Schlagwort-Archive: Kosmos

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Generalangriff der Philosophie auf die naturwissenschaftliche Weltsicht

Der amerikanische Philosoph Thomas Nagel bläst in seinem neuen Buch mit dem Titel „Geist und Kosmos“ (ISBN 978-3518586013 ) zum Generalangriff auf die etablierte naturwissenschaftliche Weltsicht. Ihr Problem, so seine These, ist grundsätzlicher Natur: Das, was den menschlichen Geist auszeichnet – Bewusstsein, Denken und Werte –, lässt sich nicht reduzieren, schon gar nicht auf überzeitliche physikalische Gesetze.

Hat Thomas Nagel recht oder passt seine eigene Weltsicht nicht zur Realität?

Zur Beantwortung der Frage möchte ich hier mein eigenes Weltbild als Naturwissenschaftler kurz skizzieren. Mein Weg zur Erklärung von Information, Bewusstsein, Sinn, Bedeutung, aber auch Dingen wie Krankheit oder die Phänomene der Quantenphysik, basiert auf einer strikten Trennung der abstrakten geistigen von der physikalischen Welt, da jede Vermischung beider Welten zu Ergebnissen führt, die weder real sind noch zur Naturwissenschaft gehören, sondern allein in der abstrakten geistigen Welt angesiedelt sind.

Beispielsweise gehören mathematische Formeln, exakte geometrische Formen, Gottheiten oder “unmögliche Dinge” wie eckige Kreise und eierlegende Wollmilchsäue zur abstrakten geistigen Welt. Ein Großteil der Objekte der Philosophie gehört dorthin. In der geistigen Welt existiert alles, was man nur denken kann.

Zum Bereich der realen physikalischen Welt gehört alles, was sich prinzipiell messen oder beobachten lässt, d. h. Wechselwirkungen mit anderen Objekten eingeht. Das Kriterium “Wechselwirkungen” hilft uns zu unterscheiden, was in die eine, was in die andere Welt gehört. Beispielsweise können eierlegende Wollmilchsäue in der freien Natur nicht fotografiert werden, d.h. sie können keine Photonen aussenden, die zu Wechselwirkungen mit dem Foto-Chip führen. Würde jemand mit einem Fotoapparat losziehen, um Bilder von der Wollmilchsau-Spezies zu schießen, würde man ihn zu Recht für dumm oder verrückt erklären, weil er die Realität nicht von der geistigen Welt zu unterscheiden vermag. Wenn es allerdings um die Anbetung von Gottheiten geht, dann ist die Gemeinschaft der Gläubigen geneigt, die Entitäten ihres eigenen Glaubens für real zu halten, die der Andersgläubigen aber für irreal.

Wie Schrödingers Katze die abstrakte mit der realen Welt vermischt

Die Vermischung von realer und geistiger Welt findet man nicht nur im geisteswissenschaftlichen oder theologischen Bereich, sondern genauso bei jenen Quantenphysikern, die Schrödingers Wellenfunktion als eine Beschreibung der Wirklichkeit ansehen. Zur Erinnerung: Schrödingers Wellenfunktion ist eine mathematische Formel zur Beschreibung des Zustands von Quanten vor ihrer Messung. Wäre die Wellenfunktion eine Beschreibung der Wirklichkeit, dann wäre Schrödingers Katze, die in einem Gedankenexperiment zusammen mit einem Mordinstrument in eine Kiste eingesperrt ist, vor dem Öffnen der Kiste gleichzeitig tot und lebendig.

Schrödingers Katze ist ein gutes Beispiel für die Vermischung der abstrakten Welt mit der realen physikalischen (siehe auch: „Der Widerhall des Urknalls“ ISBN 978-3848212255, S. 113). Die Wellenfunktion gehört als mathematische Formel zur abstrakten geistigen Welt, die Katze in der Kiste zur realen physikalischen. Die Vermischung der beiden Welten in einer physikalischen Theorie führt zu etwas, was in der realen Welt völliger Unsinn, in der abstrakten geistigen Welt ein erlaubtes gedankliches Konstrukt ist. Man muss sich nur im Klaren darüber sein, dass die Ergebnisse der Theorien, die beide Welten miteinander vermischen, nicht zur realen Welt gehören. Um es noch mal ganz deutlich zu sagen: Die gleichzeitig tote und lebendige Katze von Schrödingers Gedankenexperiment gehört nicht der realen Welt an.

Wie abstrakte und reale Welt miteinander verbunden sind

Zwischen der abstrakten und der physikalischen Welt gibt es nur eine Verbindung: Das sind die Prozesse. Dabei definiere ich einen Prozess in Übereinstimmung mit der DIN IEC 60050-351 als die Gesamtheit von aufeinander einwirkenden Vorgängen in einem System, durch die Materie, Energie oder Information umgeformt, transportiert oder gespeichert wird.“ Beispielsweise sind Computerprogramme Prozesse. Der Programmcode gehört zur abstrakten geistigen Welt. Die Ausführung des Programmcodes gehört zur physikalischen Welt, weil jede Durchführung eines Programmschritts eine Wechselwirkung darstellt.

Thomas Nagel ist wohl nicht bewusst, dass Prozesse die Verbindung zwischen der abstrakten geistigen und der realen Welt darstellen. Es mag völlig richtig sein, dass “Werte” nicht zur naturwissenschaftlichen Welt gehören, doch wenn Werte (= Ziele) in Prozesse (= Programme) eingebaut werden, dann verbinden sie die abstrakte Welt mit der physikalischen. Das Gleiche gilt für “Denken”. Denken formt Information um oder speichert sie. Denken kann deshalb als ein Prozess angesehen werden und der Denkprozess verbindet die abstrakte mit der realen Welt, indem etwas ausgeführt wird. Abstrakte Information wird umgeformt und physikalisch gespeichert.

Was ist aber mit dem Bewusstsein? Allgemein wird Bewusstsein als eine Entität angesehen, die je nachdem, aus welcher Fakultät der Wissenschaftler stammt, entweder einer nicht fassbaren, d. h. abstrakten, oder einer realen materialistischen, d. h. physikalischen Welt zugeordnet wird. Theologen und Geisteswissenschaftler neigen eher dazu, Bewusstsein als eine Entität der geistigen Ebene anzusehen. Dagegen ist nach meiner Überzeugung Bewusstsein ein Prozess (wie ich unter anderem in meinem Büchlein mit dem Titel “Synthetisches Bewusstsein ISBN 978-3842368033”) beschrieben habe. Damit verbindet es beide Welten, die abstrakte geistige und die physikalische.

Nagel hat insoweit recht, dass alle drei Entitäten, die den menschlichen Geist auszeichnen, sich nicht auf physikalische Gesetze reduzieren lassen. Aber sie lassen sich auf Prozesse reduzieren, die eine Verbindung zwischen der physikalischen und der abstrakten Welt darstellen.

Kann Krankheit auf überzeitliche physikalische Gesetze reduziert werden?

Wir können das bisher Gesagte anwenden und testen, indem wir einmal untersuchen, wo Krankheit einzuordnen ist. Ist Krankheit etwas abstrakt Geistiges oder ist es eine Entität der naturwissenschaftlichen Weltsicht? Nagel würde jetzt sagen: „Krankheit lässt sich nicht reduzieren auf überzeitliche physikalische Gesetze.“

Ich sehe Krankheit als ein Abweichen von der Regelhaftigkeit der Lebensvorgänge. Das Ausmaß dieses Abweichens bestimmt, ob es sich um Krankheit handelt oder nicht. Das Ausmaß ist ein abstrakter geistiger Wert. Lebensvorgänge sind Prozesse, denn in einem biologischen System, auf das sich der jeweilige Lebensvorgang bezieht, wird Materie, Energie oder Information umgeformt, transportiert oder gespeichert. Wenn es bei einem der Systemelemente zu Abweichungen kommt, dann kann das als Krankheit gelten. Weil Lebensvorgänge Prozesse sind, sehe ich Krankheit ebenfalls als einen Prozess. Da in Prozessen regelmäßig Information umgeformt, transportiert oder gespeichert wird, liegt in der Beobachtung und Einordnung der sich verändernden Information einer der Schlüssel zum tieferen Verständnis für das Wesen der Krankheit. Wie Information sich auf den Krankheitsprozess auswirkt, werde ich in einem meiner nächsten Beiträge untersuchen. – Klaus-Dieter Sedlacek

Buchtipps:

 

Was nützt uns die Kosmologie?

Haben wir nicht schon genügend Probleme auf Erden? Aktuell bangen wir im Zusammenhang mit der Eurokrise, der Krise in der arabischen Welt und dem Konkurs einer großen Handelskette. Müssen wir uns dann noch um die Vorgänge am Himmel kümmern?
Nein, wir müssen nicht. Aber dennoch gibt es eine große Zahl an Menschen, die nach einer Antwort auf Fragen suchen, warum wir hier auf unserer Erde überhaupt existieren, wie alles anfing und ob sich in der Unendlichkeit des Alls ein Schöpfer manifestiert.
Was sind eigentlich die Motive der Menschen sich mit Fragen der Kosmologie zu befassen. Ist es ganz einfach Neugier, wollen sie sich um mit einem Bibelwort zu reden die Erde untertan machen, ist es die Gier nach Sensationen oder irgendein anderes verstecktes Motiv?
Der Autor Gerhard Josten, den die Unendlichkeit seit seiner Jugend fasziniert, hat sich die Aufgabe gestellt, die Beweggründe der Menschen zu erforschen und die Vielfalt ihrer Meinungen über den Kosmos in dem Buch mit dem Titel »Ein All ohne Knall« zu präsentieren. Eigentlich hätte man dem Buch noch einen Untertitel, etwa »Die Beweggründe von Menschen, sich mit der Kosmologie zu beschäftigen« geben müssen. Der Haupttitel mag sonst dazu verleiten, zu glauben der Urknall würde im Mittelpunkt des Werks stehen. Dem ist aber nicht so, vielmehr steht der Mensch mit seiner ungeheuren Vielfalt an Vorstellungen und seinen Motiven im Zentrum. Wie hat der Autor dieses mehr psychologische Thema angepackt?
Das Buch ist in drei Teile gegliedert. Im ersten Teil werden einige Auszüge aus dem Stand der Weltraumforschung gegeben. Dabei wird die Rotverschiebung als wichtigstes Argument für den Beginn des Universums in einer Singularität (Urknall) näher beleuchtet. Weiter werden die Folgen beschrieben, die auf dem dualen Charakter des Lichts basieren. Bekanntlich hat Licht je nach Art der Messung entweder Wellencharakter oder Teilchencharakter. Diese Eigenschaft ist für den Nichtphysiker äußerst verwirrend und führt deshalb häufig zu Missverständnissen. Ein drittes und letztes Thema im ersten Teil ist die Suche nach einem erdähnlichen Planeten irgendwo in den Fernen des Weltalls, die Unmengen an Forschungsmittel verschlingt.
Im zweiten Teil des Buchs sind Beiträge von Journalisten, Fachleuten und Wissenschaftlern veröffentlicht. Dabei handelt es sich entweder um fundierte Fachbeiträge oder um Meinungen und Bekenntnisse, die teilweise kontrovers gegenüber den angezweifelten Erkenntnissen der Mainstreamwissenschaft sind. Insbesondere wird angezweifelt, ob die Rotverschiebung des Lichts aus fernen Galaxien tatsächlich ein Argument für die permanente Ausdehnung des Universums ist.
Im dritten und letzten Teil hat sich der Autor mit dem Psychlogen Prof. Dr. Erich Kasten und dem Philosophen Dietmar Odilo Paul zu einer Gesprächsrunde getroffen, um das Thema anzugehen, das ihm besonders am Herzen liegt, nämlich die Beweggründe der Menschen aufzudecken, sich mit dem Kosmos und dem Beginn von allem zu beschäftigen. Zu welchen Ergebnissen die Runde kommt, sei hier nicht verraten.
Um ein Resumee zu ziehen, kann ich sagen, dass dieses Werk zunächst einmal der Meinungsvielfalt über das Urknall-Thema ein Forum bietet. Abweichende Meinungen werden nicht ausgegrenzt, sondern genauso dargestellt, wie die Meinungen, die mit der Mainstreamwissenschaft konformgehen. Schließlich wird auch Licht in die verborgenen Beweggründe gebracht, warum sich Menschen überhaupt mit Dingen beschäftigen, die sie nicht beeinflussen können.
Für alle, die an solchen Fragestellungen interessiert sind, ist Jostens »Ein All ohne Knall« eine Perle gegenüber den Büchern, die abweichende Meinungen ausgrenzen und mehr Fragen aufwerfen als beantworten. Hier bekommt man wenigstens Antworten auf die Beweggründe der Menschen.

Buchtipps:

Warum es von Paralleluniversen nur so wimmelt.

Video: Paralleluniversen

Viele Kosmologen fasziniert die Idee, es gebe unzählige Paralleluniversen mit jeweils eigenen Naturgesetzen.

Seit einigen Jahren debattieren Theoretiker über eine kühne These: Außer dem Universum, das wir wahrnehmen, sollen noch ungezählte weitere Universen existieren. Es gäbe demnach nicht nur einen Kosmos, sondern ein Multiversum. Der amerikanische Physiker Brian Greene bezeichnet diese Vorstellung als “super-kopernikanische Revolution”, da ihr zufolge nicht nur unser Planet einer unter vielen ist, sondern sogar unser gesamtes Universum in kosmischem Maßstab nur eine unbedeutende Spielart möglicher Welten darstellt.

Theoretiker wie Greene oder der russisch-amerikanische Physiker Alexander Vilenkin postulieren völlig unterschiedliche Universen mit einer jeweils anderen Physik, mit einer eigenen Geschichte oder gar mit unterschiedlich vielen Raumdimensionen. Die meisten dieser hypothetischen Welten sind lebensfeindlich, doch einige wimmeln von Organismen. Vilenkin entwirft das dramatische Bild einer unendlichen Menge von Universen, in der unendlich viele Personen Ihren Namen tragen und gerade diese Zeilen lesen.

Wie kommen Kosmologen neuerdings allen Ernstes auf eine Idee, die zunächst wie pure Sciencefiction anmutet? Warum es von Paralleluniversen nur so wimmelt. weiterlesen

Gibt individuelle Spiritualität dem Leben einen Sinn?

In Europa kehren immer mehr Menschen den etablierten Kirchen den Rücken. Die zunehmende Säkularisierung unserer Gesellschaft bedeutet aber keineswegs, dass spirituelle Erfahrungen nicht mehr zeitgemäß wären – im Gegenteil!

Eine wachsende Zahl von Menschen empfindet die etablierten Religionen als beengend und ausgrenzend. Die katholische Kirche etwa schließt Geschiedene, wenn sie eine neue Partnerschaft eingehen, von den Sakramenten aus, und Homosexualität gilt in vielen Religionsgemeinschaften als problematisch. Das ist für viele Zeitgenossen heute nicht mehr nachvollziehbar.

Die Entfremdung von traditionellen Religionen macht sie aber nicht zu Menschen ohne spirituelles Empfinden, wie das Wissenschaftsmagazin Gehirn&Geist in seiner aktuellen Ausgabe(Heft 3/2011) berichtet. In einer Umfrage von Forschern der Universität Salzburg aus dem jahr 2006 bezeichnete sich nur jeder fünfte Teilnehmer als weder spirituell noch religiös. Was aber bedeutet Spiritualität heute? Verbinden Menschen damit eine besondere Beziehung zu Gott, zum Kosmos oder einfach einen Zustand allgemeiner Harmonie und Ausgeglichenheit?

US-amerikanische Wissenschaftler von der Indiana University bündelten 2004 rund 30 Studien zum Thema. Ergebnis: Spirituelle Menschen empfinden ihr Leben in hohem Maße als sinnvoll, fühlen sich oft mit dem Kosmos und einen höheren Macht verbunden, üben sich in spirituellen Praktiken wie Gebet oder Meditation. Zudem fördert eine spirituelle Orientierung das Wohlbefinden, körperlich wie auch psychisch.

Letzteres belegt auch eine Untersuchung der indischen Psychologen Mojtaba Aghili und G. Venkatesh Kumar von der University of Mysore von 2008. Die Forscher hatten 1500 Landsleute befragt und herausgefunden, dass Glück und Zufriedenheit bei diesen eng mit religiösen und spirituellen Überzeugungen zusammenhing. Ähnliches zeigte eine 2010 veröffentlichte Studie der Psychologin Mira Kammerl an 180 deutschen Probanden: Demnach sind spirituelle Menschen gelassener und entspannen sich nach Stress und Belastungen leichter. Das dürfte unter anderem dazu beitragen, dass sie im Schnitt bessere Herz-Kreislauf-Werte und eine höhere Lebenserwartung aufweisen.

Spirituelle Menschen wenden sich zudem häufiger anderen zu oder engagieren sich etwa für ein pädagogisches oder soziales Projekt. Eine Folge: Sie neigen seltener zu Depressionen, wie die Medizinerin Joanna Maselko von der Temple University in Philadelphia 2009 in einer Studie an knapp 1.000 US-Bürgern nachwies. Individuelle Spiritualität, die dem eigenen Leben Sinn verleiht, schützt Forschern zufolge besser vor Depression als etwa regelmäßiger Kirchgang. (Quelle: Gehirn&Geist, Ausgabe 3/2011)

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Dunkle Energie: Welches Schicksal erwartet unser Universum?

Geheimnisse des Universums: Dunkle Energie

Umstrittene Dunkle Energie

Gibt es eine Alternative, die beschleunigte Expansion des Weltalls zu erklären?
Das Universum scheint sich beschleunigt auszudehnen. Ursache dafür soll eine seltsame neue Energieform sein, Fachleute nennen sie die Dunkle Energie. Das Problem: Niemand weiß wirklich, was diese Dunkle Energie wirklich ist. Bisher suchen sie jedenfalls vergeblich nach Erklärungen für das rätselhafte Verhalten des Kosmos.

Kein Wunder, dass immer wieder alternative Modelle entwickelt werden, um vielleicht ohne exotischen Energieformen auszukommen. Wie zwei Kosmologen von der Oxford University im aktuellen August-Heft von “Spektrum der Wissenschaft” in der Titelgeschichte beschreiben, könnte ein solches Alternativmodell so aussehen: Falls wir kosmisch gesehen inmitten einer Region leben, in der weniger Sterne und andere Materie zu finden sind als anderswo, dann würde sich der astronomische Befund vom gleichmäßig beschleunigten Universum anders darstellen. Dann variiert nämlich die kosmische Expansionsrate mit dem Ort – und das würde den Astronomen eine kosmische Beschleunigung nur vorspiegeln, ohne es wirklich zu sein.

Könnte es also sein, dass wir im Universum nicht in einer gleich verteilten Ansammlung von Sternen und Galaxien leben, wie das kosmische Standardmodell annimmt? Eine riesige Leere um die Erde und ihr Milchstraßensystem herum kommt den meisten Kosmologen deshalb auch sehr unwahrscheinlich vor, doch einige Forscher ziehen sie der mysteriösen Dunklen Energie vor. Was spricht dafür? Was spricht dagegen?

Die Entdeckung des beschleunigten Universums kündigte sich vor vor elf Jahren an. Aus einer winzigen Abweichung in der Helligkeit explodierender Sterne folgerten die Astronomen, sie hätten keine Ahnung, woraus über 70 Prozent des Kosmos bestehen. Sie konnten nur feststellen, dass der Raum anscheinend von einer ganz unvergleichlichen Substanz erfüllt wird, welche die Expansion des Universums nicht bremst, sondern vorantreibt. Diese Substanz erhielt damals den Namen Dunkle Energie.

Inzwischen ist ein Jahrzehnt vergangen, und die Dunkle Energie gibt noch immer so viele Rätsel auf, dass einige Kosmologen die grundlegenden Postulate, aus denen ihre Existenz gefolgert wurde, in Zweifel ziehen. Eines dieser Postulate ist das kopernikanische Prinzip. Ihm zufolge nimmt die Erde keinen zentralen oder sonst wie ausgezeichneten Platz im All ein. Wenn wir dieses Grundprinzip preisgeben, bietet sich eine überraschend einfache Erklärung für die neuen Beobachtungen an.

Wir haben uns längst an die Idee gewöhnt, dass unser Planet nur ein winziger Fleck ist, der irgendwo am Rand einer durchschnittlichen Galaxie einen typischen Stern umkreist. Nichts scheint unseren Ort inmitten von Milliarden Galaxien, die sich bis an unseren kosmischen Horizont erstrecken, besonders auszuzeichnen. Doch woher nehmen wir diese Bescheidenheit? Und wie könnten wir herausfinden, ob wir nicht doch einen speziellen Platz einnehmen? Meist drücken sich die Astronomen um diese Fragen und nehmen an, unsere Durchschnittlichkeit sei offensichtlich genug. Die Idee, wir könnten tatsächlich einen besonderen Ort im Universum bewohnen, ist für viele undenkbar. Dennoch ziehen einige Physiker dies seit Kurzem in Betracht.

Zugegeben: Die Annahme, wir seien kosmologisch unbedeutend, erklärt viel. Mit ihrer Hilfe können wir von unserer kosmischen Nachbarschaft auf das Universum im Großen und Ganzen schließen. Alle gängigen Modelle des Universums beruhen auf dem kosmologischen Prinzip. Die beschleunigte Expansion war also die große Überraschung, mit der die aktuelle Revolution in der Kosmologie begann.

Angenommen, die Expansion verlangsamt sich überall, weil die Materie an der Raumzeit zieht und sie bremst. Nehmen wir ferner an, dass wir in einer gigantischen kosmischen Leere leben – in einem Gebiet, das zwar nicht völlig leer gefegt ist, wo aber die mittlere Materiedichte nur etwa halb so groß ist wie anderswo. Je leerer eine Raumregion ist, desto weniger Materie bremst dort die räumliche Expansion, und entsprechend höher ist die Expansionsgeschwindigkeit innerhalb des Leerraums. Am höchsten ist sie in der Mitte; zum Rand hin, wo sich die höhere Dichte des Außenraums bemerkbar macht, nimmt sie ab. Zu jedem Zeitpunkt expandieren verschiedene Raumpartien unterschiedlich schnell – wie der ungleichmäßig aufgeblasene Luftballon.

Wie ausgefallen ist diese Idee einer monströsen Abnormität? Auf den ersten Blick sehr. Sie scheint in eklatantem Widerspruch zur kosmischen Hintergrundstrahlung zu stehen, die bis auf Hunderttausendstel genau gleichförmig ist, ganz zu schweigen von der im Großen und Ganzen ebenmäßigen Verteilung der Galaxien. Doch bei näherer Betrachtung muten diese Indizien weniger zwingend an. Die Gleichförmigkeit der Reststrahlung erfordert nur, dass das Universum in jeder Richtung nahezu gleich aussieht. Wenn eine Leere ungefähr kugelförmig ist und wir einigermaßen nahe ihrem Zentrum sitzen, muss sie nicht unbedingt den Beobachtungen widersprechen.

In kommenden Jahren werden Himmelsbeobachtungen zwischen beiden Erklärungen entscheiden.
Quelle: Spektrum der Wissenschaft, August 2009

Ist das Universum endlich?

Video: Die schönsten Bilder aus dem Kosmos vom Hubble Teleskop aufgenommen.

Ist das Universum ein Donut? Forscher stellen wieder die uralte Frage, ob der Kosmos endlich oder unendlich groß ist – und entdecken neue Wege zu einer Antwort.

Ist der Weltraum unendlich groß, wie es seit Jahren die Kosmologen behaupten? Oder gibt es vielleicht Alternativen zu diesem Weltmodell? Es ist die präzise Vermessung der kosmischen Hintergrundstrahlung – ein Relikt vom Anfang des Universums, dem Urknall -, die den Forschern jetzt neue Wege eröffnet, um zwischen endlichen und unendlichen Modellen des Kosmos zu unterscheiden.

Wie Frank Steiner und sein Team von der Universität Ulm zeigen konnten, ist derzeit auch ein endliches Universum von der Form eines Torus mit den Beobachtungsdaten verträglich.

Torus

Vielleicht nähern wir uns damit allmählich der Antwort auf die über zwei Jahrtausende alte Frage, ob das Universum endlich oder unendlich groß ist. Und wenn der Ulmer Forscher Steiner Recht hat, dann könnte es eine Lösung geben, an die bisher nur wenige gedacht haben. In der Januarausgabe von “Spektrum der Wissenschaft” wird über die Arbeiten von Frank Steiner ausführlich berichtet.

Kosmologische Räume werden gewöhnlich nach ihrer so genannten Krümmung unterschieden. Sind sie positiv gekrümmt, wie etwa die zweidimensionale Oberfläche einer Kugel, haben sie stets ein endliches Volumen. Räume mit negativer Krümmung – wie etwa eine zweidimensionale Satteloberfläche – heißen „hyperbolisch” und können endlich oder unendlich sein. Entsprechendes gilt für flache Gebilde wie etwa die euklidische Ebene. Was diese drei Raumtypen unterscheidet, ist ihre Krümmung: positiv für die Kugeloberfläche, negativ für den hyperbolischen Raum, null für den euklidischen Raum. Solche Räume ohne jede Krümmung nennen die Fachleute gerne „flach”.

Da die globale Geometrie eines Raumes (fachlich: seine Topologie, die Lehre von den Orten) durch seine Krümmung nicht vollständig festgelegt wird, ist diese Dreitypenlehre jedoch nur die halbe Geschichte. So kann auch ein flacher Raum endlich sein. Ein Beispiel für einen flachen, aber endlichen Raum bildet die Oberfläche eines Torus. Ringe beziehungsweise Donuts sind Torusbeispiele in zwei Dimensionen, fachlich ein „Zwei-Torus”.

Den möglichen Hinweisen auf ein endliches Universum sind inzwischen mehrere Forscher nachgegangen, zuletzt Frank Steiners Gruppe von der Universität Ulm. Sie hat seit 1999 mehrere Geometrien untersucht, zuletzt einen so genannten Drei-Torus, die dreidimensionale Version des uns vertrauten zweidimensionalen Rings oder Zwei-Torus. Als Modell unseres Kosmos wäre ein Drei-Torus die einfachste nichttriviale Geometrie eines endlichen flachen Raums.

Die Analyse der Ulmer Forscher setzt in Übereinstimmung mit Himmelsbeobachtungen einen endlichen flachen Raum voraus und vergleicht dann das Drei-Torus-Universum detailliert mit den Daten. Erstaunlicherweise stimmt das Drei-Torus-Modell eines endlichen flachen Raums exzellent mit den Beobachtungsdaten überein, in manchen Bereichen der Messkurven passt es sogar besser als das Standardmodell mit unendlichem flachen Raum.

Wie also wird der Wettstreit zwischen der Standardkosmologie und dem etwas ketzerischen Torus-Gegenmodell ausgehen? Frank Steiner sieht die Dinge pragmatisch: „Die Beobachtungen müssen es entscheiden!” (Quelle: Spektrum der Wissenschaft, Januar 2009)

Mehr zum Thema:
Superloch im All: Paralleluniversum entdeckt?

Quanten-Darwinismus: Das Evolutionsprinzip jetzt auch bei Quanten nachgewiesen.

(prcenter.de) Die fundamentalen Prinzipien der Evolution gelten offenbar auch für die kleinsten Teilchen der Materie. Wissenschaftler fanden, dass sich nur die „fittesten“ Partikel durchsetzen und ihren eigenen „Nachwuchs“ erzeugen. Da diese Eigenschaft „universell“ gilt, könnte die Entstehung von Leben im Kosmos eher die Regel als die Ausnahme sein.
Die Entdeckung der Physiker Prof. Friedemar Kuchar und Dr. Roland Brunner von der österreichischen Montanuniversität Leoben darf ohne Übertreibung als wissenschaftliche Sensation bezeichnet. In enger Zusammenarbeit mit Kollegen von der Arizona State University in den USA untersuchten sie so genannte Quantenpunkte von Halbleitern. Quantenpunkte sind kleinste Nanostrukturen, für die auf Grund ihrer geringen Größe nicht die Gesetze der klassischen Physik, sondern vielmehr die Regeln der Quantenmechanik gelten.

Bei der Messung der Energiewerte der Quantenpunkt stieß er auf einen seltsamen Effekt. Werden diese Zustände der Elektronen gemessen, dann vermischen sich die Zustände der Elektronen zum Teil miteinander, aber auch mit jenen der Umgebung. Das hat wiederum zur Folge, dass sie energetisch „verschmiert“ werden. Einige der ursprünglichen Zustände erwiesen sich jedoch als robust und behielten ihre Energiewerte. Diese so genannten „Pointer-Zustände“ konnten bisher für einzelne Quantenpunkte nachgewiesen werden.

Das Verblüffende: Wie das Team berichtet ist es gelungen, deutliche Hinweise auf einen Quanten-Darwinismus zu finden. Dahinter verbirgt sich die Idee, dass bei einer Wechselwirkung mit der Umgebung nur die „stärksten“ Zustände, eben die Pointer-Zustände, stabil bleiben und diese die Eigenschaft haben, „Nachwuchs“ zu produzieren. Zum Nachweis dieses Postulats berechnete die Gruppe um Dr. Brunner und Prof. Kuchar die Aufenthaltswahrscheinlichkeiten der Elektronen im System mehrerer Quantenpunkte in Serie.
Wie die Wissenschaftler weiter berichten, scheint es bereits auf Quantenebene eine Art von Beziehungsleben zu geben. Dieser Quanten-Darwinismus soll wiederum für die Selektion und Fortpflanzung quantenmechanischer Zustände verantwortlich sein, die wiederum erst die Wahrnehmung unserer Realität ermöglichen.
Das Postulat eines Quanten-Darwinismus ist nicht ganz neu. Als geistiger Vater gilt der US-Forscher Wojciech H. Zurek vom Los Alamos Laboratory in New Mexico, der als erster diese Idee hatte. Der gelungene experimentelle Nachweis dieses Phänomens unterstreicht wieder einmal in aller Deutlichkeit, die Bedeutung von Visionären in der Wissenschaft.
Dass der Quanten-Darwinismus ein fundamentales Prinzip des gesamten Universums sein dürfte, wird auch in dem vor wenigen Monaten erschienenen Buch “Die geheime Physik des Zufalls: Quantenphänomene und Schicksal – Kann die Quantenphysik paranormale Phänomene erklären?” diskutiert. Dort wird unter anderem veranschaulicht, wie sich Quantenzustände mit ihren gespeicherten Informationen unter anderem in den ersten Genen verwirklicht haben, woraus sich wiederum Konsequenzen für die vielfältigen Möglichkeiten außerirdischen Lebens ziehen lassen.

Linktipps:
Haben die kleinsten Bausteine der Materie Bewusstsein?
Quantenphysiker sind dem Jenseits auf der Spur
Können bewusste Quanten schwarze Löcher am CERN verhindern?
Warum eine kleine Mieze Quantenphysiker wahnsinnig macht

Nanotechnologie: Durchbruch bei winzigen molekularen Maschinen!

Abbildung: Wie eine Erbsenschote – metallorganische Moleküle eingesperrt in Kohlenstoff-Nanoröhrchen. M. Ashino, Universität Hamburg
Wie eine Erbsenschote - metallorganische Moleküle eingesperrt in Kohlenstoff-Nanoröhrchen.(idw). Wie die renommierte britische Fachzeitschrift “Nature Nanotechnology” in ihrer Online-Ausgabe vom 25. Mai 2008 berichtet, gelang es Forschern von der Universität Hamburg mit Hilfe eines Rasterkraftmikroskops die Bewegung von Molekülen, die in anderen größeren Molekülen eingesperrt sind, zu messen und zu kontrollieren. Diese herausragenden Forschungsergebnisse eröffnen völlig neuartige Wege für die Entwicklung von nanomechanischen Geräten, wie zum Beispiel molekulare Nano-Transporter.
Seit der Mensch den ersten Blick in den Nanokosmos warf, stand die Idee im Raum, diese winzige Welt der Atome und Moleküle gezielt zu manipulieren und molekulare Maschinen zu entwickeln, die selbständig beliebige Materialien und komplexe Systeme aus einzelnen Atomen und Molekülen aufbauen können. Immer wieder liest man von medizinischen Zukunftsvisionen, wie z. B. von Nano-Robotern, die durch den Blutkreislauf patrouillieren und gefährliche Viren aufspüren und bekämpfen. Den Nanokosmos können die Wissenschaftler inzwischen zwar mit aufwendigen Verfahren und großen Geräten gezielt Atom für Atom kontrollieren, aber molekulare Nano-Maschinen sind noch immer im Bereich der Science-Fiction angesiedelt. Nichtsdestotrotz wird an verschiedenen Antriebssystemen für solche Nano-Maschinen intensiv geforscht.Einen völlig neuen Ansatz eröffnen die Arbeiten der beiden Forscher Dr. Makoto Ashino und Prof. Dr. Roland Wiesendanger von der Universität Hamburg, die in dieser Woche von der Fachzeitschrift “Nature Nanotechnology” veröffentlicht wurden. Zusammen mit einem internationalen Team aus Wissenschaftlern vom Max Planck Institut für Festkörperforschung, der Technischen Universität von Eindhoven, der Universität Nottingham und der Universität Hong Kong fanden die Hamburger Forscher neue Möglichkeiten der Messung der Kräfte, die Moleküle innerhalb von anderen Molekülen bewegen.

Für ihre Experimente sperrten die Forscher metallorganische Moleküle in Kohlenstoff-Nanoröhrchen ein. Die dabei entstehende Struktur kann man sich wie eine Erbsenschote vorstellen (Abb. 1). Die so vorbereiteten Moleküle innerhalb von Nanoröhrchen wurden auf einer isolierenden Oberfläche platziert und mit Hilfe der berührungslosen Rasterkraftmikroskopie untersucht.

Ein Rasterkraftmikroskop arbeitet nicht mit Licht, wie ein herkömmliches Lichtmikroskop, sondern es funktioniert ähnlich wie ein Plattenspieler. An einem mikroskopisch kleinen Federbalken befindet sich eine atomar scharfe Spitze, die über eine Oberfläche gerastert wird. Die Auslenkung des Federbalkens wird mit Hilfe eines Laserstrahls bestimmt und aus den daraus resultierenden Daten am Computer eine dreidimensionale Abbildung der Oberfläche erzeugt. Im berührungslosen Modus eines Rasterkraftmikroskops schwingt der Federbalken über der Oberfläche, ohne dass die Spitze diese berührt.

Neben der Untersuchung der Oberflächentopographie der “Erbsenschote” ermittelten die Wissenschaftler auch gleichzeitig die Energie, die der vibrierenden Spitze des Rasterkraftmikroskops verloren ging, während sie über die Oberfläche der Struktur bewegt wurde. Dadurch konnten die Hamburger Wissenschaftler erstmalig die Kräfte, die die kleinen metallorganischen Moleküle innerhalb der Kohlenstoff-Nanoröhrchen bewegen, messen und sogar gezielt kontrollieren. Dies stellt einen entscheidenden Durchbruch in der Erforschung von molekularen Maschinen und molekularen Transportern dar, die für die weitere Entwicklung der Nanotechnologie eine hohe Bedeutung haben.

Weitere Informationen:

https://www.nanoscience.de