Schlagwort-Archive: Masse

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps:

 

Marsrover Curiosity gelandet

Video: Unterhaltsame 3D-Animation zur Curiosity Marslandung

Am frühen Morgen des 6. August 2012 hat die US-Raumsonde Curiosity, zu deutsch Neugier, ihr Ziel erreicht: den Mars beim äquatornahen Einschlagkrater Gale auf der Südhalbkugel. Mit dem Eintritt der Sonde in die dünne Marsatmosphäre folgten höllische sieben Minuten.

Die Missionskontrolleure auf der Erde waren in dieser Phase aufs Zuschauen beschränkt, weil Funkbefehle 14 Minuten brauchen, bis sie den Mars erreichen. Nach vier Minuten Abbremsen war der Hitzeschild weißglühend und ein Fallschirm wurde herausgeschossen, um die Geschwindigkeit weiter zu reduzieren.

Dreißig Sekunden später wurde die Landestufe vom Hitzeschild getrennt und die restliche Abbremsung bis zum Stillstand auf der Oberfläche übernahmen Raketentriebwerke. Wegen der dünnen Atmosphäre ist eine weiche Landung mit Hilfe von Fallschirmen nicht möglich. Airbags können wegen Curiositys hoher Masse von 900 kg nicht eingesetzt werden.

Der Marsrover ist praktisch ein Feldlabor auf sechs Rädern, groß wie ein Personenwagen, wie es bislang jenseits der Erde noch nie zum Einsatz kam. Mit den Geräten lassen sich detaillierte chemische Analysen durchführen, um die Frage nach Leben auf dem Mars endgültig zu beantworten. Nach der Landung durchlief Curiosity seine Aktivierungssequenz, nahm unter anderem erste Bilder seiner Umgebung auf und machte sich auf den Weg zur Exploration.

Die Marssonde soll herausfinden, ob sich in den Gesteinen und Böden Spuren solcher organischen Stoffe finden, die eine Voraussetzung für Leben sind, wie wir es kennen. Bei früheren Missionen konnte man solche Spuren nicht zweifelsfrei finden. Die Sonde soll sich insbesondere im Landegebiet des Kraters Gale rund zwei Jahre aufhalten

Wenn alles glattgeht, wird uns Curiosity faszinierende Einsichten in die geologische Geschichte des Mars bieten. Auch visuell dürfte die Mission für eindrucksvolle Panoramaaufnahmen sorgen.

Buchtipps
Roman: Professor Allman und die verschwindende Realität: Zeitreiseroman mit wissenschaftlichem Hintergrund
Sachbuch: Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Gottes- oder Higgs-Teilchen: Urknallexperiment erfolgreich.

Am europäischen Forschungszentrum für Elementarteilchenphysik CERN in Genf sind heute die neuesten Ergebnisse der Suche nach dem Higgs-Teilchen vorgestellt worden. In den Daten des Large Hadron Colliders (LHC) wurden deutliche Anzeichen für ein neues Teilchen beobachtet, welches das seit langem gesuchte Higgs-Teilchen sein könnte, dem eine Schlüsselrolle in der Elementarteilchenphysik zukommt. An den Messungen mit dem Großdetektor ATLAS sind die Physiker der Universität Bonn mit vier Professoren und ihren Arbeitsgruppen beteiligt. Sie haben den Pixeldetektor für dieses Experiment entwickelt und sind in Betrieb und Datennahme stark involviert.
In mehreren randvoll mit Wissenschaftlern gefüllten Auditorien am CERN in Genf wurde heute morgen im Rahmen eines Sonderseminars der neueste Stand der Suche nach dem ominösen Higgs-Teilchen vorgestellt. Dem bis heute nur postulierten Higgs-Teilchen kommt in der Teilchenphysik eine Schlüsselrolle zu: Es ist ein zentrales Element in der Standardmodell genannten Theorie und ist dafür verantwortlich, dass die Elementarteilchen ihre Masse erhalten. Die Messdaten des LHC zeigen deutliche Anzeichen für die Existenz eines neuen Teilchens mit einer Masse von 126 Giga-Elektronenvolt, das heißt ca. 130-mal so schwer wie ein Proton, welches das Higgs-Teilchen sein könnte.

Die Ergebnisse von ATLAS und CMS, den beiden großen Experimenten am LHC, zeigen konsistente und sehr signifikante Hinweise auf das neue Teilchen. „Erste Hinweise auf das Higgs-Teilchen in den Daten des LHC gab es bereits vor einem halben Jahr, doch es war noch zu früh, um von einer Entdeckung zu sprechen”, sagt Prof. Dr. Norbert Wermes vom Physikalischen Institut der Universität Bonn. Jetzt sind mehr als doppelt so viele Daten aufgezeichnet und untersucht worden. Die Wahrscheinlichkeit, dass die Ergebnisse der Messung durch eine Fluktuation des Untergrundes erklärt werden könnten, ist kleiner als eins in einer Million.

Ob es sich tatsächlich um das Higgs-Teilchen handelt, oder ob man gar etwas gänzlich Unerwartetem auf der Spur ist, kann erst durch weitere Untersuchungen mit mehr Messdaten entschieden werden. In jedem Fall würde es sich um eine bahnbrechende Entdeckung handeln. „Teilchenphysiker aus aller Welt haben jahrzehntelang auf diesen Tag hingearbeitet und nun scheint er endlich gekommen zu sein”, sagt Prof. Jochen Dingfelder von der Universität Bonn. „Die Entdeckung des vorhergesagten Higgs-Teilchens ist ein großartiger Erfolg für die Teilchenphysik”, sagt Prof. Wermes.

Die im ATLAS-Experiment arbeitenden deutschen Gruppen an 13 Universitäten und Forschungseinrichtungen haben an dieser Entdeckung maßgeblichen Anteil. Die Physiker der Universität Bonn haben in Zusammenarbeit mit Arbeitsgruppen aus Dortmund, Siegen und Wuppertal sowie internationalen Partnern den Pixeldetektor entwickelt und wesentlich zum Bau des so genannten Innendetektors für Teilchenspuren des Experiments beigetragen. Sie sind bereits seit 1993 an Planung, Bau und Betrieb des Experimentes beteiligt. Der Pixeldetektor sitzt nur wenige Zentimeter entfernt von der Kollisionszone der LHC-Strahlen und fungiert in gewissem Sinne als Lupe für die Urknallreaktionen, in denen das neue Teilchen jetzt gefunden wurde.

Vier Arbeitsgruppen um die Professoren Ian C. Brock, Klaus Desch, Jochen Dingfelder und Norbert Wermes werten die Messungen des ATLAS-Experimentes am LHC aus. „Neben der Suche nach dem Higgs-Teilchen wird in Bonn auch an Suchen nach noch unentdeckten Phänomenen und Elementarteilchen sowie der Untersuchung des schwersten uns bekannten Elementarteilchens, des Top-Quarks, aktiv gearbeitet”, berichtet Prof. Ian Brock.

Der LHC wird planmäßig noch bis Ende dieses Jahres Daten liefern, bevor er für eine längere Zeit abgeschaltet und für den Betrieb bei höherer Energie bereit gemacht wird. Diese Daten werden helfen, das Higgs-Teilchen noch dingfester zu machen und seine Identität besser zu verstehen „Der LHC hat eines seiner Hauptziele erreicht”, sagt Prof. Klaus Desch. „Die Arbeit fängt jetzt aber erst richtig an. Wir müssen verstehen, ob die Beobachtung mit der Theorie der Teilchenphysik in Einklang ist, und die Eigenschaften des Higgs-Teilchens möglichst detailliert untersuchen.” Die kommenden Monate und Jahre versprechen für die Erforschung der Teilchenwelt spannend zu werden. (Quelle: idw, Bild: KDS)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Das Gottesteilchen eingekreist


Noch nicht gefunden – aber alle Zeichen deuten auf seine Existenz hin: Das Higgs-Teilchen, welches die Physikerinnen und Physiker am CERN, dem Europäischen Laboratorium für Teilchenphysik in Genf jagen, wird eingekreist. Das vermelden die beteiligten Forschungskollaborationen. Aufgrund der Daten, die sie in den 18 Monaten seit dem Start des weltgrössten Teilchenbeschleunigers «Large Hadron Collider» (LHC) gesammelt haben, liegen den Wissenschaftlern Hinweise zur Existenz des im Standardmodell vorhergesagten Teilchens vor. Das Higgs-Feld, das nach dem schottischen Physiker Peter Higgs benannt wird, soll allen Teilchen ihre Masse verleihen. Das macht das Higgs-Teilchen zu einem wichtigen Bestandteil im geltenden Verständnis der Physik und deshalb wird es manchmal auch das «Gottesteilchen» genannt.

Die Analyse der bisherigen Daten zeigt, dass bei einem bestimmten Massenwert (125 Gigaelektronenvolt) «mehr charakteristische Ereignisse auftauchen, als es geben würde, wenn das Higgs-Teilchen nicht existierte», erklärt der am ATLAS-Experiment beteiligte Berner Physiker Hans Peter Beck. Die Wissenschaftler stellen aber klar, dass «es zu früh für Schlussfolgerungen ist»: Es braucht mehr Daten, um den noch offenen Massenbereich von 116 bis 130 Gigaelektronenvolt endgültig abzudecken. Das ist der Bereich, in dem das Higgs-Teilchen sich überhaupt noch tummeln kann, die anderen Bereiche wurden gründlich «abgesucht». Beck rechnet damit, dass bis Ende nächstes Jahr definitiv klar ist, ob das Higgs-Teilchen existiert oder nicht. «Mit etwas Glück gehts sogar schneller.»

Der LHC-Teilchenbeschleuniger und die vier Detektoren

Um in bislang unerreichte Dimensionen im Verständnis der Elementarteilchen vorzudringen, lassen die Physikerinnen und Physiker des CERN im 27 Kilometer langen unterirdischen LHC Protonenstrahlen mit je 3,5 Teraelektronenvolt kreisen und mit beinahe Lichtgeschwindigkeit kollidieren. Bei dieser höchsten jemals künstlich erzeugten Kollisionsenergie simulieren sie den Urknall vor rund 14 Milliarden Jahren – und erhoffen sich ein besseres Verständnis über den Aufbau des Universums. Um das Higgs-Boson – und andere neue Kleinstteilchen – zu entdecken und nachzuweisen, wurden vier riesige Detektoren (ATLAS, CMS, LHCb und ALICE) um die vier Kollisionsstellen am LHC aufgebaut; der grösste würde die Kathedrale Notre-Dame in Paris zur Hälfte füllen, während der schwerste mehr Eisen enthält als der Eiffelturm.
Mit dem ATLAS-Detektor mit seinen sensiblen und ausgeklügelten Spurendetektoren, Kalorimetern, Müon-Spektrometern und hochpotenten Magnetfeldern versucht eine internationale Forschungskollaboration mit Berner Beteiligung den Kleinstteilchen auf die Schliche zu kommen, welche aus den Proton-Proton-Kollisionen entstehen. Das stellt die Wissenschaft schon von Beginn weg vor grosse Herausforderungen: Von den 600 Millionen Proton-Proton-Kollisionen, die pro Sekunde im ATLAS-Detektor stattfinden, sind nur gerade 200 interessant genug, um deren Daten zu analysieren. Bei dieser Datenselektion ist der Physiker Hans Peter Beck federführend, er spielt seit 1997 bei der Systemarchitektur der Ereignisselektion und deren Inbetriebnahme eine führende Rolle. Sigve Haug erstellte in Bern einen grossen Grid-Computer-Cluster (500 CPU cores und 200 Terabytes an Diskspeichern), um die riesige Daten-Menge zu bewältigen. (Quelle: idw)

Buchtipp:
Supervereinigung: Wie aus nichts alles entsteht. Ansatz einer großen einheitlichen Feldtheorie

Experiment zur Vereinigung von Quantenmechanik und Relativitätstheorie


Die Vereinigung der Quantenmechanik mit Einsteins allgemeiner Relativitätstheorie ist eine wichtige offene Frage der modernen Physik. Die allgemeine Relativitätstheorie, welche die Gravitation, den Raum und die Zeit beschreibt, tritt auf großen Skalen, also bei Sternen und Galaxien, zum Vorschein. Auf der anderen Seite machen sich die fragilen Quanteneffekte bei den kleinsten Teilchen bemerkbar. Deswegen ist es schwer, Effekte zu erforschen, wo beide Theorien zusammenwirken. Theoretische PhysikerInnen unter der Leitung von Časlav Brukner der Universität Wien schlagen ein neuartiges Experiment vor, um genau dies zu tun. Die Ergebnisse erscheinen nun im Journal “Nature Communications”.

Zeit in der allgemeinen Relativitätstheorie

Eine der wichtigsten Vorhersagen von Einsteins allgemeiner Relativitätstheorie ist die Deformierung der Zeit. Die Theorie sagt voraus, dass Uhren in der Nähe eines massiven Objekts langsamer laufen, und dass sie schneller laufen, je weiter sie von der Masse entfernt sind. Dieser Effekt resultiert im sogenannten “Zwillingsparadoxon”: Wenn einer von zwei identischen Zwillingen auf einer höher gelegenen Ebene lebt, so altert er schneller als der andere Zwilling. Dieser Effekt wurde in klassischen Experimenten bestätigt, jedoch nicht im Zusammenhang mit Quanteneffekten, welches das Ziel des neuartigen Experimentes sein soll.

Quanteninterferenz und Komplementarität Experiment zur Vereinigung von Quantenmechanik und Relativitätstheorie weiterlesen

Rätsel zur Entstehung des Lebens gelöst

Damit in den Sternen Kohlenstoff, die Grundlage des Lebens, entstehen kann, spielt eine bestimmte Form des Kohlenstoffkerns eine entscheidende Rolle. Physiker der Universität Bonn und der Ruhr-Universität Bochum haben jetzt gemeinsam mit US-Kollegen diesen legendären Kohlenstoffkern berechnet. Damit haben sie ein Problem gelöst, das die Wissenschaft seit mehr als 50 Jahren vor Rätsel gestellt hat.

„Seit 1954 hat man vergeblich versucht, den Hoyle-Zustand zu berechnen“, berichtet Professor Dr. Ulf-G. Meißner (Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn), „und wir haben es jetzt geschafft!“ Der Hoyle-Zustand ist eine energiereiche Form des Kohlenstoffkerns. Er ist der Bergpass, über den man von einem Tal ins andere gelangt: von drei Kernen des Gases Helium zum sehr viel größeren Kohlenstoffkern. Diese Verschmelzungsreaktion findet im heißen Inneren schwerer Sterne statt. Gäbe es den Hoyle-Zustand nicht, hätten im Weltall nur sehr wenig Kohlenstoff oder andere höhere Elemente wie Sauerstoff, Stickstoff und Eisen entstehen können. Ohne diese Art von Kohlenstoffkern wäre daher vermutlich auch kein Leben möglich gewesen.

Die Suche nach dem „Nebensender“

Bereits im Jahr 1954 hat man den Hoyle-Zustand experimentell nachgewiesen, aber seine Berechnung scheiterte stets. Denn diese Form des Kohlenstoffs besteht lediglich aus drei sehr lose gebundenen Heliumkernen − ein eher wolkiger diffuser Kohlenstoffkern. Und er liegt nicht einzeln vor, sondern stets zusammen mit anderen Formen von Kohlenstoff. „Das ist, wie wenn sie ein Radiosignal untersuchen wollen, bei dem ein Hauptsender und mehrere schwächere Sender überlagert sind“, erläutert Prof. Dr. Evgeny Epelbaum (Institut fuer Theoretische Physik II der Ruhr-Universität Bochum). Der Hauptsender ist der stabile Kohlenstoffkern, aus dem unter anderem auch der Mensch aufgebaut ist. „Wir interessieren uns aber für einen der instabilen, energiereichen Kohlenstoffkernen, also müssen wir irgendwie mit einem Rauschfilter den schwächeren Radiosender von dem dominierenden Signal abtrennen.“

Möglich wurde das mit einer neuen, besseren Rechenmethode der Forscher, welche die Kräfte zwischen mehreren Kernbausteinen präziser als zuvor berechnet. Mit JUGENE, dem Supercomputer am Forschungszentrum Jülich, stand auch das passende Werkzeug parat. Eine knappe Woche hat JUGENE gerechnet. Das Rechenergebnis stimmt so gut mit den experimentellen Daten überein, dass die Forscher sicher sein können, den Hoyle-Zustand tatsächlich von Grund auf berechnet zu haben.

Mehr über die Entstehung des Universums

„Jetzt können wir diese spannende und wichtige Form von Kohlenstoffkern ganz genau untersuchen“, erläutert Prof. Meißner. „Wir werden schauen, wie groß er ist und wie er aufgebaut ist. Und damit können wir jetzt auch die gesamte Kette der Elemententstehung unter die Lupe nehmen.“

Sogar philosophische Fragen sind in Zukunft vermutlich wissenschaftlich zu beantworten. Seit Jahrzehnten gilt der Hoyle-Zustand als Paradebeispiel für die Theorie, dass die Naturkonstanten bei der Entstehung unseres Universums genauso und nicht anders aufeinander abgestimmt sein mussten, da wir sonst nicht hier wären, um das Universum zu beobachten (Anthropisches Prinzip). „Für den Hoyle-Zustand heißt das: Er muss genau diese Energie haben, die er hat, weil es uns sonst nicht gäbe“, sagt Prof. Meißner. „Wir können jetzt berechnen, ob in einer veränderten Welt mit anderen Parametern der Hoyle-Zustand im Vergleich zur Masse von drei Heliumkernen tatsächlich eine andere Energie hätte.“ Wenn dem so ist, spräche das für das anthropische Prinzip. (Quelle: idw)

Lässt CERN „tote“ Materie lebendig werden?

Fluktuation im Universum - Bild cc-by-sa Argonne National Laboratory (flickr).jpg

Leben ist gekennzeichnet durch die prinzipielle Unvorhersagbarkeit des Verhaltens. Die Flugbahn eines Steins kann man vorhersagen. Für die Bahn des Vogelflugs gilt das nicht. Doch die Welt toter Materie ist im Kleinen ungeahnt lebendig.

Die Unterschiede zwischen der Welt im Großen und jener in den Dimensionen von Atomen oder kleiner können an einem Beispiel verdeutlicht werden. Ein Pendel der klassischen Physik, wie das Pendel einer alten mechanischen Uhr, hängt für alle Zeiten regungslos senkrecht herunter, wenn die Uhr nicht aufgezogen wird. Nicht so das Pendel von atomarer Größe. Denn in dieser Größenordnung gelten die Gesetze der Quantenmechanik. Danach ist das Pendel immer in Unruhe. Es fluktuiert um die Ruhelage herum, befindet sich jedoch nie exakt an deren Position. Unter Fluktuation versteht man hier eine permanente und zufällige Veränderung des Zustands oder der Lage, sodass man nie genau sagen kann, welche Auslenkung es gerade hat.

Es war kein Geringerer als der Physiker Werner Heisenberg (1901 – 1976), der diesen Umstand im Zusammenhang mit sogenannten Doppelspaltexperimenten entdeckte. In der Wissenschaft ist seine Entdeckung unter dem Namen Unschärferelation bekannt. Heisenberg bekam dafür im Jahr 1932 den Nobelpreis.

Ist Materie beseelt?

Eine der Aussagen der Unschärferelation ist es, dass kein Teilchen einen bestimmten Ort und eine bestimmte Geschwindigkeit gleichzeitig besitzen kann. Würde sich demnach das Pendel am Ort der Ruhelage befinden, könnte es nicht gleichzeitig die Geschwindigkeit null haben. Hätte es andererseits die Geschwindigkeit null, könnte es nicht gleichzeitig am Ort der Ruhelage sein. Die Konsequenz ist, dass das quantenmechanische Pendel weder an einem genau bestimmten Ort zu finden ist, noch eine genau bestimmte Geschwindigkeit besitzt. Es fluktuiert einfach um den Ort der Ruhelage herum und das für alle Ewigkeit. Niemals ist es in Ruhe. Sein Verhalten ist genauso unvorhersagbar, wie man es von etwas Lebendigem gewohnt ist. Kann man daraus auf eine Art Beseeltheit der Materie und der Naturkräfte schließen? Lässt CERN „tote“ Materie lebendig werden? weiterlesen

Supernovae-Explosion: Wie das Weltall vermessen wird

NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory
NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Vom genauen Mechanismus hängt es ab, wie gut wir das Verhalten unseres Universums verstehen
Manche Sterne beenden ihr Dasein mit einem enormen Knall: Binnen Stunden steigern sie ihre Helligkeit um das Millionen- oder gar Milliardenfache und leuchten für einige Tage so hell wie eine ganze Galaxie. Astronomen entdecken jedes Jahr mehrere hundert solcher Supernovae, die zumeist in entlegenen Winkeln des Universums aufleuchten.

Supernovae künden aber nicht nur vom gewaltsamen Ende eines Sterns, sondern erweisen sich auch als wichtige Hilfsmittel für die Vermessung des Weltalls. Denn ein spezieller Typ dieser Sternexplosionen, genannt Ia, erreicht stets die gleiche Maximalhelligkeit. Gelingt es, dieses Maximum zu beobachten, dann folgt aus der gemessenen Helligkeit der Supernova direkt ihre Entfernung. Denn so, wie der fernere zweier gleich heller Autoscheinwerfer einem Beobachter lichtschwächer erscheint, verhält es sich auch mit Supernovae: Je größer ihre Distanz zur Erde ist, umso weniger hell erscheinen sie.

Die Entfernungsbestimmung mit Supernovae vom Typ Ia klappt so gut, dass sie sich als Maßstab oder Standardkerze zur Auslotung des Universums verwenden lassen. Seit rund achtzig Jahren ist bekannt, dass sich das Weltall ausdehnt. Aber erst vor wenigen Jahren fanden die Astronomen heraus, dass sich diese Ausdehnung sogar beschleunigt– ein Befund, der sich anhand der Distanzen der Supernovae vom Typ Ia ergab. Um diese Beschleunigung zu erklären, mussten die Wissenschaftler die Existenz einer ominösen »Dunklen Energie« annehmen, die das Universum beschleunigt auseinandertreibt.

Wegen der kosmologischen Bedeutung dieses Supernova-Typs interessieren sich die Astronomen für die Ursachen und den Ablauf der Sternexplosionen. Zwei Arten von Explosionen sind bekannt, in denen jeweils so genannte Weiße Zwerge eine Rolle spielen. Weiße Zwerge bilden das Endstadium verbrauchter Sterne ähnlich unserer Sonne. Bei der einen Art saugt ein Weißer Zwerg Materie von seinem Partnerstern ab. Er macht dies solange, bis er sich gewissermaßen überfressen hat und er von einer thermonuklearen Explosion zerrissen wird. Dies passiert stets mit der gleichen Maximalhelligkeit. Bei der anderen Art bilden zwei Weiße Zwerge ein Doppelsternpaar und verschmelzen schließlich, wobei es ebenfalls zur Supernovaexplosion kommt. Hier hängt die Maximalhelligkeit von der jeweiligen Masse der Weißen Zwerge ab. Die Astronomen besaßen Hinweise darauf, dass die erste Art deutlich häufiger vorkommt und sich Supernovae vom Typ Ia deshalb als Standardkerzen verwenden lassen.

Neue Untersuchungen von Astronomen des Max-Planck-Instituts für Astrophysik in Garching bei München belegen nun, dass nur fünf Prozent aller Supernovaexplosionen vom Typ Ia in elliptischen Galaxien auf Materie aufsammelnde Weiße Zwerge zurückgehen. Offenbar geht der größte Teil der gewaltigen Sternexplosionen auf die Vereinigung zweier Weißer Zwerge zurück, wie der Physiker Jan Hattenbach im aktuellen Mai-Heft der Zeitschrift “Sterne und Weltraum” berichtet. Dieser Befund schränkt allerdings die Verwendung der Supernovae vom Typ Ia als Standardkerzen ein. Denn nun erwarten die Astronomen, dass die Maximalhelligkeiten wegen der unterschiedlichen Massen der Weißen Zwerge bei ihrer Verschmelzung unterschiedlich ausfallen. Spannend ist jetzt, wie sich diese Erkenntnis auf die Messung der beschleunigten Expansion des Raums auswirkt. Quelle: Sterne und Weltraum, Mai 2010 – Bild: Zwei weiße Zwerge, die sich zunehmend enger umkreisen, verschmelzen schließlich was eine Supernova-Explosion zur Folge hat. (c) NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Sind wir die Einzigen im Umkreis von Lichtjahren?

Sternhaufen

Entdecken wir bald die Geschwister der Sonne?
Die Sonne ist eine Einzelgängerin, was fast ein bißchen schade ist. Denn befände sich das Sonnensystem in einem Sternhaufen mit Hunderten oder gar Zehntausenden Familienmitgliedern, würden sich am Nachthimmel dicht an dicht strahlende Lichter drängen. Manche unserer stellaren Nachbarn wären sogar am Tage leicht mit bloßem Auge zu entdecken. Tatsächlich aber sind Astronomen im Umkreis von 10 Lichtjahren auf gerade einmal elf Sonnen gestoßen.

Nun jedoch hat sich der niederländische Astronom Simon F. Portegies Zwart, wie er in der Titelgeschichte von Spektrum der Wissenschaft (März-Ausgabe 2009) berichtet, auf eine Reise in die ferne Vergangenheit begeben. Denn immer mehr Indizien sprechen dafür, so der Forscher von der Universität Amsterdam, dass die Sonne erst allmählich in ihre abgeschiedene Lage geriet: Auch unser Zentralgestirn könnte einst gemeinsam mit vielen anderen in einem ganzen Schwarm von Sternen geboren worden sein. Dessen Mitglieder hätten sich dann zwar im Lauf von Milliarden von Jahren allmählich über die Galaxis zerstreut. Doch einige dieser stellaren Geschwister der Sonne sollten sich, so hofft er nun, selbst heute noch in unserer Nachbarschaft finden lassen.

Den bislang überzeugendsten Beleg dafür, dass unsere Sonne tatsächlich solche engen Verwandten besitzt, hatten Forscher im Jahr 2003 entdeckt. In Meteoriten aus der Frühzeit des Sonnensystems stießen sie auf das Isotop Nickel-60, das Zerfallsprodukt des radioaktiven Eisen-60. Doch eigentlich hatten sie mit dem Fund von Eisen-60 gerechnet, weil nur dieses die entdeckten chemischen Verbindungen eingehen kann. Ihre Schlussfolgerung: Einst gelangte das radioaktive Eisen unmittelbar nach seiner Synthese in unser gerade erst im Entstehen begriffenes Sonnensystem und wurde dort in die Meteoriten eingebaut. Erst anschließend zerfiel es zu Nickel-60, sonst wären die gefundenen Verbindungen gar nicht erst entstanden. Das aber bedeutet, dass all dies in einem kosmisch gesehen extrem kurzen Zeitraum in der Größenordung der Eisen-60-Halbwertszeit geschehen sein muss: in rund 2,6 Millionen Jahren.

Das Eisen gelangte also aus der unmittelbaren Nachbarschaft ins Sonnensystem, und als wahrscheinlichste Quelle gilt ein explodierter Stern: eine Supernova, in vielleicht weniger als einem Lichtjahr Entfernung! Geriet also ein massereicher Stern zufällig in die Umgebung der jungen Sonne, um just dort zu explodieren? Das ist so unwahrscheinlich, dass Portegies Zwart und andere Forscher nun annehmen, dass die junge Sonne und der explodierte Stern vielmehr ein und demselben dicht gepackten Sternhaufen angehörten, der aus etwa 1500 bis 3500 Sternen bestand und einen Durchmesser von drei bis zehn Lichtjahren besaß.

Aus seinen bisherigen Überlegungen zieht der niederländische Astronom faszinierende und weitreichende Schlüsse. Die Sonne umkreist das galaktische Zentrum mit einer Geschwindigkeit von 234 Kilometer pro Sekunde und hat es seit seiner Entstehung rund 27 Mal umrundet. Mit ihr müssten aber ihre stellaren Geschwister unterwegs sein, die einst im selben Sternhaufen entstanden waren und sich wie die Sonne im Lauf der Zeit von diesem lösten. Zwar hat sich der ursprüngliche Sternschwarm langsam zu einem gestreckten Bogen ausgebreitet, der sich mittlerweile über die Hälfte einer Umlaufbahn erstrecken dürfte. “Meine Berechnungen zeigen aber, dass sich innerhalb eines Radius von 300 Lichtjahren um unsere gegenwärtige Position noch immer etwa 50 Geschwister der Sonne aufhalten”, so Portegies Zwart. “Sucht man in bis zu 3000 Lichtjahren Entfernung, könnte man sogar auf 400 solcher Sterne stoßen!”

Einer seiner Studenten fahndet nun bereits in einem Katalog von Sternen, die der europäische Satellit Hipparcos in den frühen 1990er Jahren ausfindig gemacht hat. Doch die größten Hoffnungen setzt Portegies Zwart auf den Satelliten Gaia, den die europäische Raumfahrtorganisation Esa 2012 starten will: Binnen fünf Jahren und mit höchster Genauigkeit soll er die Raumpositionen und Geschwindigkeiten von etwa einer Milliarde Sterne messen. Diese “Volkszählung” wird nahezu alle Sterne erfassen, die sich in einem Radius von mehreren tausend Lichtjahren um die Sonne aufhalten. In diesen Daten können die Forscher dann nach Sternen Ausschau halten, die sich in der Nähe der vergangenen und künftigen Bahn der Sonne befinden, und anschließend deren Zusammensetzung überprüfen. Sie sollte jener der Sonne ähneln, da die einstige Supernova natürlich nicht nur das junge Sonnensystem, sondern auch andere Sternsysteme im Haufen mit schweren Elementen angereichert hat.

“Identifizieren wir auch nur einen einzigen Geschwisterstern der Sonne”, sagt der Forscher, “würde uns dies wertvolle Informationen über die Frühzeit des Sonnensystems verschaffen – eine Epoche, über die wir bislang kaum etwas wissen.” Und nicht zuletzt bieten die Geschwister der Sonne exzellente Voraussetzungen für die Suche nach lebensfreundlichen Planeten. Auch wenn die Sonne heute relativ isoliert durchs Weltall treibt: Viele ihrer Besonderheiten – und nicht zuletzt die Tatsache, dass ihr Licht auch auf einen bewohnten Planeten fällt – lassen sich nur im Kontext ihrer Familiengeschichte begreifen.
Quelle: Spektrum der Wissenschaft, März 2010, Foto: © N. Walborn (NASA/STScI), J. Maíz-Apellániz (NASA/STScI) und R. Barbá (La Plata Observatory, Argentina)