Schlagwort-Archive: Jupitermond

Leben auf dem Jupitermond Europa?

In der eisigen Kruste des Jupitermonds Europa befinden sich in Hohlräumen große Ansammlungen flüssigen Salzwassers. Diese Oasen in der Eiswüste sind auch für die Suche nach möglichem Leben auf dieser fernen Welt von großer Bedeutung, wie die Zeitschrift Sterne und Weltraum in ihrer aktuellen Ausgabe berichtet.

Der Jupitermond Europa gilt aus geologischer und biologischer Sicht nach der Erde als einer der interessantesten Himmelskörper in unserem Sonnensystem. Er besteht wie der Erdmond überwiegend aus Gesteinen und metallischem Eisen, ist aber von einer rund 100 Kilometer dicken Schicht aus Wasser umgeben. Dieses bildet eine 30 Kilometer dicke Eiskruste. Darunter befindet sich ein bis zu 70 Kilometer tiefer Ozean aus flüssigem Wasser. Reibung durch Gezeiteneffekte sorgt im Inneren des Jupitermonds für genügend Wärme, die verhindert, dass die Wasserschicht bis zum Grund gefriert.

Die gleißend helle Eisoberfläche von Europa ist auffallend eben und zeigt kaum größere Einschlagkrater. Sie ist offenbar sehr jung. Die Planetenforscher um Britney Schmidt vom Geophysikalischen Institut an der University of Texas in Austin geben in ihrem kürzlich im Wissenschaftsjournal Nature erschienenen Artikel ein Alter von 30 bis 70 Millionen Jahren an. Dies ist im Vergleich zum Gesamtalter von Europa von 4,5 Milliarden Jahren ein äußerst geringer Wert. Offenbar wird die Eisoberfläche durch geologische Vorgänge stetig erneuert.

Das Forscherteam um Schmidt erkannte als Ursache für die auf Europa weit verbreiteten „chaotischen Terrains” einen der Vorgänge, die zur Verjüngung der Mondoberfläche beitragen. Ihr Anblick erinnerte die Wissenschaftler stark an irdische Packeisregionen und polare Gletscherströme. Die chaotischen Terrains bestehen aus einer Aufwölbung in der Eiskruste, in der große Eisblöcke in einem breiigen See aus feinen Eisbruchstücken schwimmen.

Für die Entstehung der chaotischen Terrains gehen die Wissenschaftler von einem Szenario aus, bei dem Effekte eine Rolle spielen, die sich beim Einsatz von Streusalz auf den Straßen leicht beobachten lassen. Schon eine mäßige Erwärmung der salzhaltigen Eiskruste reicht aus, um dort eine Linse aus flüssigem Salzwasser entstehen zu lassen. Wasser zieht sich aber beim Aufschmelzen zusammen, so dass durch den Volumenverlust oberhalb der Wasserlinse die Oberfläche absinkt und dabei auch in einzelne Blöcke zerbricht. In der Folge bildet sich ein solches chaotisches Terrain.

Manche dieser Salzwasserlinsen befinden sich möglicherweise nur etwa drei Kilometer unterhalb der Eisoberfläche Europas. Somit bestünde die Möglichkeit, diese eines Tages mit einer fortschrittlichen Raumsonde mit Eisbohrtechnik erreichen zu können. Dann könnte eine Messapparatur in einen dieser Salzseen eindringen, um dort nach Spuren eventuellen Lebens zu suchen. Insbesondere der Nachweis von komplexen organischen Molekülen wäre für die Astrobiologen von herausragendem Interesse, sie sind Grundvoraussetzung für Leben, wie wir es kennen. (Quelle: Sterne und Weltraum, Februar 2012)

Außerirdisches Leben auf dem Saturnmond Enceladus?

Ein lebhafter kleiner Saturnmond

Enceladus, der sechstgrößte Trabant des Ringplaneten, steckt voller Überraschungen – und könnte Spuren von Leben bergen
Im Inneren des kleinen Saturnmonds Enceladus vermuten Planetenforscher organische Verbindungen, Kanäle oder gar Seen mit flüssigem Wasser. Energie, Kohlenstoffverbindungen, Wasser: die drei Voraussetzungen für Leben, wie wir es kennen. Die Erforschung dieses fremdartigen und fernen Orts bringt uns – nach unserem Nachbarplaneten Mars, dem Saturnmond Titan und dem Jupitermond Europa – eine weitere Welt im Sonnensystem nahe, die sich vielleicht für lebende Organismen eignet. Als die Raumsonde Cassini vor einigen Jahren die Südhalbkugel von Enceladus überflog, enthüllte sie eine Landschaft, die im Sonnensystem nicht ihresgleichen hat. Einen Eindruck von der Begeisterung, die dies unter Planetenforschern auslöste, vermittelt Carolyn Porco, Leiterin des Cassini-Kamerateams, in der Juniausgabe von Spektrum der Wissenschaft.

Bei Cassinis Wanderung über die Südpolregion fing der Staubanalysator winzige Partikel auf, die offenbar von dort emporgeschleudert worden waren. Zwei andere Instrumente entdeckten Wasserdampf sowie Anzeichen für Kohlendioxid, Stickstoff und Methan. Außerdem spürte die Infrarotkamera lokale Bodentemperaturen bis zu minus 90 Grad auf – weit mehr als die minus 200 Kelvin, die durch bloße Sonneneinstrahlung zu erwarten wären. Auf Fotos des Horizonts im Gegenlicht der Sonne sahen die Planetenforscher außerdem eine gewaltige Wolke kleiner Eispartikel, die sich um mehrere hundert Kilometer über den Südpol erhob.Seither hat die Cassini-Sonde mehrere Vorbeiflüge an Enceladus absolviert und ist in wenigen Kilometern Höhe in dichtere Regionen der Eruptionsfahne vorgedrungen. Bei einer besonders engen Passage im März 2008 entdeckte Cassini zusätzlich zu Wasserdampf, Stickstoff, Kohlendioxid und Methan kleine Beimengungen anderer Kohlenstoffverbindungen wie Azetylen und Cyanwasserstoff sowie Spuren von Ethan, Propan, Benzol, Formaldehyd und anderen organischen Verbindungen. Woher nimmt Enceladus die Energie für seine geologische Aktivität? Irdisches Gestein enthält radioaktive Substanzen, die Wärme erzeugen. Zweifellos gilt für Enceladus das Gleiche, aber all sein Gestein reicht nicht aus, die beobachtete Wärme zu produzieren. Ansonsten kommen als plausible Wärmequelle nur Gezeitenkräfte in Frage. So wie die Schwerkraft von Sonne und Mond unseren Planeten ein wenig deformiert und das Wechselspiel von Flut und Ebbe hervorruft, knetet Saturns Gravitation Enceladus durch. Wegen dessen exzentrischer Bahn variiert sein Abstand von Saturn. Je näher er ihm kommt, desto mehr wird er deformiert. Diese Variation erzeugt innere Verschiebungen und somit Wärme.

Da Enceladus unter der Oberfläche fast sicher Wasser birgt, stehen wir vor der faszinierenden Möglichkeit, dass sich in dem kleinen Mond zumindest Vorstufen von Leben regen. Einem Ökosystem auf Enceladus würden auf der Erde am ehesten unterirdische vulkanische Schichen ähneln, in denen Wasser in völliger Finsternis heißes Gestein umspült. Hier findet man Organismen, die entweder Wasserstoff und Kohlendioxid aufnehmen, um daraus Methan zu erzeugen, oder Wasserstoff und Sulfate; Energie beziehen sie nicht von der Sonne, sondern aus der Erdwärme.

Ob so etwas auch auf Enceladus existiert? Dafür müsste eine Sonde auf dem Saturnmond landen und sein Innenleben noch genauer untersuchen. Quelle: Spektrum der Wissenschaft, Juni 2009

Geheimnisvolle Leuchtpunkte überm Jupiter überraschen die Wissenschaftler

Wer oder was ist verantwortlich für die Jupitermond IO Vorläufer? WISSEN DER ZUKUNFT berichtet darüber.

Jupiter-Mond Io
IO-Vorläufer

(idw). Wissenschaftler aus Köln und Lüttich (Belgien) haben mit Hilfe des Hubble Weltraumteleskops spektakuläre Leuchtpunkte im Jupiterpolarlicht beobachten können. Starke Plasmawellen elektrisch geladener Teilchen, die vom Jupitermond lo erzeugt werden, strömen in die Jupiteratmosphäre und bringen sie damit zum Leuchten. Am Fuß der gestörten Magnetfeldlinie an Jupiters Polen ist dieses Phänomen als Leuchtpunkt zu erkennen. Um eine vergleichbare Intensität zu erreichen, wären hundert irdische Kraftwerke nötig.
“Frühere Beobachtungen zeigen einen hellen Punkt in der Jupiteratmosphäre bei der Position Ios, den sogenannten Io-Fußpunkt”, erklärt Prof. Joachim Saur vom Institut für Geophysik und Meteorologie der Universität zu Köln. “Häufig erkennt man noch weitere, schwächere Leuchtpunkte hinter dem ersten Fußpunkt. Sie sind sozusagen ein Echo des Hauptpunktes.”
Nun wurden überraschenderweise weitere, allerdings weitaus schwächere Lichtpunkte an einem Ort gesichtet, wo nach den bisherigen Theorien keine existieren dürften – denn diese Lichtpunkte sind kein Echo, sondern eilen Io sogar voraus. Mit Hilfe von aufwendigen Computersimulationen, die vom Promotionsstudenten Sven Jacobsen von der Universität zu Köln durchgeführt wurden, konnten in der Vergangenheit wichtige Eigenschaften der Leuchtpunkte erklärt werden. Die Entdeckung der lo-Vorläufer macht allerdings deutlich, dass dieses Bild noch nicht vollständig gewesen ist.