Schlagwort-Archive: Licht

Gedächtnisforschung: Hemmender Botenstoff am Lernprozess beteiligt


Honigbienen lernen sehr schnell und haben ein hervorragendes Gedächtnis. Daher sind sie als Modellorganismen für die Forschung interessant. Da die Lernprozesse beim Menschen ähnlich ablaufen, können Erkenntnisse aus der Bienenforschung übertragen werden. Wissenschaftler der Saar-Uni haben nun erstmals an Nervenzellen von Bienen experimentell belegt, dass der Neurotransmitter Gamma-Aminobuttersäure (GABA) eine bedeutende Rolle bei Lernprozessen spielt. GABA ist einer der wichtigsten hemmenden Botenstoffe im Gehirn und spielt unter anderem bei Krankheiten wie Alzheimer und Epilepsie eine Rolle. Die Studie wurde in der renommierten Fachzeitschrift „Journal of Neuroscience“ veröffentlicht.
Mit einem Gehirn kleiner als ein Stecknadelkopf und mit weniger als einer Million Nervenzellen können sich Bienen hervorragend in der Umgebung orientieren und lernen, wo für sie wichtige Futterquellen liegen. Hierbei verknüpft ihr Nervensystem spezifische Informationen wie Düfte, Farben und Landmarken mit einer Belohnung in Form von Nektar. Dies wird im Gedächtnis gespeichert, sodass die Biene die Futterstelle auch Tage später wiederfindet.
„Bei diesen Lernprozessen spielen chemische Botenstoffe eine wichtige Rolle“, sagt Uli Müller, Professor für Zoologie und Physiologie an der Universität des Saarlandes. „Diese Neurotransmitter übermitteln Informationen zwischen Nervenzellen, wobei zwischen erregenden und hemmenden Transmittern unterschieden wird.“ Ein erregender Botenstoff wie Acetylcholin (ACh) aktiviert die nächste Nervenzelle, während ein hemmender Transmitter wie GABA die Signalübermittlung herunterregelt. Kommen nun zwei Reize wenige Millisekunden hintereinander an einer Nervenzelle an, „verrechnet“ die Zelle diese miteinander. So kann das Signal bei der Verrechnung zweier Reize besonders verstärkt oder abgemildert werden, je nachdem, welche Transmitter beteiligt sind.
Kommt es bei der Reizweiterleitung zu Änderungen, sind Nervenzellen in der Lage, darauf zu reagieren – eine Eigenschaft, die Fachleute als neuronale Plastizität bezeichnen. Sie ist maßgebend für das Lernen und die Gedächtnisbildung.
„Beim Lernen spielt die zeitliche Abfolge der Informationen, also etwa die zeitliche Paarung von Duft und der anschließenden Nektarbelohnung, eine entscheidende Rolle“, so Müller weiter. „Bei bisherigen Untersuchungen von Lernprozessen stand vor allem die zeitliche Verrechnung von erregenden Neurotransmittern im Fokus. Obwohl bekannt war, dass der hemmende Neurotransmitter GABA beim Lernen eine Rolle spielt, wurde er nicht mit diesen Prozessen in Verbindung gebracht.“

Dies ist nun erstmals Müller und seinem Mitarbeiter Davide Raccuglia in ihrer aktuellen Studie gelungen. Die Biologen haben die für das Lernen bei Insekten verantwortlichen Nervenzellen, die Kenyonzellen, isoliert und die zeitliche Verrechnung bei erregenden und hemmenden Botenstoffen untersucht. Dazu haben die Forscher die Zellen von Honigbienen und Fruchtfliegen zuerst mit dem erregenden Transmitter ACh und Sekunden später mit dem hemmenden Botenstoff GABA als auch in umgekehrter Reihenfolge stimuliert. Zur Kontrolle haben sie die Versuche jeweils nur mit dem hemmenden oder dem erregenden Botenstoff durchgeführt. Anschließend haben sie gemessen, ob sich die Signalverarbeitung der Zellen verändert hat.
„Wir haben beobachtet, dass es bei der Stimulation mit beiden Transmittern im Gegensatz zu den Kontrollversuchen noch Minuten später zu Änderungen in der Signalverarbeitung der Kenyonzellen kommt“, sagt der Neurobiologe. Durch diese zeitliche Verrechnung haben die Zellen, so Müller weiter, ein „molekulares Gedächtnis“ gebildet. Dabei hänge das Ausmaß dieser Änderungen davon ab, welcher Transmitter zuerst stimuliert und wie viele Rezeptoren die Zellen für den Neurotransmitter GABA besitzen.
Folgestudien müssen jetzt klären, welche Rolle GABA-Rezeptoren bei der Signalverrechnung beim Lernen genau spielen und ob diese beispielsweise mit Krankheiten wie Alzheimer in Zusammenhang stehen. GABA ist einer der wichtigsten Botenstoffe des menschlichen Zentralnervensystems. Er wird auch mit weiteren neurologischen Krankheiten wie Epilepsie in Verbindung gebracht.
Die Studie wurde in der Fachzeitung „Journal of Neuroscience“
veröffentlicht:
„Temporal Integration of Cholinergic and GABAergic Inputs in Isolated Insect Mushroom Body Neurons Exposes Pairing-Specific Signal Processing”.  DOI: 10.1523/JNEUROSCI.0714-14.2014

Elektronen gleichzeitig an zwei verschiedenen Orten

Nach einem grundlegenden Theorem der Quantenmechanik sind bestimmte Elektronen in ihrem Ort nicht eindeutig bestimmbar. Zwei Physikern der Universität Kassel ist nun gemeinsam mit Kollegen in einem Experiment der Beweis gelungen, dass sich diese Elektronen tatsächlich an zwei Orten gleichzeitig aufhalten.

„Vermutet hat man dieses für den Laien schwer verständliche Verhalten schon lange, aber hier ist es zum ersten Mal gelungen, dies experimentell nachzuweisen“, erläuterte Prof. Dr. Arno Ehresmann, Leiter des Fachgebiets „Funktionale dünne Schichten und Physik mit Synchrotronstrahlung“ an der Universität Kassel. „In umfangreichen Versuchen haben wir an Elektronen von Sauerstoff-Molekülen die zum Beweis dieser Aussage charakteristischen Oszillationen nachgewiesen.“ Dr. André Knie, Mitarbeiter am Fachgebiet und Geschäftsführer des LOEWE-Forschungs-Schwerpunkts „Elektronendynamik chiraler Systeme“, ergänzte: „Dieses Experiment legt einen Grundstein für das Verständnis der Quantenmechanik, die uns wie so oft mehr Fragen als Antworten gibt. Besonders die Dynamik der Elektronen ist ein Feld der Quantenmechanik, dass zwar schon seit 100 Jahren untersucht wird, aber immer wieder neue und verblüffende Einsichten in unsere Natur ermöglicht.“

Die theoretischen Grundlagen für die Entdeckung gehen auf Albert Einstein zurück. Er erhielt für die Beschreibung des sogenannten Photoeffekts 1922 den Physik-Nobelpreis. Danach können Elektronen aus Atomen oder Molekülen mit Hilfe von Licht dann entfernt werden, wenn die Energie des Lichts größer ist als die Bindungsenergie der Elektronen. Einstein hat schon 1905 die mathematische Beschreibung dieses sogenannten Photoeffekts abgeleitet, in dem er damals Unerhörtes annahm: Licht wird dazu als ein Strom aus Lichtteilchen beschrieben und je ein Lichtteilchen („Photon“) übergibt seine Energie an je ein Elektron. Übersteigt diese Energie die Energie, mit dem das Elektron an das Atom gebunden ist, wird das Elektron freigesetzt. Soweit wurde diese Annahme später auch experimentell bestätigt.

Einstein weitergedacht

Darauf aufbauend lässt sich das Verhalten von Elektronen weiter untersuchen. In einem zweiatomigen Molekül, das aus zwei gleichen Atomen zusammengesetzt ist (z. B. das Sauerstoffmolekül O2) gibt es Elektronen, die sehr eng an das jeweilige Atom gebunden sind. Im Teilchenbild könnte man sich vorstellen, dass diese Elektronen um das jeweilige Atom kreisen. Nach der Quantenmechanik sind diese Elektronen allerdings nicht zu unterscheiden. Für ein Photon mit einer Energie, die größer ist als die Bindungsenergie dieser Elektronen (für beide Elektronen ist die Bindungsenergie gleich) stellt sich nun die Frage: An welches dieser beiden für mich als Photon nicht zu unterscheidenden Elektronen gebe ich meine Energie ab? Die Antwort der Quantenmechanik lautet: Das Photon gibt seine Energie zwar an ein einziges Elektron ab, aber dieses befindet sich mit einer gewissen Wahrscheinlichkeit gleichzeitig nahe bei Atom 1 und nahe bei Atom 2 (das Gleiche gilt für das andere Elektron). Und: Elektronen sind auch als Welle verstehbar, genauso wie damals Einstein zur Beschreibung des Lichts Teilchen angenommen hat. Wird nun ein einziges Elektron vom Atom entfernt, so laufen die zugehörigen Wellen sowohl von Atom 1 aus, als auch von Atom 2, da sich dieses Elektron ja gleichzeitig da und dort befindet. Seit langem wurde daher schon vorhergesagt, dass sich diese beiden Wellen überlagern müssen und damit interferieren. Experimentell war der Nachweis dieser Interferenzmuster bis dato noch nicht gelungen.

Genau dies glückte jedoch nun der Forschungsgruppe, an der die Kasseler Physiker Ehresmann und Knie beteiligt waren – ein eindeutiger Beleg, dass sich ein Elektron gleichzeitig an zwei verschiedenen Orten aufhält. Die Experimente wurden an den Synchrotronstrahlungsanlagen DORIS III bei DESY in Hamburg sowie BESSY II in Berlin durchgeführt. Dabei wurde monochromatische Synchrotronstrahlung auf gasförmige Moleküle fokussiert. Diese wurden durch die Strahlung ionisiert und die bei der Ionisation freiwerdenden Elektronen durch sogenannte Elektronenspektrometer winkel- und energieaufgelöst detektiert. (Quelle: idw)

Buchtipps:

 

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Künstliche Fotosynthese: Lösung aller Energieprobleme?

Heidelberg. Die Sonne ist eine unerschöpfliche und zudem saubere Energiequelle. Fotovoltaikanlagen und Solarthermiekraftwerke zapfen sie bereits an und gewinnen aus Sonnenlicht Strom. Der ist jedoch nur sehr begrenzt speicherbar und muss sofort verbraucht werden. Sein Transport über weite Strecken ist zudem mit großen Verlusten verbunden. Nur über den Umweg der Wasserelektrolyse lässt sich elektrischer Strom in den breiter einsetzbaren Energieträger Wasserstoff umwandeln, was aber sehr ineffektiv ist.

Eine wesentlich elegantere Lösung macht uns die Natur seit jeher vor: die Fotosynthese. Dabei erzeugen Pflanzen, Algen und gewisse Bakterien mit Hilfe von Sonnenlicht aus Kohlendioxid und Wasser direkt energiereiche Zuckermoleküle. Schon seit einiger Zeit versuchen Forscher deshalb, den Vorgang künstlich nachzuahmen. Dabei geht es ihnen vor allem um den ersten Schritt der Fotosynthese: die Spaltung von Wasser in Wasserstoff und Sauerstoff.

Die bisher erzielten Erfolge sind beachtlich. So präsentierte Daniel Nocera vom Massachussetts Institute of Technology vor zwei Jahren ein “künstliches Blatt”. Es besteht aus einer Solarzelle, in der auftreffendes Sonnenlicht freie Elektronen und “Löcher” (Elektronenfehlstellen) erzeugt. Die dem Licht zugewandte Seite ist mit einem cobalthaltigen Katalysator beschichtet, der mit Hilfe der Löcher aus Wasser Sauerstoff freisetzt. Die zurückbleibenden Protonen wandern zur anderen Seite und werden dort von einer Legierung aus Nickel, Molybdän und Zink mit Hilfe der Elektronen zu Wasserstoff reduziert. Der Wirkungsgrad liegt mit 2,5 bis 4,7 Prozent – je nach genauer Konfiguration – schon recht hoch. Pflanzen verwerten das auftreffende Sonnenlicht sogar nur zu 0,3 Prozent.

Allerdings ist dieses “Blatt” wegen der enthaltenen Metalle noch ziemlich teuer und auch nicht lange beständig. Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm hat sich deshalb auf ein anderes Material verlegt, das nicht nur sehr stabil, sondern auch einfach und preiswert herstellbar ist: graphitisches Kohlenstoffnitrid. Schon Justus Liebig kannte die Substanz im 19. Jahrhundert. Sie ist entfernt mit dem Chlorophyll des Blattgrüns verwandt und ähnelt stark dem Graphen – einer maschendrahtartigen Anordnung von Kohlenstoffatomen, der viele eine große Zukunft in der Elektronik vorhersagen.

Kohlenstoffnitrid als solches ist allerdings nicht sehr aktiv, was unter anderem an seinem zu geringen Verhältnis von Oberfläche zu Volumen liegt. Wie Antonietti in Spektrum der Wissenschaft berichtet, konnte seine Gruppe aber bereits eine Steigerung um das Zehnfache erreichen, indem sie gezielt die Porosität des Materials erhöhte.

Eine weitere Verbesserung ließ sich durch Dotieren mit Schwefel oder Barbitursäure erreichen. Auf diese Weise konnten die Forscher die Quantenausbeute der Oxidation von Wasser zu Protonen und Sauerstoff für violette Strahlung einer Wellenlänge von 440 Nanometern immerhin auf 5,7 Prozent steigern. Hilfreich war auch die Zugabe von Nanoteilchen aus Cobaltoxid. Dadurch erhöhte sich die Quantenausbeute für die Wasserspaltung insgesamt auf 1,1 Prozent.

Alles in allem sehen die bisherigen Ergebnisse also ermutigend aus. Zwar veranschlagt Antonietti bis zur praktischen Einsatzreife seines Systems noch mindestens 20 Jahre. Doch die Aussichten wären verlockend. Wenn sich mit künstlichen Fotosynthesesystemen 10 Prozent der Solarenergie nutzen ließen, müssten sie nur 0,16 Prozent der Erdoberfläche bedecken, um den für 2030 vorausgesagten globalen Energiebedarf von 20 Terawattstunden zu decken. Als Standorte kämen dabei in erster Linie Wüsten in Frage, wo die Sonne fast immer scheint und keine Konkurrenz zu Agrarnutzflächen besteht. Ein Zehntel der Sahara, die 1,76 Prozent der Erdoberfläche einnimmt, würde bereits genügen.

Wie heutige Solarzellen ließen sich künstliche Fotosynthesesysteme aber auch auf Dächern installieren. Bei einer Lichtausbeute von 10 Prozent könnten sie beispielsweise 300 Tonnen Methanol pro Hektar und Jahr liefern. “Wären nur 100 Quadratmeter des eigenen Grundstücks damit bedeckt, bräuchte selbst ein leidenschaftlicher Autofahrer bei heutigem Treibstoffverbrauch nie mehr zur Tankstelle”, erklärt Antonietti.  (Quelle: Spektrum der Wissenschaft, September 2013)

Physikprofessor Zeilinger schließt letztes Schlupfloch der spukhaften Fernwirkung

Ein Team um Anton Zeilinger, Professor für Experimentalphysik der Universität Wien und Direktor des Instituts für Quantenoptik und Quanteninformation (IQOQI) der ÖAW, hat einen Versuch mit Photonen durchgeführt, bei dem nun ein wichtiges “Schlupfloch” geschlossen werden konnte.

Wenn wir einen Gegenstand beobachten, dann gehen wir davon aus, dass einerseits seine Eigenschaften schon vor der Beobachtung eindeutig feststehen und dass andererseits diese Eigenschaften unabhängig sind vom Zustand anderer, weit entfernter Objekte. Für Gegenstände unseres Alltags ist dem auch so. Für Quantenobjekte hingegen treffen diese scheinbar selbstverständlichen Annahmen nicht ohne weiteres zu. In den vergangenen 30 Jahren haben zahlreiche Experimente gezeigt, dass das Verhalten von Quantenteilchen – wie Atome, Elektronen oder Photonen – in klarem Widerspruch mit obiger Wahrnehmung stehen kann. Jedoch haben diese Experimente nie über alle Zweifel erhabene Antworten geliefert. Stets war es im Prinzip möglich, dass die beobachteten Teilchen eine Schwäche des Experiments “ausgenützt” hatten. Ein Team um Physiker Anton Zeilinger hat nun einen Versuch mit Photonen durchgeführt und dabei ein wichtiges “Schlupfloch” geschlossen. Die ForscherInnen haben damit den bisher vollständigsten experimentellen Nachweis erbracht, dass und wie die Quantenwelt unserer Alltagserfahrung widerspricht.

Die Quantenphysik liefert ein extrem präzises und fundamentales Werkzeug, um die Welt um uns bis in kleinste Details zu verstehen. Sie ist aber auch Grundlage für die moderne Hochtechnologie: Halbleiter (und damit Computer), Laser, Magnetresonanztomographen und andere Geräte basieren auf quantenphysikalischen Effekten. Dies kann jedoch nicht darüber hinwegtäuschen, dass nach mehr als einem Jahrhundert intensiver Forschung fundamentale Aspekte der Quantentheorie noch nicht vollkommen verstanden sind. Auch heute noch werden aus Laboratorien weltweit – jeder Intuition widersprechende Ergebnisse – gemeldet, die jedoch im Rahmen der Quantentheorie erklärt werden können.

Dem Rätsel der Quantenverschränkung auf der Spur

Die Wiener PhysikerInnen berichten nun aber nicht von einem neuen Effekt, sondern sind einem der grundlegendsten Phänomene der Quantenphysik, der sogenannten “Verschränkung”, tiefer auf den Grund gegangen. Die Konsequenzen der Quantenverschränkung sind verblüffend: Wenn man ein Quantenobjekt misst, das mit einem anderen verschränkt ist, dann, so sagt die Quantentheorie, ist der Zustand eines Teilchens von der Messung, die an dem anderen durchgeführt wird, abhängig. Dies ist auch der Fall, wenn die beiden Teilchen so weit voneinander entfernt sind, dass sie selbst im Prinzip nicht miteinander kommunizieren können (die Kommunikationsgeschwindigkeit ist grundlegend durch die Lichtgeschwindigkeit beschränkt). Eine große Aufgabe ist es, die Vorhersage der gegenseitigen Beeinflussung verschränkter Quantenteilchen in realen Experimenten zu testen.

Auf dem Weg zu einer abschließenden Antwort

Anton Zeilinger und den jungen WissenschafterInnen Marissa Giustina, Alexandra Mech, Rupert Ursin, Sven Ramelow und Bernhard Wittmann ist in einer internationalen Kooperation mit dem National Institute of Standards and Technology (USA), der Physikalisch-Technischen Bundesanstalt (Deutschland) und dem Max-Planck-Institut für Quantenoptik (Deutschland) ein wichtiger Schritt gelungen, um einen endgültigen experimentellen Beweis zu erbringen, dass Quantenteilchen in der Tat mehr können als die klassische Physik ihnen erlaubt. Technologische Verbesserungen gemeinsam mit einem geeigneten Aufnahmeprotokoll ermöglichten den Forschenden, verschränkte Photonen mit einer bisher nicht dagewesenen Effizienz zu detektieren. “Die erzeugten Photonen können sich nicht mehr davor drücken, gemessen zu werden”, bringt es Zeilinger auf den Punkt.

Diese engmaschige Überwachung der Photonen ist wichtig, weil damit ein wesentliches “Schlupfloch” geschlossen wird. Bei bisherigen Experimenten dieser Art blieb stets die Möglichkeit offen, dass die gemessenen Lichtteilchen zwar die Gesetze der klassischen Physik verletzt hatten, dies aber nicht der Fall gewesen wäre, wenn alle im Experiment involvierten Teilchen hätten gemessen werden können. Diese Möglichkeit wird in dem neuen Experiment ausgeschlossen. “Viele Wissenschaftler haben sich bis jetzt gescheut, Experimente mit Photonen durchzuführen, weil diese zu einfach verloren gehen – genau dieses Problem haben wir jetzt im Griff”, erklärt Marissa Giustina, Erstautorin der aktuellen Publikation.

Noch ein Schritt zum krönenden Abschluss

Mit dem neuen Experiment von Marissa Guistina und ihren KollegInnen sind Photonen die ersten Quantenteilchen, für die – zwar nicht in einem einzigen, aber – in mehreren separaten Experimenten jede mögliche Hintertür geschlossen wurde. Die Krönung wäre jedoch noch ein einziges Experiment, in welchem den Photonen durch Mittel der klassischen Physik sämtliche mögliche Wege versperrt werden würde. Ein solches Experiment wäre auch für eine wichtige praktische Anwendung von grundlegender Bedeutung: Die sogenannte Quantenkryptographie beruht auf quantenmechanischen Prinzipien und gilt als absolut abhörsicher. Ein Lauschangriff ist aber im Prinzip möglich, solange “Schlupflöcher” bestehen. Nur wenn diese geschlossen sind, ist ein vollkommen sicherer Austausch von Nachrichten möglich.

“Ein Experiment ohne jedes Schlupfloch”, sagt Zeilinger, “ist eine große Herausforderung. Daran arbeiten einige Gruppen weltweit.” Diese Experimente werden nicht nur mit Photonen versucht, sondern auch mit Atomen, Elektronen und anderen Systemen, die quantenmechanisches Verhalten an den Tag legen. Das Experiment der Wiener PhysikerInnen zeigt aber deutlich das Potenzial, das in Photonen steckt, auf. Dank diesen Fortschritten gehen dem Photon die “Schlupfwinkel” aus und die PhysikerInnen sind näher denn je an einem Experiment, das belegt, dass die Quantenphysik wirklich so sehr gegen unsere Intuition und Alltagserfahrung verstößt, wie dies die Forschungsarbeiten der vergangenen Jahrzehnte nahelegen. (Quelle: idw).

Publikation
Bell violation using entangled photons without the fair-sampling assumption: Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittmann, Johannes Kofler, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, Anton Zeilinger. In: Nature (Advance Online Publication/AOP). April 14, 2013. DOI: 10.1038/nature12012

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Überlichtgeschwindigkeit: Schneller als Einstein erlaubt?

Heidelberg. Viele wissenschaftliche Erkenntnisse haben sich fest im Fundus der Allgemeinbildung verankert. So beispielsweise, dass Licht sich stets geradlinig ausbreitet oder sich ein Objekt höchstens mit Lichtgeschwindigkeit bewegen kann. Doch in unserem Universum trifft das nicht immer zu – und das wusste schon Einstein und war damit völlig einverstanden.

Seine Umwelt verstehen zu wollen, liegt in der Natur des Menschen. Um diesem Wunsch nachzukommen, bedienen wir uns unseres gesunden Menschenverstandes. Dies tun wir auch dann, wenn dieses Streben uns hinaus in die Weiten des Kosmos führt. Doch wenn wir versuchen, zur Erklärung kosmologischer Phänomene die uns aus dem Alltag vertrauten Vorstellungen über Raum und Zeit zu nutzen, stoßen wir rasch an unsere Grenzen. Denn eine ganze Reihe kosmischer Phänomene lässt sich mit dem Konzept eines unveränderlichen dreidimensionalen Raums nicht erklären. Das geht nur anhand einer formbaren vierdimensionalen Raumzeit. Dass sich auch dieses Konzept anschaulich verstehen lässt und wie es all die merkwürdigen Vorgänge im Kosmos erklärt, ist in der Titelgeschichte ‘Kosmologische Kuriositäten’ (Teil 1) der Februarausgabe von “Sterne und Weltraum” zu lesen.

Die Kosmologie ist die Wissenschaft, die unser Universum als Ganzes beschreibt. Ihr zu Grunde gelegt ist die Einsteinsche allgemeine Relativitätstheorie, in der der Physiker die Gravitation erklärt – jene Kraft, die als einzige über die riesigen Distanzen im Kosmos hinweg wirken kann. In seiner Theorie stellte Albert Einstein die Verbindung zwischen der Schwerkraft und der Raumzeit her. Seitdem ist die vierdimensionale Raumzeit als ein formbares dynamisches Gebilde zu verstehen.

Zu den Kuriositäten dieser Theorie gehört beispielsweise, dass sich Licht von Massen auf krumme Bahnen zwingen lässt. Im Weltraum breitet es sich also nicht unbedingt entlang gerader Linien aus! Ebenfalls kurios ist die Expansion unseres Universums. Doch was dehnt sich dabei eigentlich aus? Das Weltall mit all seinen Inhalten? Es ist der Raum, der mit der Zeit expandiert, nicht jedoch darin enthaltene Körper, die durch die Schwerkraft zusammengehalten werden. Unsere Erde etwa oder auch die Galaxien behalten ihre Größe bei.

Auch, dass sich manche Galaxien mit Überlichtgeschwindigkeit von uns entfernen, lässt die Kosmologie zu – und das widerspricht nirgends der Tatsache, dass die Lichtgeschwindigkeit eine konstante Größe ist, die auch durch größte Beschleunigung nicht überschritten werden kann.

Zum Hintergrund: Albert Einstein entwickelte die allgemeine Relativitätstheorie völlig eigenständig in jahrelanger mühsamer Arbeit. Sie beschreibt die Wirkung der Schwerkraft durch das Konzept einer gekrümmten Raumzeit. Unser Universum dehnt sich aus, und das sogar immer schneller. Physiker bezeichnen dies als beschleunigte Expansion und verstehen darunter, dass die Abstände in unserem Universum mit der Zeit immer schneller anwachsen. Für den Nachweis dieses Expansionsverhaltens wurde 2011 der Nobelpreis für Physik verliehen.

Bestimmt wird diese Expansion des Universums von seinem Materie- und Energieinhalt. Dass Licht von Massen abgelenkt wird, kann sogar bei Sonnenfinsternissen durch astronomische Beobachtungen gemessen werden. Auch Gravitationslinsen im Universum zeigen die Wechselwirkung von Licht mit Massen auf: Bei diesen Objekten handelt es sich um kosmische Ansammlungen von Materie, die Licht von dahinter liegenden Quellen verzerren. (Quelle: Sterne und Weltraum, Februar 2013 )

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Beherrscht die “spukhafte Fernwirkung” den Makrokosmos?


Die Gesetze der Quantenmechanik beherrschen nicht nur die Welt der Atome und Elementarteilchen, sondern liegen in größerem Maßstab auch der Natur zu Grunde. Vielleicht machen sich sogar Pflanzen bei der Fotosynthese oder Zugvögel bei der Orientierung typische Quanteneffekte zu Nutze.
Die Quantenmechanik gilt allgemein als Theorie für mikroskopisch kleine Gegenstände – Moleküle, Atome, sub-atomare Teilchen. Doch viele Physiker glauben heute, diese Theorie treffe auf alles zu, ob groß oder klein. In den letzten Jahren haben mehrere Experimente Quantenphänomene auch in makroskopischen Systemen beobachtet, beispielsweise in Salzkristallen.

Vor allem die so genannte Verschränkung, ein typischer Quanteneffekt, kann auch in großen Systemen auftreten – vielleicht sogar in lebenden Organismen. Kandidaten für makroskopische Verschränkungen sind die Fotosynthese der Pflanzen und die Magnetfeldwahrnehmung von Vögeln. Das berichtet der serbo-britische Quantenphysiker Vlatko Vedral von der Oxford University in der Septemberausgabe von Spektrum der Wissenschaft.

Für die Physiklehrbücher ist die Sache klar: Die Quantenmechanik beschreibt die Gesetze des -Mikrokosmos. Sie liefert die Theorie für Teilchen, Atome und Moleküle – während für Billardkugeln, Menschen und Planeten die klassische Physik gelten soll. Irgendwo zwischen Molekülen und Billardkugeln liegt damit eine Grenze, an der das seltsame Verhalten der Quantenobjekte in die vertraute Alltagsphysik übergeht. Doch wo liegt diese Grenze?

Diese Aufteilung der Welt ist womöglich allzu simpel. Heute glauben nur wenige Physiker, dass die klassische Physik den gleichen Rang wie die Quantenmechanik beanspruchen darf; sie ist nur eine nützliche Näherung für eine Welt, die in allen Größenordnungen Quanteneigenschaften aufweist. Dass Quanteneffekte in der Makrowelt schwieriger zu erkennen sind, hat nichts mit Größe zu tun, sondern mit der Art und Weise, wie Quantensysteme wechselwirken. In den letzten Jahren haben Physiker mehrfach experimentell belegt, dass auch in makroskopischen Größenordnungen Quantenverhalten auftreten kann. Beherrscht die “spukhafte Fernwirkung” den Makrokosmos? weiterlesen

Wie ein Spiegel quantenmechanische Überlagerung erzeugt

Kommt das Licht direkt vom Atom oder von seinem Spiegelbild? Ein Spiegel erzeugt eine quantenmechanische Überlagerung. Copyright: TU Wien

Wer vor einem Spiegel steht, hat sicher kein Problem, sich selbst von seinem Spiegelbild zu unterscheiden. Auf unsere Bewegungsmöglichkeiten hat der Spiegel keinen Einfluss. Bei quantenphysikalischen Teilchen ist das komplizierter. In einer aufsehenerregenden Forschungsarbeit in den Laboren der Universität Heidelberg gelang es Heidelberger Physikern gemeinsam mit Forschern der Technischen Universität München sowie der Technischen Universität Wien, ein Gedankenexperiment von Einstein im Labor weiterzuführen und den Unterschied zwischen einzelnen Teilchen und ihren Spiegelbildern verschwimmen zu lassen. Die Ergebnisse des Experimentes wurden nun im Fachjournal „Nature Physics“ veröffentlicht.

Wenn ein Atom spontan in eine bestimmte Richtung ein Lichtteilchen aussendet, erfährt es einen Rückstoß in die Gegenrichtung. Misst man das Lichtteilchen, kennt man daher auch den Bewegungszustand des Atoms. Das Forscherteam platzierte Atome wenige Millionstel Meter vor einem vergoldeten Spiegel – in diesem Fall gibt es für ein Lichtteilchen, das zum Beobachter gelangt, zwei mögliche Wege: Es kann direkt vom Atom zum Beobachter gekommen sein, oder es wurde in die entgegengesetzte Richtung ausgesandt, ist auf den Spiegel getroffen und dann zum Beobachter gelangt. Wenn man zwischen diesen beiden Fällen nicht unterscheiden kann, befindet sich das Atom in einer Überlagerung beider Wege.

„Bei einem sehr kleinen Abstand zwischen Atom und Spiegel kann zwischen den beiden Möglichkeiten ganz prinzipiell nicht mehr unterschieden werden“, erklärt Jiri Tomkovic, Doktorand in der Arbeitsgruppe von Prof. Dr. Markus Oberthaler an der Universität Heidelberg. Ursprungsteilchen und Spiegelbild sind physikalisch nicht mehr voneinander zu trennen. Das Atom bewegt sich gleichzeitig auf den Spiegel zu und vom Spiegel weg. Was paradox klingt und für makroskopische Teilchen unmöglich ist, kennt man in der Quantenphysik schon lange.

„Diese Unsicherheit über den Bewegungszustand des Atoms bedeutet nicht, dass wir nicht genau genug gemessen haben“, betont Prof. Dr. Jörg Schmiedmayer von der TU Wien. „Das ist eine grundlegende Eigenschaft der Quantenphysik: Das Teilchen befindet sich in beiden Bewegungszuständen gleichzeitig, es ist in einem Überlagerungszustand.“ Im Experiment werden die Bewegungszustände, die das Atom gleichzeitig einnimmt – hin zum Spiegel und weg vom Spiegel – durch sogenannte Bragg-Streuung an einem Gitter aus Laserlicht wieder kombiniert. Dadurch lässt sich beweisen, dass sich das Atom tatsächlich in einem Überlagerungszustand befand.

Dies erinnert an das berühmte Doppelspaltexperiment, in dem ein Teilchen auf eine Platte mit zwei Öffnungen geschossen wird – und aufgrund seiner quantenmechanischen Welleneigenschaften durch beide Öffnungen gleichzeitig tritt. Schon Einstein machte sich darüber Gedanken, dass das nur dann möglich ist, wenn durch keine mögliche Messung entschieden werden kann, welchen Weg das Teilchen genommen hat, auch nicht durch Vermessung von winzigen Bewegungen der Doppelspalt-Platte. Sobald durch irgendein Experiment auch nur theoretisch feststellbar wäre, für welchen Weg sich das Teilchen entschieden hat, ist es vorbei mit der Quanten-Überlagerung. „In unserem Fall spielen die Lichtteilchen eine ähnliche Rolle wie ein Doppelspalt“, meint Prof. Oberthaler von der Universität Heidelberg. „Wenn das Licht prinzipiell darüber Auskunft geben kann, in welche Richtung sich das Atom bewegt, dann ist auch der Zustand des Atoms festgelegt. Nur wenn das grundsätzlich unentscheidbar ist, befindet sich das Atom in einem Überlagerungszustand, der beide Möglichkeiten vereint.“ Und genau diese Unentscheidbarkeit wird durch den Spiegel gewährleistet.

Auszutesten, unter welchen Bedingungen solche Quanten-Überlagerungen zu erkennen sind, ist eine wichtige Forschungsfrage in der Quantenphysik: Nur so lassen sich diese Effekte auch gezielt nutzen. Die Idee für dieses Experiment wurde von Jörg Schmiedmayer und Markus Oberthaler bereits vor einigen Jahren entwickelt. „Das Faszinierende daran ist“, so die Forscher, „die Möglichkeit, einen Überlagerungszustand einfach durch die Anwesenheit eines Spiegels zu erzeugen, ganz ohne Eingriff durch äußere Felder.“ Das Teilchen und sein Spiegelbild geraten ganz von selbst in eine quantenphysikalische Beziehung zueinander – ganz ohne aufwendiges Zutun der Wissenschaftler. (Quelle: idw. Bild: Kommt das Licht direkt vom Atom oder von seinem Spiegelbild? Ein Spiegel erzeugt eine quantenmechanische Überlagerung. Copyright: TU Wien)

Verletzt expandierendes Universum den Energieerhaltungssatz?


Der expandierende Kosmos scheint ein Grundgesetz der Physik zu verletzen.

Energie kann weder erzeugt noch zerstört werden. Dieser Erhaltungssatz gilt Physikern als sakrosankt. Er beherrscht jeden Lebensbereich – das Aufwärmen einer Tasse Kaffee, die chemischen Reaktionen, mit denen Blätter Sauerstoff erzeugen, die Bahn der Erde um die Sonne und die Nahrung, die wir brauchen, damit unser Herz schlägt. Ohne Essen können wir nicht leben, das Auto fährt nicht ohne Kraftstoff, und Perpetuum mobiles sind pure Fiktion. Darum schöpfen wir mit Recht sofort Verdacht, wenn etwas den Energieerhaltungssatz zu verletzen scheint. Kommt so etwas überhaupt vor?

Scheinbar doch. Kehren wir einmal kurz der Erde den Rücken und wenden uns dem Weltall zu, schlägt die australische Astrophysikerin Tamara Davis vor. Fast alle Informationen über den fernen Weltraum gewinnen wir in Form von Licht, das auf seinem langen Weg von fernen Galaxien durch das expandierende Universum eine Rotverschiebung erfährt; die elektromagnetischen Wellen werden gemäß Einsteins allgemeiner Relativitätstheorie gestreckt. Doch wir wissen: Je größer die Wellenlänge, desto kleiner die Energie. Das wirft die Frage auf, wohin die Energie verschwindet, wenn das Licht durch die kosmische Expansion röter wird. Geht sie verloren – und verletzt damit das Erhaltungsprinzip?

Letztlich nein, beruhigt uns Tamara Davis in der November-Ausgabe von Spektrum der Wissenschaft. Auch hier auf der Erde finden ständig solche Verschiebungen statt. Angenommen, Sie fahren an einer Radarfalle vorbei, mit der die Polizei gern Temposünder überführt. Während Ihr Auto sich dem Gerät nähert, würden Ihnen die elektromagnetischen Radarwellen – wenn Sie sie sehen könnten – ein wenig gestaucht erscheinen; nachdem Sie das Gerät passiert haben, sähen die Wellen etwas gestreckt aus. Das ist der Dopplereffekt – das elektromagnetische Pendant zu dem bekannten akustischen Phänomen, dass sich die Tonhöhe einer Hupe beim Vorbeifahren zu ändern scheint. Das Polizeiradargerät ermittelt aus der Dopplerverschiebung der reflektierten Radarstrahlen Ihre Geschwindigkeit.

Dopplerverschiebung entsteht durch die Relativbewegung von Sender und Empfänger. Dabei verlieren oder gewinnen die Photonen keine Energie; sie sehen nur für den Empfänger anders aus als für den Sender. Doch die kosmologische Rotverschiebung hat nach gängiger Auffassung einen anderen Grund. Den Lehrbüchern zufolge wird sie dadurch verursacht, dass der Raum, durch den das Licht wandert, sich selbst ausdehnt wie ein aufgeblasener Luftballon.

Aber, hält Tamara Davis dagegen, in Einsteins allgemeiner Relativitätstheorie ist der Raum relativ; was wirklich zählt ist die Geschichte einer Galaxie – die Bahn, die sie in der Raumzeit beschreibt. Darum sollten wir, wenn wir die Relativgeschwindigkeit der fernen Galaxie in Bezug auf uns berechnen, deren Trajektorie in der Raumzeit und unsere vergleichen. Der Betrag der Rotverschiebung, den der irdische Beobachter an der Galaxie feststellt, erweist sich so gesehen nicht anders als die Dopplerverschiebung, die er an einem Auto sähe, das sich mit derselben Relativgeschwindigkeit entfernt.

Und genau wie im Fall der vorbeibewegten Hupe – wo uns nicht einfiele, dass der Schall Energie gewinnt oder verliert – bewirkt auch hier die Relativbewegung von Sender und Beobachter bloß, dass die Beiden die Photonen aus unterschiedlicher Perspektive sehen, und nicht, dass die Photonen unterwegs Energie verloren haben.

Letzten Endes umgibt kein Rätsel den Energieverlust der Photonen: Die Energien werden von Galaxien aus gemessen, die sich voneinander entfernen, und die Energieabnahme ist nur eine Frage des Standpunkts und der Relativbewegung.

Die Physiker können also beruhigt sein, das Universum hat kein Leck. Wenn sie zu klären versuchen, ob die Energie des ganzen Universums erhalten bleibt, stoßen sie vielmehr an eine fundamentale Grenze, denn sie können der Energie des Universums keinen eindeutigen Wert zuweisen. Darum verletzt das Universum den Energieerhaltungssatz nicht; vielmehr liegt es jenseits von dessen Geltungsbereich.
Quelle: Spektrum der Wissenschaft, November 2010

Mehr dazu:
1. Äquivalenz von Information und Energie: Auf der Suche nach den Grundbausteinen der Welt
2. Supervereinigung: Wie aus nichts alles entsteht. Ansatz einer großen einheitlichen Feldtheorie

Gibt es eine letzte Ursache?

Video: Magnetische Dipole im Wasser sortieren sich selbst.

Wissenschaft und Religion möchten uns glauben machen, dass Dinge aus guten Gründen so sind, wie sie sind. Doch die letzte Ursache kann nicht mehr begründet werden. In der Religion wird sie zur Glaubenssache. Gilt das auch für die Naturwissenschaft?

Dinge, die nicht gehalten werden, fallen herunter. Ein Wasserglas fällt dann nicht zu Boden, wenn ein Tisch das Glas hält. Der Tisch wird vom Fußboden gehalten. Das Haus hält den Fußboden und die Erde hält schließlich das Haus. Allerdings akzeptieren weder Wissenschaft noch Religion die Erde als letzte Ursache dafür, dass das Wasserglas auf dem Tisch gehalten wird. Was ist aber dann die letzte Ursache? Gibt es eine letzte Ursache? weiterlesen