Schlagwort-Archive: Himmel

Bedrohung aus dem All: Komet ISON kommt uns nahe

München (ots) – Einst bombardierten Kometen unser Sonnensystem, brachten vermutlich Wasser und Leben auf die Erde und hinterließen bis heute sichtbare Krater. Würde heute ein Komet der Größe von Shoemaker-Levy 9, der 1994 auf Jupiter einschlug, auf die Erde treffen, gäbe es sie nicht mehr. Das schreibt das Weltraum-Magazin SPACE in seiner Ausgabe 1/2014.

Großes Bombardement – so nennt die Wissenschaft den Kometensturm, der vor vier Milliarden Jahren die Planeten und Monde unseres Sonnensystems traf und bis heute sichtbare Krater hinterließ. Wie viele Kometen am Rande unseres Sonnensystems – im Kuipergürtel und in der sogenannten Oortschen Wolke – herumfliegen und jederzeit der Erde gefährlich werden können, lässt sich nicht sagen. Gelegentlich verlässt ein Komet diesen Bereich und fliegt durch das Sonnensystem; das kann man von der Erde aus beobachten. Wenn die Theorie von der Oortschen Wolke stimmt, besteht durchaus Gefahr: “Wenn da 100 Millionen Kometen in der hypothetischen Ooortschen Wolke in einem Lichtjahr Entfernung herumkreisen und es dort zu einer Störung kommt, dann könnte es wirklich zu einem erneuten Großen Bombardement kommen”, meint Astronomie-Experte Nick Howes.

Die Folgen eines solchen Kometensturms auf unser Sonnensystem wären verheerend. Glücklicherweise lenken die Großplaneten wie Jupiter viele der anfliegenden Objekte auf sich, etwa den Kometen Shoemaker-Levy 9, der im Juli 1994 in Trümmer von bis zu zwei Kilometern Durchmesser zerbarst und auf dem Jupiter aufschlug. Würde ein ähnliches Ereignis die Erde treffen, wären die Folgen apokalyptisch. “Solch ein Komet könnte in 100 Millionen Jahren kommen oder nächste Woche. Wir wissen es nicht”, so Nick Howes.

Aktuell ist Komet Ison in Sichtweite gerückt: Seit Ende November 2013 ist er der Sonne besonders nah. Wissenschaftler vermuten, dass er unterwegs in Fragmente zerbersten könnte. Viele gehen davon aus, dass sein Schweif bis Januar hell leuchten und für auch für Hobby-Astronomen am Nachthimmel sichtbar sein wird.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Was nützt uns die Kosmologie?

Haben wir nicht schon genügend Probleme auf Erden? Aktuell bangen wir im Zusammenhang mit der Eurokrise, der Krise in der arabischen Welt und dem Konkurs einer großen Handelskette. Müssen wir uns dann noch um die Vorgänge am Himmel kümmern?
Nein, wir müssen nicht. Aber dennoch gibt es eine große Zahl an Menschen, die nach einer Antwort auf Fragen suchen, warum wir hier auf unserer Erde überhaupt existieren, wie alles anfing und ob sich in der Unendlichkeit des Alls ein Schöpfer manifestiert.
Was sind eigentlich die Motive der Menschen sich mit Fragen der Kosmologie zu befassen. Ist es ganz einfach Neugier, wollen sie sich um mit einem Bibelwort zu reden die Erde untertan machen, ist es die Gier nach Sensationen oder irgendein anderes verstecktes Motiv?
Der Autor Gerhard Josten, den die Unendlichkeit seit seiner Jugend fasziniert, hat sich die Aufgabe gestellt, die Beweggründe der Menschen zu erforschen und die Vielfalt ihrer Meinungen über den Kosmos in dem Buch mit dem Titel »Ein All ohne Knall« zu präsentieren. Eigentlich hätte man dem Buch noch einen Untertitel, etwa »Die Beweggründe von Menschen, sich mit der Kosmologie zu beschäftigen« geben müssen. Der Haupttitel mag sonst dazu verleiten, zu glauben der Urknall würde im Mittelpunkt des Werks stehen. Dem ist aber nicht so, vielmehr steht der Mensch mit seiner ungeheuren Vielfalt an Vorstellungen und seinen Motiven im Zentrum. Wie hat der Autor dieses mehr psychologische Thema angepackt?
Das Buch ist in drei Teile gegliedert. Im ersten Teil werden einige Auszüge aus dem Stand der Weltraumforschung gegeben. Dabei wird die Rotverschiebung als wichtigstes Argument für den Beginn des Universums in einer Singularität (Urknall) näher beleuchtet. Weiter werden die Folgen beschrieben, die auf dem dualen Charakter des Lichts basieren. Bekanntlich hat Licht je nach Art der Messung entweder Wellencharakter oder Teilchencharakter. Diese Eigenschaft ist für den Nichtphysiker äußerst verwirrend und führt deshalb häufig zu Missverständnissen. Ein drittes und letztes Thema im ersten Teil ist die Suche nach einem erdähnlichen Planeten irgendwo in den Fernen des Weltalls, die Unmengen an Forschungsmittel verschlingt.
Im zweiten Teil des Buchs sind Beiträge von Journalisten, Fachleuten und Wissenschaftlern veröffentlicht. Dabei handelt es sich entweder um fundierte Fachbeiträge oder um Meinungen und Bekenntnisse, die teilweise kontrovers gegenüber den angezweifelten Erkenntnissen der Mainstreamwissenschaft sind. Insbesondere wird angezweifelt, ob die Rotverschiebung des Lichts aus fernen Galaxien tatsächlich ein Argument für die permanente Ausdehnung des Universums ist.
Im dritten und letzten Teil hat sich der Autor mit dem Psychlogen Prof. Dr. Erich Kasten und dem Philosophen Dietmar Odilo Paul zu einer Gesprächsrunde getroffen, um das Thema anzugehen, das ihm besonders am Herzen liegt, nämlich die Beweggründe der Menschen aufzudecken, sich mit dem Kosmos und dem Beginn von allem zu beschäftigen. Zu welchen Ergebnissen die Runde kommt, sei hier nicht verraten.
Um ein Resumee zu ziehen, kann ich sagen, dass dieses Werk zunächst einmal der Meinungsvielfalt über das Urknall-Thema ein Forum bietet. Abweichende Meinungen werden nicht ausgegrenzt, sondern genauso dargestellt, wie die Meinungen, die mit der Mainstreamwissenschaft konformgehen. Schließlich wird auch Licht in die verborgenen Beweggründe gebracht, warum sich Menschen überhaupt mit Dingen beschäftigen, die sie nicht beeinflussen können.
Für alle, die an solchen Fragestellungen interessiert sind, ist Jostens »Ein All ohne Knall« eine Perle gegenüber den Büchern, die abweichende Meinungen ausgrenzen und mehr Fragen aufwerfen als beantworten. Hier bekommt man wenigstens Antworten auf die Beweggründe der Menschen.

Buchtipps:

Das neue Gesicht der Wirklichkeit

Der Theologe Adolf von Harnack (1851- 1930) hat die theoretischen Physiker als die wahren Philosophen des 20. Jahrhunderts bezeichnet. Die Notwendigkeit zu philosophieren ergab sich vor allem durch die Schlüsselposition, die der Beobachter in der Quantentheorie einnimmt. Im täglichen Leben wird niemand behaupten, dass der Mond nur dann am Himmel steht, wenn wir ihn anschauen. Aber in der Mikrowelt entscheidet sich das Ergebnis eines Experiments tatsächlich erst durch die Messung. Oder anders herum: Bevor eine quantenphysikalische Größe gemessen wird, hat sie keinen bestimmten Wert. Beispielsweise kann ein Elektron in einem von der Umgebung isolierten Atom sich gleichzeitig auf zwei verschiedenen Kreisbahnen um den Kern bewegen [man spricht von der ‘Überlagerung der Zustände’]. Damit besitzt es keinen bestimmten Energiewert – solange, bis der Physiker eine Messung vornimmt. Misst man direkt nach dieser Messung das Elektron noch einmal, kommt wieder der Wert aus der ersten Messung heraus. Denn durch die erste Messung ist der vorher unbestimmte Zustand eindeutig festgelegt worden.

In modernen Experimenten ist es bereits gelungen, Atome zu erzeugen, die sich gleichzeitig in zwei verschiedenen Zuständen befinden. Unlängst gelang es sogar Forschern im US-amerikanischen Stony Brook, einen supraleitenden Strom zu erzeugen, der gleichzeitig in zwei verschiedenen Richtungen floss. Solche Versuche sind besonders knifflig, da man eine Möglichkeit finden muss, die überlagerten Zustände auf indirektem Weg nachzuweisen, denn eine direkte Messung würde die Überlagerung aufheben.

Der Einfluß des Beobachters ist in der Quantenwelt entscheidend. Wie aber sein „Eingreifen“ genau zu verstehen ist und wo die Grenze zwischen Alltags- und Quantenwelt tatsächlich liegt, ist bis heute nicht geklärt. Besitzt der Beobachter eine Sonderstellung, die ihn über die Materie erhebt, oder ist er selbst eine Überlagerung quantenmechanischer Zustände? In den Anfängen der Quantentheorie wurde von einigen Wissenschaftlern tatsächlich die „Geist-über-Materie“- Interpretation vertreten: das menschliche Bewusstsein sei, so behaupteten sie, nicht den Regeln der Quantenmechanik unterworfen, da diese nur für Materie gälten. Auf Grund dieser Sonderstellung könnten wir durch bloße Beobachtung bewirken, dass Objekte von unbestimmten Zuständen in ein konkretes Dasein treten. Solch eine Erklärung würde aber bedeuten, dass Messapparate alleine keine eindeutigen Ergebnisse bei einem Experiment produzieren könnten. Es wäre immer ein menschlicher Beobachter nötig, der diese Ergebnisse registriert und sie dadurch erst von der quantenmechanischen Überlagerung in die Eindeutigkeit der Alltagswelt überführt. Diese Interpretation der Quantenphysik hätte natürlich bizarre Konsequenzen: Ein Wissenschaflter könnte dann nämlich ein Messprotokoll – ohne es anzuschauen – vervielfältigen und an Physikinstitute in aller Welt verschicken. Die Ergebnisse auf den Papieren blieben solange vieldeutig, bis der erste Physiker sein Exemplar des Protokolls angesehen hätte. In diesem Augenblick wären auch die Ergebnisse auf allen anderen Kopien wie durch Zauberei festgelegt. Ein Effekt, der dem Fall der Zwillingsphotonen ähnelt, diesmal aber Objekte aus der Alltagswelt betreffen würde!

Einen noch phantastischer klingenden Vorschlag zur Interpretation des Messprozesses machte 1957 der amerikanische Physiker Hugh Everett. Er ging davon aus, dass der Beobachter sich in mehrere Kopien seiner selbst aufspaltet und dadurch jeden möglichen Ausgang eines Experiments sieht. Der Beobachter merkt nur deshalb nichts davon, weil jede Kopie nach der Beobachtung in ihrem eigenen, parallel existierenden Universum weiterlebt. Da für jedes denkbare Ergebnis jeder quantenmechanischen Wechselwirkung Kopien des jeweiligen Beobachters entstehen, existieren Everetts Theorie zufolge eine fast unendliche Zahl paralleler Universen nebeneinander.

Umstritten ist im Rahmen dieser Theorie die Frage, ob wir andere Universen besuchen könnten. Der britische Physiker David Deutsch bejaht dies und kommt zu dem überraschenden Schluss, dass Zeitreisen in Everetts „Viele-Welten-Theorie“ ohne Widersprüche möglich wären. Eines der wichtigsten Argumente gegen Ausflüge in die Vergangenheit ist nämlich, dass der Zeitreisende in der Vergangenheit seine eigene Geburt verhindern und somit ein Paradoxon erzeugen könnte. Dieses Argument ist aber in einem „Multiversum“ nicht stichhaltig: Denn ein Zeitreisender könnte sich in die Vergangenheit jedes parallelen Universums begeben und dort die Geburt seines „Doubels“ verhindern, ohne dass ein logischer Fehler auftreten würde.

Die meisten Physiker sind der Überzeugung, dass die beiden vorgestellten extremen Sichtweisen bei der Interpretation der Quantentheorie noch nicht der Weisheit letzter Schluss sind. Und letztendlich ist dies eben eine philosophische Diskussion. Bereits Niels Bohr vertrat die pragmatische Sichtweise, die Physik könne lediglich Aussagen über Dinge machen, die der Messung zugänglich sind. Über den Rest empfahl er zu schweigen. Oder, wie Wolfgang Pauli es formulierte: „Ob etwas, worüber man nichts wissen kann, doch existiert, darüber soll man sich … doch wohl ebensowenig den Kopf zerbrechen, wie über die alte Frage, wieviele Engel auf einer Nadelspitze sitzen können.“ (Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Eine völlig neue Erklärung für das rätselhafte Verhalten der Photonen und für andere Phänomene der Quantenphysik findet sich im Buch Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen. Dort wird wohl zum ersten Mal der physikalische Nachweis geführt, dass Bewusstsein eine Energieart ist, auf der alles was existiert, aufbaut. Mit dieser Erkenntnis bekommt unsere Wirklichkeit eine neues Gesicht.

Wieso prasseln kosmische Partikel aus schwarzen Löchern auf die Welt?

Video: Wo entsteht die kosmische Strahlung?

Kosmische Strahlung auch Höhenstrahlung genannt ist schon länger bekannt. Während einer Ballonfahrt im Jahr 1912 entdeckte sie der österreichische Physiker Victor Franz Hess und veröffentlichte noch im gleichen Jahr seine Entdeckung. Kosmische Strahlung aus dem Weltall besteht überwiegend aus hochenergetischen Protonen oder Elektronen. Was aber auf das Pierre-Auger-Observatorium in der argentinischen Pampa vom Himmel niederprasselt, ist ganz anderer Art und dreißigmal energiereicher als alles, was jemals in der Quantenschleuder LHC in Genf erzeugt werden kann. Was steckt dahinter, dass unsere Welt mit solch energiereichen Partikeln bombardiert wird und woraus bestehen diese?

Nordöstlich vom Ort Malargüe sind 1600 Wasserdetektoren über ein Gebiet größer als das Saarland verteilt, um die kosmischen Partikel aufzuspüren. Jeder der Wasserdetektoren enthält zehn Kubikmeter hochreines Wasser. Wenn die an der Untersuchung beteiligten Wissenschaftler ein geheimnisvolles blaues Leuchten (Tscherenkowstrahlung) im Wasser der Detektoren entdecken, dann wissen sie, dass die Erde wieder mit Partikeln bombardiert wird. Und das geschieht etwa hundert Mal im Jahr. In mehr als zwanzig Kilometer Höhe stoßen die Ankömmlinge aus dem All mit Luftmolekülen zusammen und erzeugen Milliarden winziger Trümmerteile. »[Sie] werden so zu Quadratkilometer großen Teilchenschauern«, berichtet Johannes Blümer, der Sprecher des Zentrums für Elementarteilchen- und Astroteilchenphysik am Karlsruher Institute for Technology (KIT).

Blümer vermutet, es handele sich bei den hochenergetischen und extrem schnellen Partikeln um Eisenkerne. Doch Genaues wissen die Forscher noch nicht. Als Quelle kommen möglicherweise Schwarze Löcher in Frage, die nicht mehr als 330 Millionen Lichtjahre von uns entfernt, alles verschlingen, was in ihre Nähe gerät. Durch eine Art Schluckauf entstehen Schockwellen und starke Magnetfelder, welche die hochenergetischen Teilchen erzeugen, die dann unsere Erde bombardieren.

Die physikalischen Messungen in der Pampa helfen, den Geheimnissen der Partikel und des Universums auf die Schliche zu kommen. Aber auf die Frage, ob die Physik die Welt erklären kann, antwortete Professor Harald Lesch von der Universitätssternwarte München in der hundertsten Folge von Alpha Centauri sinngemäß, dass Physik nur erklären kann, wie etwas funktioniert, aber nicht wieso.

Für die Erklärung des ‘Wieso’ bedarf es deshalb der Metaphysik. Diese kann die Ergebnisse aller Einzelwissenschaften und nicht nur der Physik in einer Gesamtschau vereinen und daraus ein metaphysisches Weltbild entwerfen. Ein solches metaphysisches Weltbild findet sich in dem kürzlich erschienenen Sachbuch mit dem Titel: »Unsterbliches Bewusstsein«. Dort wird gezeigt, dass Raumzeit und Materie dem Bewusstsein untergeordnete Einheiten des Universums sind. Darüber hinaus werden Fragen nach dem Sinn und Zweck, also dem ‘Wieso’ beantwortet.
Manfred Sommerfeld

Mehr zum Thema:
1. »Teilchenjäger in der argentinischen Pampa« von Rainer Klüting, Stuttgarter Zeitung v. 14.11.2008.
2. »Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen«

Spontane Selbstentzündung: schauriger Spuk jetzt aufgeklärt?

(DailyNet) Es klingt wie ein unheimlicher Spuk, ist aber offenbar Realität: Die spontane Verbrennung von Menschen. Dabei verbrennen die Menschen angeblich plötzlich von innen heraus, indem sich im Körper Flammen bilden. Aber wie kommt es zu dieser spontanen Selbstentzündung, bei der die Umgebung seltsamerweise verschont bleibt? Ein Wissenschaftler aus Neuseeland glaubt, das Geheimnis jetzt gelüftet zu haben.Am bitterkalten 5. Dezember 1966 verließ Don E. Gosnell morgens sein Haus in Coudersport, der Kreisstadt von Pennsylvania, um wie üblich für die Gaswerke Zähler abzulesen. Sein erster Besuch galt dem bekannten und als Familienarzt beliebten Dr. John Irving Bentley, der sich mit 92 Jahren im Ruhestand befand. Im Haus des Doktors bemerkte er einen feinen blauen Rauch und ein etwa 1 Meter großes Loch in der Decke. Als er nach dem Doktor sehen wollte, fand er nur noch den Rest des Beines.

Hinter der schaurigen Geschichte verbirgt sich ein Phänomen, welches in der Literatur als spontane Selbstentzündung beschrieben wird. Meist verbrennen die gesamten Körper zu einem kleinen Haufen Asche, jedoch wird trotz der großen Hitzeentwicklung meistens kaum etwas außer dem Körper zerstört. Gelegentlich sind die Opfer in ihrer Kleidung verbrannt, ohne die Kleidung dabei zu beschädigen. Die genauen Ursachen für dieses Phänomen sind bis heute nicht geklärt.

Nicht jeder hat schon einmal von diesem Phänomen gehört. Doch in Mysterienkreisen ist es schon lange bekannt: Bei der spontanen Selbstentzündung oder kurz SHC („spontaneous human combustion”) brennen Personen auf einmal und nichts kann sie retten, bis sie zu einem Häufchen Asche verbrannt sind. Die Schädel sind nach der Verbrennung nicht zerplatzt, sondern geschrumpft. Außerdem fehlt meist jeglicher Brandgeruch. Ungewöhnlich ist auch die große Hitze, die nötig ist um einen menschlichen Körper zu verbrennen. In einem Krematorium muss über mehrere Stunden eine Temperatur über 1400°C aufrechterhalten werden. Aber eine spontane Selbstverbrennung geschieht meist in einem Zeitraum von wenigen Minuten. Deshalb ist auch sehr verwunderlich, dass die Umgebung dabei noch nicht einmal angekohlt wird. Und das ist auch das Interessanteste an diesem Phänomen. Deshalb wäre auch ein Anzünden nicht dasselbe wie eine spontane Selbstverbrennung, denn beim Anzünden wird auch die nähere Umgebung in Mitleidenschaft gezogen und das ist bei SHC nicht der Fall. Aber warum können Menschen auf einmal in Flammen aufgehen?

„Das Phänomen erinnert an ein plötzlich auftretendes Mikrowellenfeld”, erklärt Professor John Abrahamson von der University of Canterbury in Christchurch. Der Wissenschaftler hat die Entstehungsursachen der seltenen Kugelblitze erforscht. Ein großer Kugelblitz, so argumentiert er, könnte mit einem menschlichen Körper die gleiche Wirkung wie ein Mikrowellenherd hervorrufen.

Auch für die Entstehung eines Kugelblitzes hat der Forscher eine Erklärung. „Wenn der Blitz ins Erdreich trifft, können darin enthaltene Silikate und Kohlenstoffverbindungen zu Silizium reagieren”, argumentiert er. Danach müsse sich im getroffenen Gegenstand eine Art Röhre durch den Blitzschlag bilden. Aus dieser Röhre entweiche dann eine Blase gasförmigen Siliziums. Dies, so Abrahamson, könne man sich in etwa so vorstellen wie einen Raucher, der mit dem Mund Rauch ausstößt. Sich vor einem Kugelblitz zu schützen, dürfte nicht einfach sein. Denn wenn er selbst in Häuser eindringt, gibt es vor ihm wohl keinen absoluten Schutz, vor allem nicht vor Verbrennungen.

Quelle: Rolf Froböse, „Wenn Frösche vom Himmel fallen – die verrücktesten Naturphänomene”. (Wiley-VCH, 2007). Jetzt im Handel.