, die aus dem Knorpel abgeleitet werden, behalten Ihre Positions-Identität, wissen also genau wohin sie im neuen Glied gehören. Hingegen Zellen, die aus Schwanz-Zellen entstehen, behalten diese Identität nicht.”

Die Ergebnisse dieser Studie haben wichtige Auswirkungen auf die zukünftige Forschung im Bereich der regenerativen Medizin. Durch die Ergebnisse von Frau Prof. Tanaka wird klar, dass das komplexe Phänomen der Regeneration ohne komplette Zurückentwicklung der Zellen in ein pluripotentes Stadium erreicht werden kann. Somit sind viele Unklarheiten bezüglich der Entwicklungsfähigkeit von Zellen gelöst.

Warum ist das Ergebnis in Hinblick auf regenerative Therapien so wichtig? “

Zum ersten Mal wurde festgestellt, dass sich die Zellen im Regenerationswunder Axolotl wie Zellen in Säugetieren verhalten und nicht so verschieden von unseren sind”, so Elly Tanaka. “Dennoch bilden die Zellen beim Salamander ein vollständiges Glied, d.h. dass die Zellen eine Art Reprogrammierung durchlaufen müssen, selbst wenn sie nicht in das früheste pluripotente Stadium zurück kehren.” In weiteren Studien wird sich Prof. Tanaka mit verschiedenen Genen beschäftigen, die für die Regeneration wichtig sind.
Quelle: idw , Bild:
Regeneriertes Glied des Axolotl mit GFP (green fluorescent protein) angefärbten Schwann Zellen, die sich um die Nervenzellen wickeln. Nur Zellen um die Nervenfasern herum sind grün.Dr. Martin Kragl

Wachsen uns verlorene Gliedmaßen bald nach?

Zebrafisch Foto: PD

Den molekularen Geheimnissen der Regeneration etwas mehr auf die Spur gekommen sind jetzt Forscher am DFG-Forschungszentrum für Regenerative Therapien Dresden (CRTD) und am Max-Planck-Institut für Entwicklungsbiologie in Tübingen. In der Fachzeitschrift Developmental Biology beschreiben sie die neu entdeckte Funktion des Zebrafisch-Gens fam53b/simplet (smp) in Bezug auf den Regenerationsprozess von Geweben. Das ist die Voraussetzung dafür, zu verstehen, wie sich Körpergewebe nach Verlust wieder neu bildet.

Während der Neubildung von Schwanzflossen beim Zebrafisch reguliert smp zum einen die Vermehrung von Zellen und zum anderen die Aktivierung von Genen. In vorangegangenen Studien ist bereits die Rolle von smp im Prozess der Zellvermehrung identifiziert worden. In der nun vorliegenden Studie haben die Dresdner und Tübinger Forscher erkannt, dass smp während der frühen Regeneration der Schwanzflosse und des Herzens aktiv wird und die Struktur (Patterning) des neu entstehenden Gewebes maßgeblich beeinflusst. “Die starke Vermehrung von Zellen und die Regulierung von Genen nach dem Verlust von Körperteilen ist Teil des natürlichen Regenerationsprozesses bei Organismen, die die Fähigkeit besitzen, ganze Körperteile wiederherzustellen”, so Christopher Antos. “Der Zebrafisch kann verschiedene Gewebe, wie beispielsweise Flossen und Herz nach Teilverlust vollständig regenerieren.” Dabei spielt smp eine wichtige Rolle: “Im Zebrafisch wird smp bei der Neubildung der Flossen und des Herzens ‘angeschaltet’. Allerdings wird durch die Unterdrückung dieses Gens der Regenerationsprozess verhindert”, so Antos.

In dieser Studie haben die Forscher auch zeigen können, dass smp zwei Gene (msxb und shh) kontrolliert, die während der Regeneration wichtig sind. So beeinflusst smp die Aktivierung dieser Gene beim Nachwachsen von Schwanzflossen des Zebrafisches. “Herausgefunden haben wir diesen Zusammenhang, indem wir smp in einem Versuch ‘ausgeschaltet’ haben. Danach wurden die Gene shh und msx vermehrt gebildet”, erklärt Dr. Antos. Da nicht nur die reine Menge von neuen Zellen bei der Wiederherstellung von Gewebe wichtig ist, untersuchten die Wissenschaftler auch die Aufgabe des Gens smp bei der Strukturbildung von neuen Körperteilen. Manche Fische mit verminderter Menge an smp bilden mehr Knochen während der Regeneration der Schwanzflosse, allerdings am falschen Ort. “Demnach ist smp sehr wichtig, um Körperteile nach Verlust wieder fehlerfrei nachwachsen zu lassen”, fasst Antos zusammen.

Lässt diese Entdeckung auch Rückschlüsse auf den Menschen zu? Es gibt in der Tat ein menschliches Gen, das dem Zebrafisch Gen smp sehr ähnlich ist. “Das Potential dieses Genes bei der Neubildung von menschlichen Geweben ist bis jetzt nicht erforscht”, sagt Christopher Antos. Durch die Identifikation weiterer molekularer Zusammenhänge bei der Regenerierung sind therapeutische Ansätze für die Neubildung von menschlichem Gewebe zukünftig durchaus denkbar.  (Quelle: idw)

Ethisch korrekte Stammzellen jetzt aus Hodengewebe?

Video: Ausschnitt aus einer Patientendokumentation zur Stammzellentherapie. Aufgenommen im XCell-Center.

Ethisch unproblematischer Weg zu individueller Zelltherapie – Veröffentlichung in “Nature”

Stammzellen aus Embryonen können sich noch in alle Gewebe eines Lebewesens zur Bildung von Herz, Leber, Blut, Gehirn und Haut differenzieren – schließlich entsteht der ganze Organismus aus einer befruchteten Eizelle. Will man die aus dem Embryo gewonnenen Stammzellen vom Menschen in der Forschung oder zur Entwicklung von medizinischen Therapien nutzen, stellen sich viele ethische Probleme. Denn bei der Gewinnung der Stammzellen stirbt der Embryo ab. Wissenschaftler suchen daher nach anderen Alternativen zur Herstellung von Stammzellen: Auch im Körper von Erwachsenen bleiben lange oder sogar lebenslang hochflexible Zellen erhalten, damit sich bestimmte Gewebe auch in höherem Alter erneuern können. Solche Zellen, die man ohne größere Verletzungen aus dem Körper von Erwachsenen gewinnen kann, wollen Wissenschaftler als sogenannte adulte Stammzellen nutzbar machen. Nun ist es Forschern der Universität und des Universitätsklinikums Tübingen unter der Leitung von Prof. Thomas Skutella und seinem Team der Abteilung für experimentelle Embryologie gelungen, stabile Stammzellen aus Spermatogonien des menschlichen Hodengewebes von Erwachsenen zu generieren und in Zusammenarbeit mit Prof. Arnulf Stenzl und einer ganzen Reihe von Wissenschaftlern der Universität Tübingen und mit Kölner und Londoner Forschern im Vergleich zu humanen embryonalen Stammzellen zu charakterisieren. Die menschlichen adulten Stammzellen verhielten sich in Tests fast genauso wie die embryonalen Stammzellen und ließen sich in alle drei Keimblätter der Körpergewebe differenzieren. Nach Einschätzung der Wissenschaftler eröffnet ihre Methode der Gewinnung von adulten Stammzellen in Zukunft eventuell einen einfachen und ethisch unumstrittenen Weg zu individuellen Zelltherapien.

Die Zellen aus dem Hodengewebe, an denen die Wissenschaftler geforscht haben, wurden durch eine routinemäßige Gewebeentnahme bei erwachsenen Männern gewonnen. Diese Zellen stellen unter normalen Bedingungen Spermatozyten, und später die Spermien her. Die Wissenschaftler haben das Gewebe einer besonderen Selektionsmethode unterzogen, um die flexiblen, spermienbildenden Zellen gezielt aus dem restlichen Körpergewebe zu isolieren. Dann entwickelten sie optimale Kulturbedingungen, unter denen die Zellen nicht ihr gewohntes Programm zur Bildung von Spermien durchlaufen, sondern eine weit größere Umprogrammierung vornehmen. Außerdem musste sichergestellt werden, dass sich die Zellen mit den wertvollen Stammzelleigenschaften gut vermehren und stabile Zellkulturen bilden konnten. Dabei muss zum Beispiel erprobt werden, welche Wachstumsfaktoren in welcher Menge benötigt werden.

Unter den Versuchsbedingungen im Labor erwiesen sich die aus Hodengewebe gewonnenen adulten Stammzellen als fast genauso vielseitig wie embryonale Stammzellen und konnten ganz unterschiedliche Zell- und Gewebetypen bilden. Getestet wurde die Methode an insgesamt 22 Hodengewebeproben von verschiedenen Männern. Die Wissenschaftler gehen davon aus, dass sich die einzelnen Schritte ihrer Vorgehensweise weiter optimieren lassen. Doch der Aufwand könnte sich lohnen, denn die adulten menschlichen Stammzellen haben gegenüber den embryonalen Stammzellen einige bestechende Vorteile: Zum einen sind sie wegen ihrer unkomplizierten Gewinnung ethisch nicht umstritten. Zum anderen könnte man sie für die Behandlung von Krankheiten für jeden Patienten individuell mit dem eigenen Erbgut und hundertprozentig passenden Gewebemerkmalen herstellen. Dadurch werden sie vom Immunsystem nicht abgestoßen. Eine ähnliche pluripotente Stammzellquelle ist bei Frauen bisher nicht entdeckt worden. Bis Stammzellen tatsächlich zur Therapie von Erkrankungen eingesetzt werden können, ist es noch ein weiter Weg. Doch ein wichtiger Schritt dorthin könnte mit den neuen Forschungsergebnissen erreicht sein.

Quelle: idw/Veröffentlichung: Conrad et al., “Generation of pluripotent stem cells from adult human testis”, Nature, Online-Vorabveröffentlichung

Ist das Wundertier Axolotl die Lösung für nachwachsende Organe?

Wissen Sie ob nachwachsende Organe und Gliedmaßen möglich sind? Hier jetzt der Bericht!

Der Axolotl, ein mexikanischer Schwanzlurch, ist ein Wundertier. Er verfügt über die erstaunliche Fähigkeit, Gliedmaßen, Organe und sogar Teile des Gehirn vollständig zu regenerieren. Schwanz oder Beine wachsen dem Axolotl innerhalb weniger Tagen wieder nach, einschließlich Nerven, Muskulatur und Blutgefäßen. Die Regenerate sind in der Regel keine Verkrüppelungen, sondern vollständig und funktionstüchtig. Wenn Wissenschaftler erkennen könnten, welcher Wirkungsmechanismus dahinter steckt, könnte das jedes Jahr tausende von Leben retten.

Ca. 3500 Nieren, Lebern und Herzen werden in Deutschland pro Jahr transplantiert. Der Bedarf ist ungleich größer. Jeder dritte Aspirant stirbt im Verlaufe der Wartezeit, weil sein eigenes Organ endgültig den Dienst versagt hat. Jedoch nicht nur an diesen Organen besteht ein Mangel, auch Gewebe wie Haut, Knochen und Knorpel fehlen beispielsweise zur Behandlung von Verbrennungsopfern und Schwerverletzten.

Forscherinnen und Forscher haben es sich zum Ziel gesetzt, diesen Mangel zu beheben und für Ersatz aus dem Labor zu sorgen. Mit modernsten biotechnologischen Methoden wollen sie Körperzellen vermehren – in der Regel die des späteren Empfängers – und daraus im Labor Gewebe und Organe entstehen lassen. “Tissue Engineering” nennt man das Verfahren in der Fachsprache. Diese Vision ist in ersten Ansätzen schon Realität. So können unter bestimmten Voraussetzungen Knorpeldefekte und chronische Wunden mit körpereigenem Ersatzgewebe versorgt werden. Leberfunktionsverluste werden durch biohybride Ersatzorgane (biologische Zellen in Verbindung mit technischen Materialien), die noch außerhalb des Körpers funktionieren, ausgeglichen, bis ein geeignetes Spenderorgan verfügbar ist. Der Weg bis zum kompletten, “auf Bedarf” nachwachsenden Organ ist noch sehr weit, aber die ersten Schritte sind getan.

In einem Zeitreiseroman (der Buch-Titel: “Professor Allman – Auf der Suche nach der Weltformel”) sorgt die Nanotechnologie mit einer fiktiven Limbox für das Nachwachsen verlorener Gliedmaßen.

Links:

Von Zellen und nachwachsenden Organen
Nachwachsende Organe bei Tieren