Schlagwort-Archive: Gravitation

Neues Buch – Einsteins Relativitätstheorie ganz ohne Mathematik

Der Herausgeber Klaus-Dieter Sedlacek stellt seine neue Buchveröffentlichung über ‘Spezielle und allgemeine Relativitätstheorie’ vor. Es geht unter Anderem auch um das Relativitätsprinzip, krumme Lichtstrahlen und kosmologische Folgerungen. Neues Buch — Einsteins Relativitätstheorie ganz ohne Mathematik weiterlesen

Einsteins Gravitationswellen entdeckt

(11.02.2016) Idw. In diesem Jahr jährt sich Einsteins Vorhersage von Gravitationswellen zum hundertsten Mal. Und an diesem Donnerstag, um 16:30 Ortszeit, hat die amerikanische National Science Foundation eine Pressekonferenz im National Press Club in Washington, DC, einberufen, auf der Wissenschaftler von Caltech, MIT und dem Laser Interferometer Gravitational-wave Observatory (LIGO) die neuesten Resultate von LIGOs Suche nach Gravitationswellen bekanntgeben werden.

Einsteins Gravitationswellen entdeckt weiterlesen

Geheimnisvolle Signale aus einer fernen quantenkosmologischen Vergangenheit

Was passierte bei der Geburt des Weltalls? Wie konnten sich Sterne, Planeten und ganze Galaxien überhaupt bilden? Das sind die Fragen, die Viatcheslav Mukhanov mit seinen Berechnungen zu beantworten versucht. Mukhanov ist Physik-Ordinarius an der LMU und Experte für Theoretische Quantenkosmologie. Und es ist seine Idee der Quantenfluktuationen, die ein entscheidendes Moment in der Startphase des Universums beschreibt: Ohne die Dichteschwankungen, die aus den minimalen Fluktuationen entstehen, lässt sich die spätere Verteilung der Materie und die Bildung von Sternen, Planeten und Galaxien schwerlich erklären.

Jetzt hat das Planck-Konsortium neue Auswertungen von Messergebnissen veröffentlicht. Das Weltraumteleskop hat die kosmische Hintergrundstrahlung vermessen und damit ein Abbild des frühen Universums geliefert. Diese neuen Planck-Daten decken sich exakt mit den Berechnungen des LMU-Kosmologen, etwa für die entscheidende Größe des sogenannten Spektralindexes. „Die Planck-Daten haben die grundlegende Voraussage bestätigt, dass Quantenfluktuationen am Anfang aller Strukturen im Universum stehen“, bekräftigt Jean-Loup Puget, der leitende Wissenschaftler des HFI-Instruments der Planck-Mission. „Besser könnte meine Theorie nicht bestätigt werden“, sagt Mukhanov. Schon 1981 hatte der Wissenschaftler, seit 1997 an der LMU, seinen Ansatz erstmals publiziert.

Spuren aus ferner Vergangenheit

Dass auch die Quanten im frühen Universum gewissen Fluktuationen unterlegen haben müssen, ergibt sich für Mukhanov aus der Heisenbergschen Unschärferelation. Sie besagt, dass sich Ort und Impuls eines Teilchens nicht exakt angeben lassen. Aus den submikroskopisch winzigen Fluktuationen entstanden makroskopische Dichteschwankungen. Ohne diesen Mechanismus, dessen genaue Ausprägung und Größenordnung Mukhanov berechnet, ließe sich die Verteilung von Materie im heutigen Universum nicht vorhersagen.

Die neuen Planck-Datensätze sind noch detaillierter und aussagekräftiger als die ersten Auswertungen, die vor knapp zwei Jahren veröffentlicht wurden. Mit niemals zuvor erreichter Präzision zeigen sie die Muster, mit denen sich die Fluktuationen in die Strahlung des jungen Universums eingebrannt haben. Als eine Botschaft aus ferner Vergangenheit können Teleskope wie Planck sie heute – 13,8 Milliarden Jahre später – als Mikrowellenstrahlung einfangen. So geben die Planck-Messungen Aufschluss über die Geburt des Weltalls.

Gravitationswellen nicht beglaubigt

Die Existenz von sogenannten primordialen Gravitationswellen konnten die Planck-Daten indes nicht zeigen. Diese weiteren lange gesuchten Signale des fernen Urknalls meinte das BICEP2-Team aus seinen Daten herauslesen zu können, das Teleskop vermisst von der Antarktis aus die kosmische Hintergrundstrahlung. Im März 2014 meldete das Team seine sensationelle Entdeckung – vorschnell, wie sich bald herausstellte. Und soeben veröffentlichten Planck- und BICEP2-Forscher gemeinsam einen Abgleich ihrer Daten, der keinen Nachweis der Gravitationswellen erbrachte. LMU-Forscher Mukhanov hatte schon im Frühjahr 2014 erklärt, dass die Ergebnisse von BICEP2 und Planck nicht gleichzeitig stimmen können. „Gravitationswellen mag es trotzdem geben“, sagt der LMU-Wissenschaftler. „Aber unsere Messgeräte sind offenbar noch nicht genau genug.“ Doch unabhängig davon, ob ein tatsächlicher Nachweis der Gravitationswellen gelingt: Ohne den Mechanismus der Quantenfluktuation, ergänzt Mukhanov, kommt kein Modell aus, das erklären soll, was unmittelbar nach dem Urknall geschah. (Quelle: idw)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Die Rätsel des Universums

München (ots) – Unser Wissen über das Universum ist enorm – doch viele Fragen sind noch unbeantwortet. Wie groß ist das Universum, woher kommen die Kometen und was hält die Galaxien zusammen – diesen und weiteren Rätseln des Universums geht das Weltraum-Magazin SPACE  nach.

Wie groß unser Universum ist – diese Frage ist nur teilweise gelöst. Seit dem Urknall konnte es sich “nur” 13,8 Milliarden Jahre lang ausdehnen. Das von weiter weg gelegenen Objekten abgestrahlte Licht hat uns einfach noch nicht erreicht. Das heißt also, das für uns von der Erde aus beobachtbare Universum ist eine kugelförmige Blase mit einem Radius von 13,8 Milliarden Lichtjahren. Wie weit es sich darüber hinaus ausdehnt, ist heiß umstritten.

Ebenfalls nur teilweise geklärt ist die Herkunft der Kometen. Ihren Ursprung erklären sich die Wissenschaftler mit Hilfe der sog. Oortschen Wolke, einer riesigen, das Sonnensystem in einer Entfernung von 20.000 Astronomischen Einheiten (1 AE entspricht etwa 149,6 Mio. km) umgebenden Wolke. Diese bildete sich wahrscheinlich, als die gerade entstandenen Planeten sonnennahe Kometen weiter “hinausbeförderten”. Und obwohl sie für uns (noch) nicht sichtbar ist, gilt diese Oortsche Wolke als Ursprung aller unserem Sonnensystem zugehörigen Kometen.

Ungelöst ist nach wie vor die Frage, was Galaxien zusammenhält. An die Gesetze der Physik halten sich manche von ihnen nicht, denn sie rotieren so schnell, dass die Gravitationswirkung ihrer sichtbaren Bestandteile nicht ausreicht, sie zusammenzuhalten. Sie müssten zerreißen, tun es aber nicht. Hier vermuten Wissenschaftler, dass eine mit modernen Instrumenten nicht messbare Materie für den Zusammenhalt der Galaxien verantwortlich sein muss – die sog. “Dunkle Materie”. Diese interagiert nicht mit der elektromagnetischen Wechselwirkung, das erschwert es, sie aufzuspüren. Die Lösung dieses Rätsels wäre eine der größten wissenschaftlichen Entdeckungen.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Warum das Standardmodell der Teilchenphysik nur eine Zwischenlösung ist

Das Problem mit der Feinjustierung

Das Standardmodell ist wohl die umfassendste Theorie, die es jemals gab. Dennoch sehen Teilchenphysiker damit das Ende der Physik noch längst nicht erreicht und suchen eifrig nach neuen Theorien. Dabei motivieren sie nicht etwa irgendwelche inneren Widersprüchen des Modells oder experimentelle Zwänge, sondern allein die Ästhetik.

Ein Physikprofessor soll Max Planck am Ende des 19. Jahrhunderts dazu geraten haben, nicht Physik zu studieren. Schließlich sei dort, abgesehen von wenigen Lücken, bereits alles erforscht. Heute hätte wohl kein Hochschullehrer mehr solche Bedenken. Dieses vorherrschende Gefühl lässt sich allerdings nur teilweise fachlich begründen. Es ist vor allem mit Problemen der Wissenschafts- und Erkenntnistheorie verbunden.

Viele Galaxien vor schwarzem Hintergrund. In der Mitte befindet sich ein hantelfömiger, rosa Klumpen, an dessen beiden Seiten ein blauer Klumpen angrenzt.
Indirekter Nachweis von Dunkler Materie

Obwohl das Standardmodell der Teilchenphysik gegenwärtig wohl die umfassendste Theorie darstellt, kann es einige Phänomene vom Prinzip her nicht beschreiben. Allem voran steht hier die Gravitation. Zudem gibt das Standardmodell keine Antwort auf die Frage nach Dunkler Materie oder Dunkler Energie, auf die astrophysikalische und kosmische Beobachtungen hinweisen. Deshalb sehen die meisten Teilchenphysiker das Standardmodell nur als eine Stufe auf dem Weg zu einer noch umfassenderen und in gewissem Sinne „einfacheren“ oder „schöneren“ Theorie – Begriffe und Ziele, die mehr philosophisch motiviert sind, als aus immanenten Problemen der Wissenschaft zu folgen.

Das Standardmodell wird demnach oft nur als sogenannte effektive Theorie verstanden, die im Bereich niedriger Energien als Grenzfall einer weitreichenderen Theorie fungiert. Dieses Verhalten kennt man bereits aus anderen Teilgebieten der Physik, wie beispielsweise der klassischen Mechanik: Alle physikalischen Phänomene bei Geschwindigkeiten und Abständen des Alltagslebens – also deutlich langsamer als Licht und deutlich größer als ein Atom – werden durch diese Theorie völlig adäquat beschrieben. Heute versteht man die klassische Mechanik aber als Grenzfall der Relativitätstheorie beziehungsweise der Quantenmechanik.

Vom Standardmodell wissen wir nur, dass es bei Abständen von mindestens einem Milliardstel des Atomdurchmessers gilt. Genauer können die heutigen Beschleuniger nicht auflösen. Für Elementarteilchen wird die Gravitation aber erst bei Abständen relevant, die noch etwa eine billiardemal kleiner sind. Die Sensitivität von Teilchenbeschleunigern wird wohl nie auch nur in die Nähe dieser sogenannten Plancklänge vordringen. Alerdings legt die Struktur des Standardmodells nahe, dass man bereits bei deutlich größeren Abständen Hinweise auf eine übergeordnete Theorie finden sollte.

Keine einfache Theorie

Zwar beruht das Standardmodell im Wesentlichen auf wenigen Prinzipien – vor allem der Eichsymmetrie –, aber dennoch sind 27 Parameter notwendig, die nicht a priori durch die Theorie festgelegte Werte besitzen und durch Messungen bestimmt werden müssen. Diese Zahl erscheint einerseits zu groß, um von einer „schönen“ und „einfachen“ Theorie zu sprechen. Andererseits zeigen einige der Parameter gewisse Regelmäßigkeiten oder Hierarchien, die alles andere als zufällig wirken, deren Ursachen man aber derzeit nicht kennt.

Ein Beispiel: Es existieren zwölf Materieteilchen, die sich in drei fast identische Familien einordnen lassen. Warum existieren diese Wiederholungen? Hauptsächlich unterscheiden sich die Familien durch die Massen der zugehörigen Teilchen. Das Topquark ist beispielsweise mehr als eine Trillion Mal schwerer als das leichteste Neutrino. Welche Ursache hat dieses gewaltige Massenspektrum? Der Higgs-Mechanismus „erzeugt“ zwar Massen, leistet für diese Strukturen aber keinerlei Erklärungen.

Für jedes Elementarteilchen gibt es ein Schildchen, auf dem dessen Masse sowie Nachweisjahr notiert sind. Angeordnet sind die Schildchen in einem Diagramm, in dem Masse und Nachweisjahr gegeneinander aufgetragen sind.
Massenspektrum der Elementarteilchen

Diese und noch andere Eigenschaften des Standardmodells weisen darauf hin, dass es eine neue, umfassendere Theorie geben sollte. Die Suche nach dieser neuen Theorie beruht weitgehend auf Prinzipien wie Einfachheit, Schönheit oder Natürlichkeit. Einer der wichtigsten Ansatzpunkte ist hier natürlich der Higgs-Mechanismus. Von vielen Physikern wird dieser nur als Hilfskonstruktion gesehen, der unter Umständen auf einen tiefer liegenden Mechanismus hindeutet. Denn auch hier finden sich noch einige Schönheitsfehler.

Laut der Theorie wäre das Higgs-Boson das einzige fundamentale Teilchen ohne Eigendrehimpuls. Was erst einmal wie eine kleine Randnotiz aussieht, erweist sich als gravierendes theoretisches Problem. Aus der Wechselwirkung mit den allgegenwärtigen quantenmechanischen Fluktuationen des Vakuums – hier entstehen und verschwinden laufend kurzlebige Teilchen-Antiteilchen-Paare – erhält jedes Teilchen einen Beitrag zu seiner Masse. Die Differenz zwischen dieser „Strahlungsmasse“ und der im Experiment beobachteten physikalischen Masse des Teilchens ergibt die „nackte Masse“. Letztere beschreibt also die Masse, die das Teilchen hypothetisch hätte, wenn es keine Vakuumfluktuationen gäbe.

Unter bestimmten Annahmen lässt sich die Strahlungsmasse für jedes Teilchen berechnen. Bei Teilchen mit einem Spin größer als Null, wie etwa Elektronen und Quarks, fällt die Strahlungsmasse klein aus. Die nackte Masse entspricht damit ungefähr der physikalischen Masse. Anders beim Higgs-Teilchen: Hier hängt die Strahlungsmasse vom Quadrat der höchsten Energie ab, an der das Standardmodell noch Gültigkeit besitzt. Sollte das Standardmodell tatsächlich bis zu Abständen von der Größenordnung der Plancklänge gelten, wäre die Strahlungsmasse hundert Billionen Mal größer als die physikalische Masse des neu entdeckten Teilchens von etwa 125 Gigaelektronenvolt. Es sieht also so aus, als ob die nackte Masse und die Strahlungsmasse fast exakt entgegengesetzt gleich groß wären und sich über viele Größenordnungen kompensieren.

Von neuen Symmetrien und Unteilchen

Formal stellt dies zwar kein Problem dar, aber eine solche enorme Feinjustierung schreit förmlich nach einer Erklärung. Schließlich handelt es sich bei nackter und Strahlungsmasse um zwei völlig verschiedene Dinge. Warum sollten sie also über dreißig Größenordnungen denselben Zahlenwert aufweisen? Eine Lösung dieses Feinjustierungsproblems könnte sein, dass das Standardmodell bereits bei relativ niedrigen Energien – beziehungsweise großen Abständen – durch eine übergeordnete Theorie ersetzt wird. In den meisten Fällen resultieren solche Theorien in neuen Teilchen, die dann am LHC entdeckt werden könnten.

Abgebildet ist eine alte Waage mit zwei Waagschalen. Die nackte Masse als Kugel auf der einen, die Strahlungsmasse als Tetraeder auf der anderen Seite. Der Zeiger der Waage steht genau auf 125 Gigaelektronenvolt.
Nackte Masse und Strahlungsmasse

Die neuen Theorien sind also weder durch irgendwelche inneren Widersprüche des Standardmodells noch durch experimentelle Zwänge motiviert, sondern allein durch Ästhetik. Das Feinjustierungsproblem war in den vergangenen Jahrzehnten wohl die wichtigste Triebfeder beim sogenannten Model Building – der Suche nach Modellen jenseits des Standardmodells. Oft entstehen dabei geniale, revolutionäre, mitunter vielleicht sogar abstruse Ideen, die neue Symmetrien, zusätzliche Raumdimensionen oder völlig neuartige Objekte wie beispielsweise „Unteilchen“ postulieren, und natürlich alle möglichen Kombinationen davon. Die Entdeckung des neuen Teilchens am LHC und das gleichzeitige Fehlen von Signalen anderer neuer Teilchen bedeutet für viele dieser Ideen allerdings das abrupte und definitive Ende.

Physiker und Philosophen stellen sich gleichermaßen die Frage, ob das schwer quantifizierbare Problem der Feinjustierung (Wie viel Feinjustierung ist erlaubt?) wirklich das Kriterium für neuartige Theorien sein kann, oder ob es sich dabei nur scheinbar um ein Problem handelt. Auch diese Frage verschärft sich vor dem Hintergrund der bisherigen Ergebnisse des LHC.

Bislang gibt es keinen Hinweis darauf, dass eine der vorgeschlagenen neuen Theorien verwirklicht ist. Viele Theorien, die das Feinjustierungsproblem lösen oder umgehen wollen, führen zu Ergebnissen, die im Widerspruch zu Messungen stehen. Dies bewirkt eine hohen Dynamik bei der Entwicklung von Modellen, die oft auf sehr eleganten Ideen beruhen, dann aber sehr unattraktiven Modifikationen unterworfen werden müssen, um im Einklang mit den Messungen zu bleiben. Theorien werden zwar selten verworfen, aber oft irgendwann nur noch von einigen hartgesottenen Anhängern verfolgt.

Sollte das Feinjustierungsproblem allerdings real sein, dürfte es in einem Energiebereich gelöst werden, in den der LHC in den nächsten fünf bis sechs Jahren vordringen soll. Dann lassen sich auch Teilchen aufspüren, die bis zu zehnmal schwerer sind als das im Juni 2012 entdeckte Boson. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps:

 

Was passiert wenn Makro- und Quantenwelt zusammentreffen?

Heidelberg. Was passiert mit den manchmal geheimnisvollen Phänomenen der Quantenphysik, wenn man immer größere und schwerere Objekte betrachtet? Darüber stritten einst schon Erwin Schrödinger und Albert Einstein. Neue Experimente mit Systemen großer Masse sollen jetzt Hinweise zur Klärung dieses fundamentalen Rätsels liefern.

Wie die Quantenphysiker Markus Aspelmeyer und Markus Arndt von der Universität Wien in der Oktoberausgabe von “Spektrum der Wissenschaft” berichten, könnten sie darüber hinaus in Laborexperimenten sogar bestimmte Vorhersagen der Quantengravitation auf der sonst unerreichbaren Planck-Skala überprüfen – jener Dimension, bei der Raum und Zeit an ihre klassischen Grenzen stoßen.

Diese Art der Forschung hat ihren Ursprung im Jahre 1935. Damals entwarf der Theoretiker Erwin Schrödinger ein scheinbar paradoxes Gedankenexperiment, das seitdem Quantenphysiker und Philosophen beschäftigt. Es geht um die fundamentale Frage, ob auch ein makroskopisches Objekt in unbeobachtetem Zustand mehrere sich eigentlich ausschließende Eigenschaften annehmen kann – ob etwa eine Katze zugleich lebendig und tot zu sein. Dahinter steht das Problem des Messprozesses in der Quantenphysik.

Bei der Beobachtung etwa in einem Laborversuch reduziert sich der vorher nach der Quantentheorie mehrdeutige Zustand verschiedener Möglichkeiten auf genau eine Wirklichkeit, also genau einen bestimmten Messwert. Die Physiker sprechen dann auch vom “Kollaps der Wellenfunktion”. Lange Zeit waren solche Versuche jedoch nur auf die allerkleinsten Objekte der Nature – Atome und kleine Moleküle – beschränkt. Seit einigen Jahren verbuchen Physiker nun aber große Fortschritte bei quantenphysikalischen Experimenten mit makroskopischen Objekten. Diese enthalten beispielsweise Millionen oder Milliarden von Atomen, etwa in kleinen schwingenden Hebeln oder Membranen. Die Antworten beeinflussen unser grundlegendes Verständnis von Wirklichkeit und Kausalität.

Wenn also Makro- und Quantenwelt im Labor zusammentreffen – was werden wir aus diesen Experimenten lernen? Eines ist sicher: Vorläufig wird Raum für verschiedene Deutungen der Resultate bleiben. Sollten alle Experimente bei hoher Masse und Komplexität lediglich die Vorhersagen der etablierten Quantenphysik bestätigen, bliebe der philosophische Erkenntnisstand aus Sicht des Quantenphysikers unverändert. Gleichwohl würden dann etliche alternative Vorstellungen über die Welt ausgeschlossen werden – etwa jene, die den Kollapsmodellen zu Grunde liegen.

Nicht weniger spannend ist eine andere Variante. Nehmen wir an, die Forscher würden im Labor auf reproduzierbare Abweichungen von den etablierten Vorhersagen der gängigen Quantentheorie stoßen. Dann wäre es eine Herausforderung, zu entscheiden, ob diese mit “neuer Physik” oder doch im Rahmen der gängigen Quantentheorie ablaufen. (Quelle: Spektrum der Wissenschaft, Oktober 2012)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Wie die letzte große Lücke der Physik geschlossen werden kann

Sie ist die letzte große Lücke im Gebäude der Physik: eine Theorie, die Quantenphysik mit Einsteins allgemeiner Relativitätstheorie vereint. Claus Kiefer von der Universität Köln zeigt in der April-Ausgabe von Spektrum der Wisenschaft, wie Forscher das Problem lösen wollen, die Mikrowelt mit der Schwerkraft zu verschmelzen.

Im Januar 1957 trafen sich Forscher an der University of North Carolina in Chapel Hill zu einer aufregenden Konferenz. Fast alle bedeutenden Gravitationsphysiker jener Zeit hatten sich versammelt. Die eine Hälfte der Tagung befasste sich mit Einsteins Allgemeiner Relativitätstheorie, der modernen Theorie der Gravitation, die darin als Geometrie von Raum und Zeit gedeutet wird. Sie beschreibt das Große und Ganze: von unserer direkten Umgebung über Sonnensystem, Sterne und Galaxien bis hin zum Universum.

Die zweite Hälfte der Tagung befasste sich mit Verallgemeinerungen von Einsteins Theoriegebäude unter Einbezug der Quantentheorie. Eine solche erweiterte Theorie nennen Fachleute Quantengravitation. Sie vereinigt Mikro- und Makrokosmos, da die Quantentheorie hauptsächlich für die Beschreibung von Molekülen, Atomen und Elementarteilchen zuständig ist. Wie der Kölner Physikprofessor Claus Kiefer in der April-Ausgabe von Spektrum der Wissenschaft berichtet, konnte bisher trotz jahrzehntelanger Bemühungen noch keine allgemein anerkannte Theorie der Quantengravitation entwickelt worden. Allerdings existiert dafür eine Reihe mehr oder weniger aussichtsreicher Kandidaten. Wie die letzte große Lücke der Physik geschlossen werden kann weiterlesen

Warum es von Paralleluniversen nur so wimmelt.

Video: Paralleluniversen

Viele Kosmologen fasziniert die Idee, es gebe unzählige Paralleluniversen mit jeweils eigenen Naturgesetzen.

Seit einigen Jahren debattieren Theoretiker über eine kühne These: Außer dem Universum, das wir wahrnehmen, sollen noch ungezählte weitere Universen existieren. Es gäbe demnach nicht nur einen Kosmos, sondern ein Multiversum. Der amerikanische Physiker Brian Greene bezeichnet diese Vorstellung als “super-kopernikanische Revolution”, da ihr zufolge nicht nur unser Planet einer unter vielen ist, sondern sogar unser gesamtes Universum in kosmischem Maßstab nur eine unbedeutende Spielart möglicher Welten darstellt.

Theoretiker wie Greene oder der russisch-amerikanische Physiker Alexander Vilenkin postulieren völlig unterschiedliche Universen mit einer jeweils anderen Physik, mit einer eigenen Geschichte oder gar mit unterschiedlich vielen Raumdimensionen. Die meisten dieser hypothetischen Welten sind lebensfeindlich, doch einige wimmeln von Organismen. Vilenkin entwirft das dramatische Bild einer unendlichen Menge von Universen, in der unendlich viele Personen Ihren Namen tragen und gerade diese Zeilen lesen.

Wie kommen Kosmologen neuerdings allen Ernstes auf eine Idee, die zunächst wie pure Sciencefiction anmutet? Warum es von Paralleluniversen nur so wimmelt. weiterlesen

Existiert doch keine Dunkle Materie?

ZwerggalaxienDas kosmologische Standardmodell auf dem Prüfstand
Die meisten Astrophysiker und Kosmologen gehen davon aus, dass die so genannte Dunkle Materie den weitaus größten Teil der Materie im Universum stellt. “Normale” Materie, aus der Galaxien ebenso wie Planeten und auch Menschen bestehen, wäre demzufolge relativ selten. Doch es gibt ein Problem: Bislang konnte keines der zahlreichen Experimente, die weltweit nach Dunkle-Materie-Teilchen fahnden, diese auch nachweisen. Existiert die Dunkle Materie vielleicht doch nicht?

In der August-Ausgabe von Spektrum der Wissenschaft berichten die Astrophysiker Pavel Kroupa und Marcel Pawlowski von der Universität Bonn über ihre Forschung an Zwerggalaxien in unserer kosmischen Nachbarschaft. Solche kleinen Galaxien sollten sich gemäß dem kosmologischen Standardmodell, in dem die Dunkle Materie eine der zentralen Rollen spielt, inmitten großräumiger Ansammlungen von Dunkler Materie bilden.
Doch nun ist Kroupas Team, das seine Arbeit jüngst im angesehenen Wissenschaftsjournal “Astronomy and Astrophysics” publiziert hat, auf eine ganze Reihe von Widersprüchen gestoßen. Das Standardmodell sagt beispielsweise voraus, dass die unsere Milchstraße umkreisenden kleinen Satellitengalaxien rein zufällig in deren Umgebung verteilt sein sollten. Stattdessen bilden sie aber eine Art Scheibe, ihre Anordnung folgt also einer klaren Struktur. Auch sagen Simulationen weit mehr Satellitengalaxien vorher, als tatsächlich gefunden wurden. Und schließlich sollten die Satellitengalaxien dem Modell zufolge umso leuchtkräftiger sein, je mehr Dunkle Materie sie enthalten – dies bestätigen die Beobachtungen aber ebenfalls nicht. Im Rahmen der populären Dunklen-Materie Hypothese scheint es keine Lösungen zu diesen Problemen zu geben.
Für die Existenz der rätselhaften Materieform führen die Astronomen zwar gute Gründe an. Beobachtungen von Scheibengalaxien belegen, dass Sterne in deren Außenbereichen schneller um das Zentrum der Galaxien rotieren, als es das newtonsche Gravitationsgesetz vorhersagt. Infolge der dabei entstehenden Fliehkräfte müssten die Galaxien sogar in kürzester Zeit auseinanderfliegen. Erklären lässt sich dieses Rätsel bislang nur, wenn man annimmt, dass die Sternsysteme über wesentlich mehr Masse verfügen als wir beobachten. Diese Masse soll darum von Teilchen beigesteuert werden, die sich praktisch nur durch ihre Schwerkraftwirkung bemerkbar machen, aber kein Licht aussenden – weshalb sie als “dunkle” Materie bezeichnet werden.
Doch mit der Annahme dunkler Materie gerät man nun offenbar an anderer Stelle in große Widersprüche. Gibt es denn eine Alternative? Kroupa und Pawlowski zufolgen richten immer mehr Forscher ihre Hoffnungen auf die so genannte Modifizierte Newtonsche Dynamik (MOND) und ihre Varianten. Zwar ist das Newtonsche Gravitationsgesetz in gewissen Bereichen hervorragend bestätigt. Doch auf der Skala ganzer Galaxien konnte es noch nicht überprüft werden. Möglicherweise, so die Autoren, ist die Schwerkraft auf einer solchen Skala um ein weniges stärker als bislang gedacht. Denn dann ließe sich auch ohne die Annahme Dunkler Materie erklären, warum sich Sterne in den Außenbezirken von Galaxien so schnell bewegen.
“Der Ursprung dieser winzigen Abweichung könnte nach unserer Sicht möglicherweise in quantenmechanischen Prozessen liegen, die sich in der Raumzeit abspielen”, schreiben die Autoren, “oder in der Existenz zusätzlicher, noch unbekannter Felder.” Diese könnten die von Massen verursachten Störungen der Raumzeit weiter tragen, als dies die herkömmliche Theorie voraussagt. Aber auch andere Erklärungen seien denkbar.
Neue Erkenntnisse über die Satellitengalaxien der Milchstraße und anderer Galaxien in der kosmischen Nachbarschaft erhoffen sich die Forscher nun von der GAIA-Satellitenmission der Europäischen Weltraumagentur und vom australischen “Stromlo Milky Way Satellites Survey”. Sie könnten für spannende Erkenntnisse sorgen, schreiben die Bonner Forscher: “Noch ist nichts entschieden, eins aber ist schon jetzt sicher: Die wahre Geschichte des Universums muss erst noch geschrieben werden.”
Quelle: Spektrum der Wissenschaft, August 2010

Abbildung oben
Zwerggalaxien

In dem langen Gezeitenarm (rechts oben im Bild) der miteinander verschmelzenden Mäusegalaxien bilden sich kleine so genannte Gezeitenzwerggalaxien. Der Mechanismus ihrer Entstehung könnte auch vollständig beschreiben, wie sich Satellitengalaxien um unsere Milchsstraße bildete. Dunkle Materie, einer der Stützpfeiler des kosmologischen Standardmodells, wäre für die Erklärung ihrer Existenz dann überflüssig.

© NASA / ESA, H. Ford (JHU), G. Illingworth (UCSC / LO ), M. Clampin (STScI), G. Hartig (STScI) und das ACS Science Team]