Schlagwort-Archive: Leben

Lebensbausteine um sonnenähnlichen Stern entdeckt

ALMA entdeckt Methylisocyanat um junge sonnenähnliche Sterne Bild: ESO/Digitized Sky Survey 2/L. Calçada
ALMA entdeckt Methylisocyanat um junge sonnenähnliche Sterne
Bild: ESO/Digitized Sky Survey 2/L. Calçada

(idw) Bei der Beobachtung von sonnenähnlichen Sternen, die sich noch in sehr frühen Entwicklungsstadien befinden, haben Forscher mit ALMA Spuren von Methylisocyanat gefunden – einem chemischen Bestandteil für die Entwicklung von Leben. Es handelt sich um die erste Entdeckung dieses präbiotischen Moleküls um sonnenähnliche Protosterne, bei denen die Bedingungen, die dort herrschen, mit jenen vergleichbar sind, als unser Sonnensystem entstand. Die Entdeckung könnte Astronomen deshalb helfen, zu verstehen, wie das Leben auf der Erde seinen Anfang nahm. Lebensbausteine um sonnenähnlichen Stern entdeckt weiterlesen

Die Befreiung des Bewusstseins von den Fesseln der Zeit

Die für uns Menschen hohe Bedeutung der Frage nach dem zeitlichen Ende unserer Existenz und ihre vernunftmäßige Beantwortung soll in diesem Buch unsere Aufgabe sein, dagegen nicht die Antwort, welche der Glaube sucht.
Ich gebrauche hier das „Wir“, weil ich Sie mitnehmen möchte auf den Weg der Beantwortung, den ich mit Ihnen gemeinsam gehen möchte.
Wir wollen also im Nachfolgenden auf dem Boden der Wissenschaft bleiben, und da haben wir ganz nüchtern zu untersuchen, wie weit wir von den Tatsachen aus und vom Standpunkt des logischen Denkens das Geheimnis des zeitlichen Endes enthüllen und die Frage beantworten können: Gibt es ein Leben nach dem Leben?
Sind wir diesen Weg unerbittlich bis ans Ende gegangen, dann mag ein jeder Leser sich entscheiden, ob er danach noch mit gutem Gewissen einen anderen Weg, den Weg Herzens gehen will. Vielleicht, dass dieser ihm dann noch manche Strecke des Vernunftweges, die der Natur der Sache nach dunkel bleiben musste, in eigenartiger Weise beleuchtet.
Wir können den Weg des vernunftmäßigen Denkens auch den kritisch-wissenschaftlichen nennen. Dann aber besteht er darin, dass wir alle Erscheinungen, die mit der betreffenden Frage, für uns also mit der Frage nach dem zeitlichen Ende, zusammenhängen, vorurteilsfrei prüfen und aus ihnen das Allgemein-Gültige herausschälen, wobei wir niemals von logisch klarer Begriffsbildung und Schlussfolgerung abweichen dürfen.
Bemühen wir uns also in diesen Untersuchungen diesen Weg nie zu verlassen, nur dann werden wir bis zum Schluss festen Boden unter den Füßen behalten.
Nun möchte es von vornherein höchst schwierig erscheinen, für unseren Weg den geeigneten Anfang zu finden, weil es sich ja eben doch um ein Etwas handelt, das wir unbedenklich zunächst als „Geheimnis“ bezeichnen.
Allein es gibt doch einen Weg, und zwar einen sehr aussichtsvollen.
Unsere Grundfrage muss natürlich sein: „Was ist das zeitliche Ende?“ Wir werden aber auch dadurch zum Ziel kommen können, dass wir vorerst einmal nach dem etwaigen Gegenteil des zeitlichen Endes fragen.
Können wir dieses verstehen, dann werden wir am Ende von ihm aus auch das Geheimnis des zeitlichen Endes in etwa zu entwirren imstande sein.
Als Gegenteil des zeitlichen Endes sehen wir das Leben an, und da wir alle im Leben sind, da das Leben unser ureigenster Besitz ist, so werden wir von ihm etwas zu sagen wissen.
Freilich wollen wir uns von vornherein nicht verhehlen, dass wir uns auch hier einem schweren Problem gegenüber befinden, dem Geheimnis des Lebens. Allein so viel ist klar, dass es das weniger schwierige Problem für uns sein muss, eben deshalb, weil wir selbst in ihm stehen, und dass wir das Geheimnis des zeitlichen Endes am besten vom Problem des Lebens aus werden verstehen können. Daher soll dieses uns zunächst beschäftigen.
Was ist das Leben? Diese Frage stellen wir zuerst.
Das Leben ist eine Naturerscheinung, es gehört zur Natur, — darüber besteht zunächst nicht der geringste Zweifel. Wenn dies aber der Fall ist, dann befinden wir uns mit der Frage nach dem Leben auf dem Boden der Naturwissenschaft. Und sie muss uns bei Beantwortung der Frage helfen können.

Bibliographische Angaben:
Buchtitel: Leben nach dem Leben: Die Befreiung des Bewusstseins von den Fesseln der Zeit
Autor(en): Klaus-Dieter Sedlacek;
Gebunden: 144 Seiten
Verlag: Books on Demand
ISBN 978-3-7392-4013-8
Ebook: ISBN 978-3-7412-6055-1
Bezug über alle relevanten Buchhandlungen, Online-Shops und Großhändler – z. B. Amazon, Apple iBooks, Tolino, Google Play, Thalia, Hugendubel uvm.

Die ersten Spuren psychischer Erscheinungen

Buchvorstellung: ‘Das psychische Leben von Mikroorganismen – Eine Studie in experimenteller Psychologie’. Es geht unter Anderem darum, dass alle lebenswichtigen Phänomene bereits in den allereinfachsten Zellen und Lebewesen vorhanden sind.

Es gibt mikroskopisch winzige Lebewesen, die kein Gehirn haben und dennoch so etwas wie ein Gedächtnis. Diesen Lebewesen fehlen alle Sinnesorgane, dennoch können sie anscheinend sehen, hören, riechen und fühlen. Sie haben keine Arme oder Beine, dennoch können sie laufen und bei Bedarf so etwas wie Ärmchen nachbilden, um sich damit das zu greifen, was sie wollen. Sie können jagen, sich verteidigen, ja sie haben sogar ein ausgeprägtes Sexualleben.
Alfred Binet führt uns im Rahmen seiner Studie über das psychische Leben der einzelligen Mikroorganismen in diese geheimnisvolle Welt ein, die vielseitiger ist, als die Welt der uns bekannten Tiere. Er weiß fundierte Antworten auf Fragen über die grundlegenden Phänomene des Lebens, beispielsweise auf die Frage, ob psychisches Leben überhaupt eine Eigenschaft der lebenden Materie ist. Der erfahrene Forscher und Psychologe Binet weiß nicht nur die Antworten, er nimmt den Leser mit auf seiner Entdeckungsreise durch die wunderbare Welt des psychischen Lebens der Mikroorganismen.

Bibliographische Angaben:
Buchtitel: Die ersten Spuren psychischer Erscheinungen: Das psychische Leben von Mikroorganismen – Eine Studie in experimenteller Psychologie
Autor(en): Alfred Binet; Klaus-Dieter Sedlacek
Taschenbuch: 144 Seiten
Verlag: Books on Demand
ISBN 978-3-7431-8088-8
Ebook:
Bezug über alle relevanten Buchhandlungen, Online-Shops und Großhändler – z. B. Amazon, Apple iBooks, Tolino, Google Play, Thalia, Hugendubel uvm.

Rezensionsexemplar: presse(at)bod.de

Der französische Psychologe Alfred Binet (1857 – 1911) gilt als Begründer der Psychometrie. Er studierte unter anderem Medizin und Biologie an der Sorbonne. Seine Forschungsergebnisse auf dem Gebiet der Intelligenzmessung und der Mikroorganismen sind eine Arbeitsgrundlage für Psychologen und Naturforscher auf der ganzen Welt.

Gen für das Gefühlsleben von Pflanzen entdeckt

Pflanzen zu drücken oder zu streicheln ist eine jahrhundertealte Methode im japanischen Landbau. Die mechanische Stressbehandlung erhöht die Widerstandsfähigkeit der Pflanzen und steigert damit auch den Ertrag, führt aber auch zu gedrungenem Wachstum und verzögertem Blühen. Verantwortlich dafür ist ein Gen, das nun von Dr. Maria Pimenta Lange und Prof. Theo Lange vom Institut für Pflanzenbiologie der Technischen Universität Braunschweig entdeckt wurde.

Die positive Auswirkung mechanischer Stressbehandlung von Pflanzen wurde erst vor wenigen Jahren in den westlichen Industrienationen bekannt. Bis dahin ging die Forschung davon aus, dass sich die sogenannte Thigmomorphogenese vor allem durch gedrungenes Wachstum und verzögertes Blühen auf Pflanzen auswirke, erläutert Prof. Theo Lange. Forschungsergebnisse aus den USA und der Schweiz wiesen in den vergangenen Jahren auch auf nützliche Effekte hin, wie etwa eine bessere Schädlingsabwehr, jedoch ohne den Wirkmechanismus aufzuklären, so der Braunschweiger Pflanzenbiologe.

Gemeinsam mit Dr. Maria Pimenta Lange ist es dem Leiter der Abteilung Biochemie und Physiologie der Pflanzen am Institut für Pflanzenbiologie der TU Braunschweig nun gelungen, das Gen zu identifizieren, das für die Berührungsreaktion von Pflanzen verantwortlich ist. Das Gen „AtGA2ox7“ kodiert ein Protein, das für den Abbau eines bestimmten Pflanzenhormons, den Gibberellinen, zuständig ist. Ohne dieses Gen, so die aktuellen Forschungsergebnisse der Braunschweiger Pflanzenbiologen, reagiere die Pflanze auf den Berührungsreiz nicht mehr mit morphologischen Veränderungen und wachse wie eine unbeeinflusste Vergleichspflanze.

In den kommenden Monaten setzt das Braunschweiger Forscherteam seine Arbeit fort und untersucht, inwieweit in genveränderten Pflanzen nach einer Berührung gewünschte Eigenschaften, wie gesteigerte Stressresistenz, erhalten geblieben sind. Auch soll untersucht werden, wie das identifizierte Gen als Marker beispielsweise in Züchtungsprogrammen eingesetzt werden kann. „Langfristig bietet unsere Grundlagenforschung die Möglichkeit, die jahrhundertealte japanische Methode als Anwendung im ökologischen Landbau weiterzuentwickeln und nachteilige Auswirkungen mit Mitteln der Biotechnologie zu lindern“, erklärt Prof. Lange. (Quelle: idw)

Zur Publikation
Maria João Pimenta Lange, Theo Lange: Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown. Nature Plants, doi: 10.1038/nplants.2014.25 (2015).

Merken

Was uns eine Meeresschnecke über Evolution und Bewusstsein verrät?

Schlundsackschnecken zu denen Elysia timida gehört, sind hauptsächlich in der Algenzone der Meeresküsten zu finden. Die Schnecken ernähren sich fast ausschließlich von Algen, deren Chloroplasten sie aufnehmen und in ihre Haut oder vergrößerte Mitteldarmdrüse einlagern können (Kleptoplastiden). Elysia timida hat einen Weg gefunden, sich die Photosynthese von Algen nutzbar zu machen. Wie ist das möglich? Als Naturwissenschaftler gehen wir davon aus, dass sich alle komplexen biologischen Systeme durch evolutionäre Prozesse gebildet haben.

Ein Evolutionsprozess besteht aus drei Schritten, die ich kurz charakterisieren möchte: Zuerst entsteht Neues, möglicherweise noch nie Dagewesenes. Im zweiten Schritt wird das Neue mit Vorhandenem kombiniert und zur Auswahl dargeboten. Im dritten und letzten Schritt wird eine Auswahl unter dem Dargebotenen getroffen. Die Auswahl kann passiv durch Wechselwirkungen mit der Umwelt geschehen oder aktiv unter Berücksichtigung der individuellen Neigung, bestimmte Ziele zu verfolgen (= Bedürfnisse).

Das Verdauungsorgan der Schnecke zerkleinert und zerlegt die gefressenen Algen. Neu im Sinn von Schritt 1 der Evolution ist wohl, dass die Schnecke und speziell ihr Darm zwischen verschiedenen Zellbestandteilen der zerlegten Algen unterscheiden kann. Die Schnecke verfügt ganz offensichtlich über die Möglichkeit, selektiv bestimmte Zellbestandteile zu verdauen, oder auch nicht, obwohl sich die einzelnen Bestandteile nicht prinzipiell unterscheiden und andere Meeresschnecken ungeachtet der unterschiedlichen Algenbestandteile die komplette Alge verdauen.

Für den zweiten Schritt des Evolutionsprozesses ergeben sich daraus folgende Kombinationen: a. alle Zellbestandteile verdauen, b. Chloroplasten verdauen, c. alles verdauen außer Chloroplasten.

Im dritten Schritt des Evolutionsprozesses kommt es zu einer Auswahl unter den drei dargebotenen Möglichkeiten. Bei einer passiven Auswahl durch die Umwelt bleibt entweder alles beim Alten (Kombination a) oder das Neue ist im Regelfall von entscheidendem Vorteil für Lebenserhalt und Fortpflanzung. Bei einer aktiven Auswahl können Bedürfnisse die Wahl bestimmen und es kann b oder c zum Tragen kommen.

Die Biologen gehen davon aus, dass die Elysia-Schnecken in Hungerphasen Energie von den Chloroplasten beziehen, die im Darm weiterhin Photosynthese betreiben. Ein Experiment zeigte allerdings, dass die Schnecken auch ohne Photosynthese der Chloroplasten überleben. Nach zwei Monaten im Dunkeln waren die Schnecken so lebendig wie zuvor. Jetzt vermuten die Forscher, die Schnecke profitiert nicht unbedingt sofort von den Chloroplasten, sondern erst dann, wenn die Darmzellen diese in Hungerphasen abbauen.

Für eine passive Auswahl durch die Umwelt im dritten Schritt der Evolution spricht, dass man aus dem Vorhandensein der Chloroplasten im Darm einen geringfügigen Vorteil für den Lebenserhalt ableiten kann. Doch ist dieser Vorteil entscheidend?

Gegen das Wirken eines passiven Prozesses spricht das Erkennen des Unterschieds verschiedener Zellbestandteile der Algen durch die Schnecke selbst bzw. durch ihre Darmzellen. Es gibt also etwas, was sich auf unterschiedliche Anforderungen einstellen kann.

Was die Auswahl im Evolutionsprozess betrifft, so ist die Wahl der Evolution auf Kombination c gefallen, alles wird verdaut außer den Chloroplasten. Allerdings hat die Schnecke anscheinend die Möglichkeit, in Hungerphasen die Kombination b zu wählen, nämlich die Chloroplasten zu verdauen. Es existiert eine nicht determinierte Entscheidungsmöglichkeit zwischen Handlungsalternativen.

Wenn man zudem davon ausgeht, dass die Schnecke das ganz einfache Bedürfnis hat, sich ihr Leben etwas komfortabler zu gestalten, indem sie die Chloroplasten Sauerstoff und Zucker produzieren lässt, dann sind alle Kriterien für den informationsverarbeitenden Prozess erfüllt, den ich in meinen Schriften als Bewusstsein bezeichnet habe.

Der gleiche Bewusstseinsprozess, der Entscheidungen trifft, wann die Chloroplasten Sauerstoff und Zucker produzieren sollen und wann sie zu verdauen sind, hat auch beim dritten Evolutionsschritt die aktive Auswahl durchgeführt.

Sicher handelt es sich nicht um einen hoch entwickelten Bewusstseinsprozess wie das Selbst- oder Oberbewusstsein beim Menschen. Es ist eher ein dem Unterbewusstsein vergleichbarer Prozess. Beim Menschen führt das Unterbewusstsein viele Entscheidungen und körperliche Steuerungen durch. Nur das Wichtigste wird zur Entscheidung dem Oberbewusstsein zugeführt. Und was das Wichtigste ist, das entscheidet ebenfalls das Unterbewusstsein.

Die Elysia-Schnecke zeigt uns mit hoher Wahrscheinlichkeit, dass einfache Bewusstseinsprozesse selbst auf ihrer nicht allzu hohen Entwicklungsstufe wirken.
Mehr unter:

Merken

Komponenten des Lebens und ihre Funktion

Die Biophysik bildet die Brücke zwischen der Physik und den Lebenswissenschaften. Sie ist eng mit der Physik Weicher Materie und Komplexer Systeme verknüpft und viele Fragestellungen sind Bestandteil der Statistischen Physik geworden. Dabei verfolgt die Biophysik mehrere Stoßrichtungen.

Die eine versucht, Methoden zu entwickeln, um die Architektur biologischer Materialien von molekularen bis makroskopischen Skalen zu untersuchen und ihre physikalischen Eigenschaften unter möglichst natürlichen Bedingungen zu messen – in „vivo“, sagt der Biologe. Entdeckungsfreudige Physiker finden eine breite Spielwiese, um mit einfachen Methoden wie optischen und magnetischen Pinzetten oder einer Glaspipette, gepaart mit einem guten Mikroskop, die physikalischen Eigenschaften der Zellen zu studieren.

Dreidimensionale Darstellung der Struktur des Proteins GGA1.
Struktur eines Proteins

Große Maschinen hingegen sind notwendig, um die Struktur und Dynamik biologischer Materialien mittels Neutronen- und Röntgenbeugung zu erforschen. Moderne Methoden der Röntgenbeugung mit fokussierten Strahlen eröffnen dabei auch völlig neue Einblicke in die molekulare Architektur von Gewebe, Knochen oder Holz. Zudem verspricht die Entwicklung der Spallations-Neutronenquellen und des Freien Elektronenlasers neue Einsichten in die molekulare Basis des molekularen Erkennens zwischen Proteinen und DNS oder die physikalischen Grundlagen der Proteinfaltung.

Biologie als Vorbild

Eine zweite Forschungsrichtung ist die von der Biologie inspirierte Physik. Sie versucht möglichst realistische Modelle lebender Materie – wie Membranen, Gewebe oder Knochen – aufzubauen, um spezifische biologische Prozesse zu imitieren. Solche Modelle spielen eine wichtige Rolle, um etwa die Verlässlichkeit neuer physikalischer Methoden zu testen oder um nach den wesentlichen physikalischen Parametern zu suchen, welche das biologische Verhalten eines Systems bestimmen.

Parallele Untersuchungen natürlicher Systeme und von Modellen helfen auch, Bezüge zur Physik Kondensierter Materie herzustellen. Im Hintergrund steht der Gedanke, die Strategie der biologischen Selbstorganisation zur Herstellung neuartiger smarter Materialien einzusetzen. Beispiele dieses Bionik genannten Gebietes sind Materialien, die ihre Eigenschaften an wechselnde Umgebungsbedingungen anpassen können, wie selbst reinigende Oberflächen oder bruchfeste Keramiken, wie sie in Prozessen der Biomineralisierung entstehen.

Im Grenzbereich zwischen Physik und Technik sind Bemühungen angesiedelt, Methoden der Navigation in der Tierwelt zu imitieren. Beispielsweise inspirierte die Echoortung der Fledermaus die Radartechniker zum Bau des Zirp-Radars. Auch beim Bau von Robotern lässt man sich gern von der Biologie inspirieren: Zahlreiche Arbeitsgruppen versuchen, die Fähigkeit der Insekten und Salamander des Hochlaufens an Wänden zu imitieren. Roboter zum Fensterputzen wären eine passende Umsetzung des Prinzips.

Ein anderer zukunftsträchtiger Zweig der angewandten Biologischen Physik ist der Bau von Biosensoren durch den Aufbau von Enzymsystemen, Biomembranen oder Nervenzellen auf elektro-optischen Bauelementen. Ein Beispiel sind zweidimensionale Anordnungen von Punkt-Transistoren, die als Nano-Voltmeter fungieren. Hier sitzen auch zahlreiche Querverbindungen zur Nanotechnik oder Mikrooptik, denn die dort entwickelten Methoden eröffnen neue Möglichkeiten zur Messung physikalischer Eigenschaften der Zellen in natürlicher Umgebung.

Komplexe Wechselwirkungen erfassen

Dargestellt ist eine Nervenzelle mit Axonen.
Neuron

Auf fundamentalere Fragen der Biologie zielt die oft als Systembiophysik bezeichnete Erforschung der Regulation biologischer Prozesse durch das Wechselspiel zwischen biochemischen und genetischen Signalkaskaden, der dadurch bedingten Modifikation der Materialeigenschaften und der biologischen Funktion. Hier arbeiten Physiker, Mathematiker und Ingenieure miteinander. Eine besonders faszinierende Fragestellung dieser Kategorie ist die Entwicklung vom befruchteten Ei zum Embryo, oft Morphogenese genannt. Was steuert die Differenzierung der zunächst völlig identisch erscheinenden Zellen des befruchteten Eis in Neuronen oder Muskelzellen und was legt den Zeitplan der embryonalen Entwicklung fest? Ist dies alles im genetischen Code vorbestimmt oder bestimmt die Kopplung zwischen externen äußeren Kräften – wie chemischen Potentialen oder mechanischen Kräften – und dem genetischen Apparat den Prozess der Morphogenese?

Alan Turing, der geistige Vater des Programmierens, lehrte erstmals, wie raum-zeitliche Muster, etwa von Signalmolekülen, die dann die Entwicklung von Organen steuern, allein durch das Zusammenspiel chemischer Potenziale und autokatalytischer Prozesse entstehen können. Zwar ist die Entwicklung vom befruchteten Ei zum ausgewachsenen Lebewesen vor allem durch die zeitliche Folge der Gen-Expression bestimmt, doch zeigt sich auch immer mehr, dass die Zell-Zell-Erkennung und insbesondere mechanische Kräfte die Differenzierung und räumliche Organisation der Zellen steuern können. Die Aufklärung des Wechselspiels zwischen Morphogenese und der Physik der Zelle ist eine besonders reizvolle Aufgabe für Experimentatoren und Theoretiker.

Immer mehr Physiker finden außerdem Interesse an der Hirnforschung und versuchen zu verstehen, wie das Gehirn die Umwelt wahrnimmt. Ein Meilenstein auf dem Weg zur quantitativen Hirnforschung war die Entdeckung, dass optische Muster, die auf die Netzhaut der Augen projiziert werden, im visuellen Cortex als Erregungsmuster abgebildet werden. Diese Experimente brachten der Physik neuronaler Netzwerke einen enormen Aufschwung. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)

Buchtipp:
Leben aus Quantenstaub: Elementare Information und reiner Zufall im Nichts als Bausteine einer 4-dimensionalen Quanten-Welt

Primäres Bewusstsein bei Mikroben entdeckt

Prokaryoten umfassen die Bakterien und Archaeen, also die einfachsten und frühesten Lebewesen, die wir kennen. Es sind Mikroben ohne Zellkern, die aber ein Chromosom besitzen, mit dessen Hilfe sie sich fortpflanzen. Im Rahmen der Bewusstseinsforschung stellt sich die Frage, ab welcher Stufe der Evolution sich ein rudimentäres Bewusstsein zeigt. Durch raffinierte Tests hat man vor einigen Jahren herausgefunden, dass Schimpansen, Elefanten oder Raben Bewusstsein zeigen. Nun kann man aber auch primäres Bewusstsein bei Prokaryoten nachweisen.

Primäres Bewusstsein ist eine einfache Bewusstseinsform, die etwa mit den Funktionen eines Unterbewusstseins vergleichbar ist. Es beinhaltet nicht das Selbst- oder Ich-Bewusstsein, das wir von uns Menschen kennen. Bewusstsein ist ein informationsverarbeitender Prozess und dient einem Lebewesen dazu, sich auf neue Anforderungen oder geänderte äußere Umstände einzustellen. Wenn das Lebewesen zwischen möglichen Handlungsalternativen auf nicht determinierte Weise entscheidet und die Entscheidung zur Befriedigung seiner Bedürfnisse dient, dann kann man zumindest von primärem Bewusstsein ausgehen (zur Definition von Bewusstsein siehe: Klaus-Dieter Sedlacek, „Der Widerhall des Urknalls“, Norderstedt 2012, S. 148). Andererseits kann man nicht von primärem Bewusstsein ausgehen, wenn Handlungen ausschließlich eine automatische Reaktion auf Umweltreize sind und keinerlei Entscheidungen zwischen Alternativen erkennen lassen.

Prokaryoten haben Geißeln, um sich schwimmend fortbewegen zu können. Die Beweglichkeit kann ihnen nur nützen, wenn sie erkennen, wohin sie schwimmen sollen. Aus ihrer Orientierungsreaktion (Taxis), das heißt, ihrer Ausrichtung nach einem Reiz oder einem Umweltfaktor lassen sich Rückschlüsse auf jenen informationsverarbeitenden Prozess ziehen, der eine Voraussetzung für Bewusstsein ist. Man unterscheidet zum Reiz gerichtete Reaktionen und vom Reiz weggerichtete Meide- oder Schreckreaktionen (negative Taxis).

Bei einer Chemotaxis erfolgt beispielsweise die Ausrichtung nach der Konzentration eines Stoffes. Aerotaxis ist die Orientierung zum Sauerstoff. Es handelt sich um eine besondere Form von Chemotaxis oder Energietaxis. Phototaxis ist die Orientierung an der Helligkeit und Farbe des Lichts und Galvanotaxis die Orientierung an elektrischen Feldern um nur ein paar Taxisarten zu nennen. Im Internet findet sich ein kleines Video über das Pantoffeltierchen (Paramecium), wie es sich an einem elektrischen Feld ausrichtet (https://youtu.be/-U9G0Xhp3Iw).

Viele Bakterien können gleichzeitig die Konzentration von Futtersubstanzen, Sauerstoff oder Licht erkennen und sich danach ausrichten. Solange sie z.B. keine Futtersubstanz erkennen, schwimmen sie eine Zeit lang in eine zufällige Richtung und wechseln anschließend die Richtung, um wieder eine Zeit lang in eine andere Richtung weiterzuschwimmen. Bei geringer werdender Konzentration wechseln sie häufig die Richtung, bei zunehmender Konzentration schwimmen sie dagegen zielgerichteter zum Ort der höheren Konzentration. Sie zeigen ein gleiches Verhalten in Bezug auf die Sauerstoffkonzentration und auf Licht (vgl. Cypionka, „Grundlagen der Mikrobiologie“, 3. Aufl., Springer 2006, S. 33f.)

Aus dem Verhalten kann man ableiten, dass die Bakterien zeitlich auflösen können, ob die Konzentration geringer oder stärker wird. Sie können also Änderungen in den Umweltbedingungen feststellen, indem sie einen vorherigen Zustand auf irgendeine Weise speichern. Schon allein dadurch erkennt man das Vorhandensein eines informationsverarbeitenden Prozesses. Die Mikroben zeigen zudem ein Bedürfnis (= Neigung ein Ziel zu verfolgen), zum Ort der höheren Futter- oder Sauerstoffkonzentration zu schwimmen.

Es kann aber auch vorkommen, dass zwei unterschiedliche Bedürfnisse nicht miteinander vereinbar sind. Beispielsweise kann die höhere Sauerstoffkonzentration entgegengesetzt vom Ort der höheren Futterkonzentration liegen. Zwischen den beiden Orten, an denen je ein anderes Bedürfnis befriedigt wird, gibt es eine Stelle, an der die Bewertung, welcher Reiz stärker ist, gleich ausfällt. Der Mikrobe muss sich entscheiden, welchem Reiz sie nachgeht, d.h., zu welchem Ort sie schwimmen soll. Die Entscheidung kann nicht determiniert fallen, weil vorausgesetzt wird, dass die Stärke der Reize von der Mikrobe gleich bewertet wird. Wir haben es in diesem Fall mit einer nicht determinierte Entscheidung zwischen Handlungsalternativen zu tun. Es ist die Entscheidung in die eine oder in die andere Richtung zur Befriedigung eines Bedürfnisses zu schwimmen.

Zusammenfassend gilt: Im Verhalten der Mikroben kann man einen informationsverarbeitenden Prozess erkennen, der bei Änderungen der Konzentration verschiedener Stoffe, also der Umweltbedingungen, eine nicht determinierte Entscheidung zwischen Handlungsalternativen trifft, die zum zielgerichteten Verhalten zur Befriedigung von Bedürfnissen führt. Das bedeutet: Mikroben zeigen primäres Bewusstsein. – Klaus-Dieter Sedlacek

Buchtipps:

 

Massenaussterben: Die Ursachen der größten Katastrophen

Im Laufe der Evolution sind in den letzten 500 Millionen Jahren immer wieder Tier- und Pflanzenarten in großer Zahl ausgestorben. Kann bereits das Aussterben weniger oder einzelner Arten zu Kettenreaktionen mit solchen verheerenden Folgen führen? Göttinger Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation und der ETH Zürich haben eine mathematische Theorie entwickelt, das unter Verwendung von Fossiliendaten eine Antwort geben kann. Die Theorie zeigt, dass Kettenreaktionen bei der unterschiedlichen Entwicklung der Artenvielfalt im Meer und an Land eine Rolle gespielt haben können. Sie kann dabei helfen, heutige und zukünftige Artensterben zu verstehen.

Bei den fünf größten Massenaussterben in der Erdgeschichte starben jeweils mehr als drei Viertel aller Arten aus, doch danach erholte sich die Artenvielfalt immer wieder. Als Ursachen werden Katastrophen von globaler Größenordnung vermutet, wie z.B. große Meteoriteneinschläge oder Vulkanausbrüche. Aber zum Glück führte nicht jede Naturkatastrophe im Laufe der Erdgeschichte zu einem Massenaussterben, und umgekehrt werden auch diese nicht nur durch globale Naturkatastrophen hervorgerufen.

Das mathematische Modell der Wissenschaftler geht davon aus, dass Arten entweder auf Grund von geänderten Umweltbedingungen aussterben oder durch das Aussterben bestimmter anderer Arten, die für sie unentbehrlich sind. Wenn sich beispielsweise das Klima erwärmt oder abkühlt oder wenn sich die durchschnittliche Niederschlagsmenge oder die Bodenbeschaffenheit ändert, sind dadurch Tiere und Pflanzen bedroht, die sich nicht schnell genug anpassen können oder keinen neuen Lebensraum finden. Wenn dadurch plötzlich einige wichtige Arten fehlen, können andere ebenfalls aussterben, die von ihnen abhängig waren: Das kann geschehen, wenn eine Tierart seine bevorzugte Beute oder Futterpflanze verliert, oder wenn einer Pflanze plötzlich das Insekt fehlt, das sie bestäubt oder der Vogel, der ihre Samen verbreitet.

„Wenn es viele Arten gibt, die von wenigen Arten abhängig sind, ist das Ökosystem instabil. Wenn dann wichtige „Schlüsselarten“ durch veränderte Umweltbedingungen aussterben, kann das eine Kettenreaktion auslösen und zu einem Massenaussterben vieler Arten führen“, erklärt Frank Stollmeier vom Göttinger Max-Planck-Institut. Wenn es dagegen wenige Arten gibt, die von vielen verschiedenen Arten abhängig sind, ist das Ökosystem stabil; veränderte Umweltbedingungen könnten dann zwar viele einzelne Arten auslöschen, aber nicht innerhalb einer großen Kettenreaktion.

 Artenvielfalt im Meer und an Land

Damit kann das Modell auch erklären, warum sich die Artenvielfalt im Meer in den letzten 600 Millionen Jahren anders entwickelt hat als auf dem Land: Nachdem die ersten größeren Lebensformen im Meer entstanden waren, stieg die Artenvielfalt dort zunächst stark an und erreichte vor etwa 450 Millionen Jahren einen Wert, den sie für lange Zeit nicht mehr überschritt. Erst vor etwa 200 Millionen Jahren stieg die Anzahl der Meeresarten nach einem Massenaussterben wieder stark an. An Land dagegen begann der erste Anstieg der Artenvielfalt erst viel später, vor etwa 450 Millionen Jahren. Seitdem ist die kontinentale Artenvielfalt rasant gewachsen und hat die Vielfalt im Meer sogar übertroffen.

Eine zentrale Rolle bei dieser unterschiedlichen Entwicklung spielt in dem Modell das Verhältnis zwischen der Wahrscheinlichkeit, dass eine Art durch Umwelteinflüsse ausstirbt, und der Wahrscheinlichkeit, dass eine neue Art entsteht. Dieses Verhältnis sollte laut dem Modell im Meer höher sein. Eine Analyse von Fossilien-Datenbanken hat in der Tat ergeben, dass Arten im Meer tatsächlich eher aussterben als an Land. Ein Grund dafür könnte sein, dass es im Meer weniger verschiedene Lebensräume gibt als an Land: „Wenn im Meer eine neue Art entsteht, die nicht ideal an Umwelt angepasst ist, hat sie kaum eine Chance, einen neuen Lebensraum zu finden, in dem sie überleben könnte. An Land ist das eher möglich, da es dort sehr viele unterschiedliche Lebensräume gibt“, erklärt Jan Nagler, der die Studie leitete und jetzt an der ETH Zürich arbeitet. Wenn nun die Aussterbewahrscheinlichkeit deutlich kleiner ist als die Wahrscheinlichkeit, dass neue Arten entstehen, bleibt das Ökosystem stabil und die Artenvielfalt wächst schnell. Im umgekehrten Fall wächst die Artenvielfalt langsamer und das Ökosystem wird häufiger instabil.

Dies erklärt, warum die Artenvielfalt im Meer über so lange Zeit stagnierte. Wahrscheinlich war das Ökosystem dort über eine lange Zeit instabil: Es hatten sich zu viele Arten entwickelt, die von wenigen Schlüsselarten abhängig waren, so dass schon das Aussterben von einigen Arten zu einer fatalen Kettenreaktion führte. Somit wurde die Flora und Fauna anfällig für Massenaussterben, die das Wachstum verhinderten. Erst als das Ökosystem einen stabilen Zustand erreicht hatte, in dem weniger Arten von vielen abhingen, konnte die Vielfalt weiter ansteigen.

Das mathematische Modell wurde zwar entwickelt, um die Entwicklung der Artenvielfalt in der Vergangenheit zu erklären, doch es kann auch dazu beitragen, das heutige oder zukünftige Artensterben besser zu verstehen. Es gibt Anzeichen dafür, dass ein neues Massenaussterben begonnen hat, für das der Mensch wahrscheinlich maßgeblich mit verantwortlich ist. Schon 20 bis 40 Prozent der heute bekannten Arten gelten als vom Aussterben bedroht. Leider weiß man empirisch nur wenig darüber, wie sie voneinander abhängen und welche Folgen das Aussterben einer bestimmten Art auf andere hat. Das mathematische Modell ist daher sehr nützlich, um die Prinzipien des Artensterbens zu verstehen, die auch in der aktuellen Situation wirksam sind. (Quelle: idw)

Warum Mai-Geborene Glückspilze sind

Hamburg (ots) – Der Geburtsmonat eines Menschen hat nachweislich Einfluss auf seine Entwicklung, Gesundheit, Charakter und Beruf, berichtet die Zeitschrift P.M. MAGAZIN in ihrer Februar-Ausgabe. Eine große Rolle spielen dabei die äußeren Einflüsse, denen ein Kind zum Zeitpunkt der Geburt und in den Monaten zuvor im Mutterleib ausgesetzt ist.

Ausgewählte Merkmale für jeden Geburtsmonat:
– Januar: höheres Risiko für Schizophrenie, Epilepsie und Alzheimer; tendenziell Frühaufsteher
– Februar: höheres Risiko für Essstörungen und Pollenallergien
– März: überdurchschnittlich früh einsetzende Wechseljahre bei Frauen; höheres Risiko für Alkoholismus und Kindheit-Diabetes
– April: höhere Kinderzahl und Körpergröße bei Männern; tendenziell geringerer Intelligenzquotient
– Mai: überdurchschnittlich viele Selbstmorde; erhöhtes Multiple-Sklerose-Risiko; eher Nachtmenschen
– Juni: geringes Geburtsgewicht; viele Nobelpreisträger
– Juli: häufiger starke Kurzsichtigkeit; geringere Kinderzahl bei Frauen
– August: erhöhtes Risiko für Hausstauballergien; tendenziell Nachtmenschen
– September: höheres Risiko für Asthma, geringeres Risiko für Herz-Kreislauf-Erkrankungen
– Oktober: höheres Risiko für Hunde- und Katzenallergie; überdurchschnittlich späte Menopause bei Frauen
– November: geringes Risiko für Autoimmunerkrankungen wie Multiple Sklerose; hohe durchschnittliche Lebenserwartung (gut neun Monate mehr als bei Mai-Geborenen)
– Dezember: höheres Risiko für Morbus Crohn; besonders viele Kinder bei Frauen

Ein wichtiger Einflussfaktor ist die Menge Vitamin D im Blut des Neugeborenen. Vitamin D wird mithilfe von Sonnenstrahlen in der Haut gebildet und spielt eine wichtige Rolle bei der Entwicklung des Immunsystems und des Gehirns. Forscher der Universität Oxford haben herausgefunden, dass im Mai geborene Kinder 20 Prozent weniger Vitamin D in ihrem Nabelschnurblut aufweisen als Kinder, die im November geboren wurden und deren Mütter in sonnenstarken Monaten schwanger waren. Dieser Mangel könnte erklären, so die Forscher, weshalb Mai-Babys ein um 13 Prozent höheres Multiple-Sklerose-Risiko tragen als November-Kinder.

Frappierende Unterschiede zeigten Untersuchungen zur Lebenserwartung. Das Universitätsklinikum Greifswald hat in einer Mammutstudie die Daten von über sechs Millionen registrierten Sterbefällen zwischen 1992 und 2007 in Deutschland ausgewertet. Das Ergebnis: Die im November geborenen Menschen leben im Schnitt am längsten, Mai-Kinder am kürzesten. Der Lebenswerwartungs-Unterschied zwischen den November- und Mai-Geborenen beträgt bei Frauen 9,6 Monate, bei Männern 9,4 Monate.

Auch bei Allergien lassen sich Unterschiede je nach Geburtsmonat feststellen. Kinder, die im Februar oder März geboren werden, sind in den ersten Lebensmonaten besonders vielen Gräser- und Birkenpollen ausgesetzt – und werden auch häufiger auf genau diese allergisch reagieren. Wohingegen Kinder, die zwischen August und Oktober geboren werden, überdurchschnittlich oft an Hausstauballergie leiden – sie kommen wenige Monate vor Wintereinbruch zur Welt und verbringen dann die Zeit vorwiegend drinnen.

Am Ende zählt aber auch, wie zufrieden wir mit unserem Leben sind. Bei dieser Frage geben sich die Herbstkinder überraschend verhalten. In einer Umfrage des schwedischen Psychiaters Jayanti Chotai und des britischen Psychologen Richard Wiseman mit fast 30.000 Teilnehmern waren ausgerechnet die November-Geborenen am wenigsten der Ansicht, Glück im Leben zu haben. Die Mai-Kinder sahen sich als die größten Glückspilze.

Bedrohung aus dem All: Komet ISON kommt uns nahe

München (ots) – Einst bombardierten Kometen unser Sonnensystem, brachten vermutlich Wasser und Leben auf die Erde und hinterließen bis heute sichtbare Krater. Würde heute ein Komet der Größe von Shoemaker-Levy 9, der 1994 auf Jupiter einschlug, auf die Erde treffen, gäbe es sie nicht mehr. Das schreibt das Weltraum-Magazin SPACE in seiner Ausgabe 1/2014.

Großes Bombardement – so nennt die Wissenschaft den Kometensturm, der vor vier Milliarden Jahren die Planeten und Monde unseres Sonnensystems traf und bis heute sichtbare Krater hinterließ. Wie viele Kometen am Rande unseres Sonnensystems – im Kuipergürtel und in der sogenannten Oortschen Wolke – herumfliegen und jederzeit der Erde gefährlich werden können, lässt sich nicht sagen. Gelegentlich verlässt ein Komet diesen Bereich und fliegt durch das Sonnensystem; das kann man von der Erde aus beobachten. Wenn die Theorie von der Oortschen Wolke stimmt, besteht durchaus Gefahr: “Wenn da 100 Millionen Kometen in der hypothetischen Ooortschen Wolke in einem Lichtjahr Entfernung herumkreisen und es dort zu einer Störung kommt, dann könnte es wirklich zu einem erneuten Großen Bombardement kommen”, meint Astronomie-Experte Nick Howes.

Die Folgen eines solchen Kometensturms auf unser Sonnensystem wären verheerend. Glücklicherweise lenken die Großplaneten wie Jupiter viele der anfliegenden Objekte auf sich, etwa den Kometen Shoemaker-Levy 9, der im Juli 1994 in Trümmer von bis zu zwei Kilometern Durchmesser zerbarst und auf dem Jupiter aufschlug. Würde ein ähnliches Ereignis die Erde treffen, wären die Folgen apokalyptisch. “Solch ein Komet könnte in 100 Millionen Jahren kommen oder nächste Woche. Wir wissen es nicht”, so Nick Howes.

Aktuell ist Komet Ison in Sichtweite gerückt: Seit Ende November 2013 ist er der Sonne besonders nah. Wissenschaftler vermuten, dass er unterwegs in Fragmente zerbersten könnte. Viele gehen davon aus, dass sein Schweif bis Januar hell leuchten und für auch für Hobby-Astronomen am Nachthimmel sichtbar sein wird.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit