Schlagwort-Archive: Messe

Frühreife Wunderkinder

Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war
Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war

Frühreife ist weniger selten, als man im allgemeinen anzunehmen geneigt ist. Erst die Besonderheit des Falls entscheidet über die Zugehörigkeit zum Wunder.

Ein höchst erstaunliches Phänomen früh erwachter Fähigkeiten war das Lübecker Wunderkind Christian Heinrich Heineken, das am 6. Februar 1721 geboren wurde. Schon als es zehn Monate zählte, kannte das Kind alle Gegenstände seiner Umgebung und wusste sie zu benennen. Es begann unter Anleitung seines Lehrers im fünfzehnten Monat das Studium der Weltgeschichte. Noch vor dem vollendeten dritten Lebensjahr kannte das Kind die dänische Geschichte, lernte bald darauf auch lateinisch und französisch sprechen, starb aber schon im fünften Lebensjahr. Frühreife Wunderkinder weiterlesen

Technologischer Durchbruch: Riesige Stromspeicher für Wind- und Sonnenenergie

Forschern von Fraunhofer UMSICHT ist es durch ein neues Design gelungen, die Größe und Leistungsfähigkeit der Batteriestacks zu erhöhen. © Fraunhofer UMSICHT

Sonne und Wind liefern immer mehr Strom – allerdings unregelmäßig. Leistungsfähige elektrische Energiespeicher sollen das künftig ausgleichen. Fraunhofer-Forschern ist nun ein wichtiger Durchbruch gelungen: Sie haben eine Redox-Flow-Batterie mit einer Zellgröße von 0,5 Quadratmeter entwickelt. Das ist achtmal größer als die bisherigen Systeme und entspricht einer Leistung von 25 kW. Auf der Hannover Messe stellen sie den neuartigen Stromspeicher erstmals vor (8. bis 12. April).

Sonne und Wind sind wichtige Energielieferanten. Schon heute stammt fast ein Viertel unseres Stroms aus erneuerbaren Quellen. Bis 2050 soll der Bedarf sogar komplett mit Strom aus Sonne, Wind, Biomasse und Co. gedeckt werden, so das Ziel der Bundesregierung. Doch damit die Energiewende gelingt, müssen die wachsenden Mengen an Solar- und Windstrom für nachts oder windschwache Zeiten gespeichert werden – etwa in elektrischen Akkus. Redox-Flow-Batterien bieten eine gute Möglichkeit, um die Schwankungen bei erneuerbaren Energien auszugleichen und eine stetige Versorgung zu sichern. Sie speichern elektrische Energie in chemischen Verbindungen, den flüssigen Elektrolyten. Redox-Flow-Batterien bieten einige Vorteile: Sie sind kostengünstig, robust, langlebig und lassen sich individuell anpassen. Die Ladung und Entladung der Elektrolyten findet dabei in kleinen Reaktionskammern statt. Mehrere dieser Zellen werden nebeneinander zu Stapeln, Stacks, aufgereiht. Doch bislang liefern die auf dem Markt verfügbaren Batterien nur eine Leistung von 2,3 Kilowatt (kW).

Erste Präsentation auf der Hannover Messe

Forscher des Fraunhofer-Instituts für Umwelt-, Sicherheits- und Energietechnik UMSICHT in Oberhausen konnten nun die Größe der Stacks und damit die Leistungsfähigkeit deutlich erhöhen. Dank eines neuen Designs ist es ihnen gelungen, Stacks mit 0,5 Quadratmeter Zellgröße zu fertigen. Das ist achtmal größer als die bisherigen Systeme und entspricht einer Leistung von 25 kW. Diese Batterie präsentieren die Wissenschaftler auf der Hannover Messe. Der Prototyp verfügt über einen Wirkungsgrad von bis zu 80 Prozent.

Am Institut in Oberhausen steht für die Forschungsarbeiten eines der größten Testlabore für Redox-Flow-Batterien europaweit zur Verfügung. »Uns ist mit dem Redesign des Batterie-Stacks ein sehr wichtiger Schritt gelungen auf dem Weg, Redox-Flow-Batterien zu entwickeln, die zum Beispiel 2000 Haushalte mit Strom versorgen können«, sagt Dr. Christian Dötsch, der den Bereich Energie am Fraunhofer UMSICHT leitet. Dazu wären etwa zwei Megawatt Leistung nötig. Als nächstes konkretes Ziel stehe daher zunächst die Entwicklung eines Stacks in der Größe von zwei Quadratmetern und einer Leistung von 100 kW auf der Agenda.

 

 

Die Entdeckung des Zufalls

Als Max Planck vor 100 Jahren mit einem Vortrag vor der Deutschen Physikalischen Gesellschaft in Berlin den Grundstein zur Quantentheorie legte, brachte er damit eine tiefgreifende Umwälzung des physikalischen Weltbilds in Gang. Hatten die Wissenschaftler bis dahin geglaubt, die Natur gleiche einem überdimensionalen Uhrwerk mit vorhersehbaren Abläufen, so wurden sie im Zuge der quantenmechanischen Revolution mit der Entdeckung des Zufalls konfrontiert.
Die Erkenntnis, dass es zum Beispiel für den Zeitpunkt des Zerfalls eines radioaktiven Atoms keinerlei Ursache gibt, war für die Physiker zu Beginn des 20. Jahrhunderts keineswegs erfreulich. Die sogenannte deterministische, klassische Physik hatte es ihnen ermöglicht, die Natur zu verstehen und Ereignisse wie Springfluten oder Mondfinsternisse vorherzusagen. Das gab ihnen über viele Jahrhunderte ein Gefühl von Sicherheit und Macht. Das Ende des Determinismus, der Vorhersagbarkeit, war daher nur schwer zu akzeptieren.
Dabei hatten statistische Theorien, die lediglich Aussagen über die Wahrscheinlichkeit eines Ereignisses machen, die Physiker in früheren Zeiten nicht beunruhigt. Man wusste, hochkomplexe Systeme wie Gase ließen sich nur über statistische Aussagen in den Griff bekommen. Denn es ist einfach unmöglich, die Orte und Geschwindigkeiten aller Teilchen eines Gases zu kennen. Würde aber ein „Superhirn” existieren, das über sämtliche nach dem Urknall entstandenen Teilchen Bescheid wüsste, dann müsste es den Lauf der Welt vorausberechnen können – so die damalige Meinung. Nun stellte sich heraus, dass dem Zufall in der Quantentheorie mit dieser Art von Allwissenheit nicht beizukommen war. Die sogenannte Unbestimmtheitsrelation machte es grundsätzlich unmöglich, Ort und Geschwindigkeit eines Gasatoms zur gleichen Zeit exakt zu messen.
Die Quantentheorie brachte aber nicht nur den Zufall ins Spiel. Es stellte sich heraus, dass quantenmechanische Dinge ein merkwürdig schemenhaftes Dasein führen, das erst durch eine Messung, also den Eingriff eines Beobachters, in einen eindeutigen Zustand überführt wird. Der Zustand eines Elektrons ist ohne eine Messung, die uns diesen Zustand offenbart, nicht nur nicht bekannt, sondern einfach nicht definiert. Hieraus ergab sich die Notwendigkeit, über erkenntnistheoretische Fragen nachzudenken. Denn nachdem sicher war, dass es keine vom Beobachter losgelöste Realität gibt, stellte sich die zentrale Frage, was wir dann überhaupt über die Natur wissen können. Was treibt ein Elektron, wenn ihm keiner zusieht? Auf diese Frage gibt es schlichtweg keine Antwort.
Die Quantenmechanik ist die am besten überprüfte und bestätigte Theorie überhaupt. Gleichzeitig sind ihre möglichen Konsequenzen wie Zeitreisen, „geisterhafte Fernwirkungen” oder die Quanten- Teleportation mit unserem an der Alltagswelt geschulten Verstand kaum zu erfassen. Die Quantentheorie bildet die Grundlage der gesamten modernen Physik, denn erst durch sie wurde ein tieferes Verständnis der Materie möglich. Mit ihrer Hilfe können wir beispielsweise erklären, warum Atome stabil sind, wie ein Laser funktioniert und warum Metalle den Strom besser leiten als die meisten Kunststoffe. Und nicht nur für die Elektronik, Optik oder Nanotechnologie ist die Quantenphysik entscheidend – auch die Vorgänge in der Chemie und Molekularbiologie sind letztlich auf Quanteneffekte zurückzuführen. „Bei der Interpretation der Quantentheorie mag es Schwierigkeiten geben”, schreibt der britische Elementarteilchenphysiker Robert Gilmore, „aber sie funktioniert zweifellos aufs beste.”
(Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Wenn es beim Lesen von “Telefon” im Gehirn klingelt

Der Klang der Begriffe im Gehirn: In gelber Farbe ist die Überlappung in der Hirnaktivierung bei der Verarbeitung von geräuschbezogenen Begriffen wie Telefon (blau) und beim Hören realer Geräusche dargestellt (rot).
Der Klang der Begriffe im Gehirn: In gelber Farbe ist die Überlappung in der Hirnaktivierung bei der Verarbeitung von geräuschbezogenen Begriffen wie Telefon (blau) und beim Hören realer Geräusche dargestellt (rot).
(idw). Schon beim Lesen des Wortes Telefon “klingelt” es im Kopf. Unser Gehirn erzeugt die Bedeutung von Begriffen durch die Wiederherstellung der dazugehörenden Sinneswahrnehmungen. Das hat eine Gruppe von Hirnforschern um den Ulmer Psychologen Markus Kiefer herausgefunden. Fehlt diese Verknüpfung, bleiben die Begriffe blutleer, ein richtiges Verständnis fehlt.

Haben Begriffe also einen Klang? Menschen sind ohne langes Nachdenken in der Lage, die Bedeutung von Wörtern wie Telefon, Rasenmäher und Staubsauger zu erfassen. Was im Alltag selbstverständlich erscheint, ist im Gehirn ein hoch komplizierter Prozess, dessen Entschlüsselung erst am Anfang steht. Abstrakt und unabhängig von der Sinneswahrnehmung scheint dieser Prozess jedenfalls nicht zu sein.
Die Ergebnisse der Ulmer Forscher, veröffentlicht im renommierten Journal of Neuroscience (19. November 2008, Vol 28(47), S. 12224-12230), fordern die herrschende Lehrmeinung heraus: “Unsere Ergebnisse belegen erstmals klar, dass Begriffe wesentlich in den Sinnessystemen des Gehirns verankert und keinesfalls abstrakt sind, wie lange Zeit angenommen wurde und häufig immer noch wird”, so Privatdozent Markus Kiefer, ,,Wenn diese Koppelung mit konkreter Sinneswahrnehmung für einen Begriff nicht vorhanden ist, nie gelernt wurde, bleibt dessen Bedeutung vage”. Diese Befunde seien für Eltern, Erzieher und Pädagogen von großer Bedeutung, berührten aber auch unmittelbar unser Alltagsverständnis von Lernen, Gedächtnis und Sprache.
Die Forscher haben die Gehirnströme von Probanden beim Lesen von Wörtern gemessen, und mittels funktioneller Kernspintomographie die Aktivität des Gehirns beobachtet. Sie konnten zeigen, dass beim Lesen von Wörtern, die sich auf geräuschhafte Gegenstände wie Telefon beziehen, Bereiche im Gehirn aktiviert werden, die auch beim tatsächlichen Hören der Geräusche aktiv sind. Beim Lesen von Wörtern ohne Geräuschbezug, wie beispielsweise ,Tisch’, zeigten die Hörareale keine verstärkte Aktivität.
Kiefer und seine Kollegen konnten erstmals zweifelsfrei belegen, dass die Verarbeitung von Begriffen auf einer teilweisen Wiederherstellung der Hirnaktivität während der Sinneswahrnehmung beruht. Dies beginnt schon 150 ms nach dem Anblick des Wortes, also bevor das Bewusstsein den Begriff verarbeiten kann. Die Aktivität in den Arealen der Sinneswahrnehmung ist umso stärker, je mehr die Probanden Geräusche für das jeweilige Objekt als bedeutsam einschätzen.
“Über die Natur der Begriffe spekulierten Philosophen seit Jahrtausenden, ohne zu einer Einigung zu kommen”, so Kiefer. Einige Philosophen haben bereits vor einigen hundert Jahren vermutet, dass nichts im Verstand sei, was nicht vorher in den Sinnen war. “Wir können nun einen Schritt weiter gehen: Was wir sehen, hören, fühlen, riechen und schmecken, hinterlässt dauerhafte Gedächtnisspuren im Gehirn, welche die Bedeutung eines Begriffs ausmachen”.
Natürlich werde diese Verbindung einem Menschen nicht ständig bewusst. Nur so sei sicher gestellt, dass die Planung und Durchführung von Handlungen auf der tatsächlichen Wahrnehmung der Umwelt und nicht auf Vorstellungsbildern beruhe. “Es wäre ja auch äußerst lästig und verwirrend, wenn es in unserem Kopf immer hörbar klingelte, sobald unser Gesprächspartner das Wort Telefon in den Mund nimmt”, so Kiefer.
Die Studie der Ulmer Wissenschaftler weist aber darauf hin, dass Sinneserfahrungen ganz zentral für den Erwerb von Begriffen sind. Da Begriffe im Gehirn normalerweise eng mit den Bereichen für Hören, Sehen und Handeln verflochten sind, sollten Kinder beim Begriffserwerb ihre Umwelt mit möglichst vielen Sinnen erfahren, so Kiefer: “Begriffe sind verarmt, wenn während des Lernens nie die Möglichkeit bestand, die Gegenstände, auf die sie sich beziehen, auch zu hören, zu sehen, zu riechen und zu fühlen. Das Wissen bleibt dann blutleer, so dass sich Menschen nicht wirklich einen Begriff von ihrer Umwelt machen können”. So sei es beispielsweise problematisch, wenn Kinder heutzutage häufig Alltagsbegriffe wie Tiere oder Pflanzen nur durch das Fernsehen oder im Bilderbuch kennen lernten. Dann könnten sie keine reichhaltigen Begriffe über wichtige Zusammenhänge in ihrer Welt entwickeln.
Bisherige Untersuchungen wie die der Ulmer Forscher wurden an konkreten Begriffen durchgeführt, die sich auf reale Gegenstände beziehen. Kiefer vermutet jedoch, dass selbst abstrakte Begriffe wie Freiheit, Gerechtigkeit, Optionsschein oder Termingeschäft letztendlich in Sinneswahrnehmungen gegründet sein müssen, um ein echtes Verständnis von dem Sachverhalt gewinnen zu können: “In der Regel kann eine Definition der Bedeutung von abstrakten Begriffen wie Freiheit oder Gerechtigkeit nur dann zweifelsfrei erreicht werden, wenn der Begriff in eine konkrete, wahrnehmbare Situation eingebettet ist. Unser Gehirn kann wahrscheinlich immer nur durch den Bezug zu Wahrnehmung und Handlung einem Begriff eine Bedeutung verleihen. Ist dies nicht gewährleistet, können wir zwar mit den Worten sprachlich umgehen, ohne aber deren Sinn wirklich zu verstehen.”
Welche gravierenden gesellschaftlichen Konsequenzen ein mangelndes Verständnis abstrakter Begriffe haben kann, zeigt laut Kiefer die aktuelle Finanzkrise. Diese sei nicht zuletzt dadurch bedingt, dass Bankmanager über keine adäquaten Begriffe ihrer hochkomplexen Finanzprodukte verfügten. “Ein Optionsschein an der Börse ist dann nur ein Blatt Papier, dessen Bedeutung für die realen Finanzmärkte nur unvollständig nachvollzogen werden kann. Da klingelt nichts im Kopf.”
Eine Aussage Konfuzius von vor über zweieinhalbtausend Jahren sei deshalb bedeutender denn je: “Wenn die Begriffe nicht richtig sind, so stimmen die Worte nicht; stimmen die Worte nicht, so kommen die Werke nicht zustande”, zitiert Kiefer den chinesischen Philosophen.

Quanten-Darwinismus: Das Evolutionsprinzip jetzt auch bei Quanten nachgewiesen.

(prcenter.de) Die fundamentalen Prinzipien der Evolution gelten offenbar auch für die kleinsten Teilchen der Materie. Wissenschaftler fanden, dass sich nur die „fittesten“ Partikel durchsetzen und ihren eigenen „Nachwuchs“ erzeugen. Da diese Eigenschaft „universell“ gilt, könnte die Entstehung von Leben im Kosmos eher die Regel als die Ausnahme sein.
Die Entdeckung der Physiker Prof. Friedemar Kuchar und Dr. Roland Brunner von der österreichischen Montanuniversität Leoben darf ohne Übertreibung als wissenschaftliche Sensation bezeichnet. In enger Zusammenarbeit mit Kollegen von der Arizona State University in den USA untersuchten sie so genannte Quantenpunkte von Halbleitern. Quantenpunkte sind kleinste Nanostrukturen, für die auf Grund ihrer geringen Größe nicht die Gesetze der klassischen Physik, sondern vielmehr die Regeln der Quantenmechanik gelten.

Bei der Messung der Energiewerte der Quantenpunkt stieß er auf einen seltsamen Effekt. Werden diese Zustände der Elektronen gemessen, dann vermischen sich die Zustände der Elektronen zum Teil miteinander, aber auch mit jenen der Umgebung. Das hat wiederum zur Folge, dass sie energetisch „verschmiert“ werden. Einige der ursprünglichen Zustände erwiesen sich jedoch als robust und behielten ihre Energiewerte. Diese so genannten „Pointer-Zustände“ konnten bisher für einzelne Quantenpunkte nachgewiesen werden.

Das Verblüffende: Wie das Team berichtet ist es gelungen, deutliche Hinweise auf einen Quanten-Darwinismus zu finden. Dahinter verbirgt sich die Idee, dass bei einer Wechselwirkung mit der Umgebung nur die „stärksten“ Zustände, eben die Pointer-Zustände, stabil bleiben und diese die Eigenschaft haben, „Nachwuchs“ zu produzieren. Zum Nachweis dieses Postulats berechnete die Gruppe um Dr. Brunner und Prof. Kuchar die Aufenthaltswahrscheinlichkeiten der Elektronen im System mehrerer Quantenpunkte in Serie.
Wie die Wissenschaftler weiter berichten, scheint es bereits auf Quantenebene eine Art von Beziehungsleben zu geben. Dieser Quanten-Darwinismus soll wiederum für die Selektion und Fortpflanzung quantenmechanischer Zustände verantwortlich sein, die wiederum erst die Wahrnehmung unserer Realität ermöglichen.
Das Postulat eines Quanten-Darwinismus ist nicht ganz neu. Als geistiger Vater gilt der US-Forscher Wojciech H. Zurek vom Los Alamos Laboratory in New Mexico, der als erster diese Idee hatte. Der gelungene experimentelle Nachweis dieses Phänomens unterstreicht wieder einmal in aller Deutlichkeit, die Bedeutung von Visionären in der Wissenschaft.
Dass der Quanten-Darwinismus ein fundamentales Prinzip des gesamten Universums sein dürfte, wird auch in dem vor wenigen Monaten erschienenen Buch “Die geheime Physik des Zufalls: Quantenphänomene und Schicksal – Kann die Quantenphysik paranormale Phänomene erklären?” diskutiert. Dort wird unter anderem veranschaulicht, wie sich Quantenzustände mit ihren gespeicherten Informationen unter anderem in den ersten Genen verwirklicht haben, woraus sich wiederum Konsequenzen für die vielfältigen Möglichkeiten außerirdischen Lebens ziehen lassen.

Linktipps:
Haben die kleinsten Bausteine der Materie Bewusstsein?
Quantenphysiker sind dem Jenseits auf der Spur
Können bewusste Quanten schwarze Löcher am CERN verhindern?
Warum eine kleine Mieze Quantenphysiker wahnsinnig macht

Weg vom Erdöl! Biomasse als alternative Kohlenstoffquelle.

Video: Wie aus Tiefseebakterien nützliche Enzyme für die Energiegewinnung und Anwendung in der chemischen Industrie gewonnen werden.

(idw). Erdöl wird immer teurer – das bekommt auch die chemische Industrie zu spüren. Eine alternative Kohlenstoffquelle ist Biomasse.

Erdöl ist der Ausgangsstoff für viele Produkte der chemischen Industrie. Doch dieser fossile Rohstoff wird immer knapper und teurer. Eine Alternative ist es, nachwachsende Rohstoffe zu nutzen. Doch müssen Bioethanol und Co. aus Nahrungsmitteln wie Zuckerrohr oder Getreide gewonnen werden? Nein. Über die weiße Biotechnologie lassen sich chemische Stoffe auch aus Abfallprodukten der Lebensmittelindustrie oder Restbiomasse aus der Forst- und Landwirtschaft oder Reststoffen gewinnen. Wie das gehen kann, demonstrieren Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart am Beispiel der biotechnischen Verwertung von Raps, Molke und Krabbenschalen.

Kunststoff und Lacke aus Raps
Bei der Herstellung von Biodiesel aus Rapsöl fällt als Nebenprodukt Rohglyzerin an. Wissenschaftler am IGB haben nun ein Verfahren entwickelt, mit dem sich Rohglyzerin in 1,3-Propandiol umsetzen lässt – einen chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken. Bislang wird 1,3-Propandiol chemisch synthetisiert. Es gibt aber auch Mikroorganismen, die Glyzerin zu 1,3-Propandiol umsetzen können. So produziert das Bakterium Clostridium diolis den chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken in vergleichsweise hoher Ausbeute.

Bio-Plastik aus Molke
Ein Abfallprodukt bei der Herstellung von Milchprodukten ist Sauermolke. Bislang wird die Molke teuer entsorgt. Mit Hilfe von Michsäurebakterien lässt sich der in der Sauermolke enthaltene Milchzucker (Lactose) jedoch zu Milchsäure (Lactat) umsetzen. Lactat dient nicht nur als Konservierungs- und Säuerungsmittel in der Lebensmittelherstellung, sondern kann auch als Grundstoff in der chemischen Industrie eingesetzt werden – zum Beispiel in der Produktion von Polylactiden, biologisch abbaubaren Kunststoffen. Einweggeschirr und Schrauben für die Chirurgie aus Polymilchsäure gibt es bereits.

Feinchemikalien aus Krabbenschalen
Chitin ist nach Zellulose das am häufigsten vorkommende Biopolymer auf der Erde. Der nachwachsende Rohstoff fällt in der Aquakultur und bei der Verarbeitung von Meeresfrüchten wie Krabben in großen Mengen als Abfall an. In dem vom Bundesforschungsministerium geförderten Projekt “BioSysPro” untersuchen Forscher des IGB, ob sich Chitin durch den Einsatz von mikrobiellen Chitinasen als nachwachsender Rohstoff für die chemische Industrie erschließen lässt.

“Die Weiße Biotechnologie nutzt die Natur als chemische Fabrik. Herkömmliche chemische Produktionsprozesse werden durch den Einsatz von Mikroorganismen oder Enzymen ersetzt”, erläutert Prof. Thomas Hirth, Leiter des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, den Ansatz. Auf der Messe Biotechnica vom 7. bis 9. Oktober in Hannover stellen die Forscher die Verfahren auf dem Fraunhofer-Gemeinschaftsstand in Halle 9, Stand E29 vor.

Weitere Informationen:
Das Video ist Teil der DVD “Die Zukunft der Biotechnologie — Eine Deutschlandreise”, die im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) im Jahr 2008 entstanden ist und kostenlos auf der Webseite www.biotechnologie.de bestellt werden kann.

Baukastenprinzip: Uralter Welterfolg bedeutet die Zukunft für Roboter-Modelle!

Weinheim (ptx) – „ Patent-Anspruch: Die Herstellung von Modellbauten aus Leisten verschiedener Länge, welche in einer gleichmäßigen Längeneintheilung vielfach gelocht und mittelst gerader oder gekrümmter V-förmiger Splintnadeln und dazu gehöriger Keile verbunden werden, während die Flächenfüllung durch Einschieben von Platten in die an Leisten angebrachten Nuthen bewirkt wird.“ Mit diesen schlichten Worten aus einer Patentschrift des Kaiserlichen Patentamts beginnt am 8. April 1888 vor genau 120 Jahren ein beispielloser Welterfolg: der Konstruktionsbaukasten.

In einem Jahr in dem Heinrich Rudolf Hertz die Grundlagen der drahtlosen Telegrafie entdeckt, George Eastman den Rollfilm-Fotoapparat erfindet, Dunlop den Luft gefüllten Reifen einführt und der Amerikaner Burroughs sich die Additionsmaschine patentieren lässt, kommt das interessanteste technische Spielzeug vieler Generationen gerade zur rechten Zeit. Die Industrialisierung und der gewaltige technische Fortschritt in der zweiten Hälfte des 19. Jahrhunderts lassen ein Verständnis-Vakuum bei der Bevölkerung entstehen, das ausgefüllt werden muss. Besonders die in dieser Umbruchzeit heranwachsenden Kinder sind auf die technischen Neuerungen in ihrem Umfeld neugierig. So ist es auch nicht verwunderlich, dass die Patentbeschreibung des 1. Konstruktions-baukastens mit dem Satz beginnt: „Die Erfindung bezweckt, durch ein leicht zusammenfügbares und wieder auseinander nehmbares Material Bauten der verschiedensten Art herzustellen, welche sowohl als Modelle, als auch zu lehrreichem Spielzeug dienen können.“ Auch heute im Zeitalter der Elektronik ist der Konstruktionsbaukasten als Spielzeug nicht wegzudenken.

Als Erfinder ist Otto Lilienthal genannt. Das ist im ersten Moment eine Überraschung. Aber beim genauen Hinsehen entpuppen sich die Gebrüder Otto und Gustav Lilienthal nicht nur als Flugpioniere, sondern sind auch der Pädagogik und künstlerischen Erziehung zugetan. Besonders Gustav Lilienthal arbeitet in einem reformerischen Arbeitskreis mit, der Schriften wie „Die Schulen der weiblichen Handarbeit“ oder „Jugendspiel und Arbeit“ herausgibt. Zudem entsteht in Zusammenhang mit diesen Tätigkeiten 1880 der Steinbaukasten, der später unter dem Namen „Richters Anker-Steinbaukasten“ weltberühmt wird. Der Architekt und Kinderfreund Gustav Lilienthal dürfte deshalb auch –wie es aus Briefwechseln hervorgeht- der wirkliche Erfinder des 1. Konstruktonsbaukastens gewesen sein, nur kann er nicht in Erscheinung treten, da er zu diesem Zeitpunkt ohne Vermögen und somit nicht kreditwürdig ist. Bruder Otto, der Ingenieur, muss also herhalten.

Auf der Leipziger Messe 1888 zeigen die Lilienthals neben verschiedenen architektonischen Modellen auch eine Windmühle. Die Beweglichkeit über die drehende Achse ist der erste konkrete Hinweis auf entsprechende weitere Modelle, die die technische Wirklichkeit darstellen können. Doch wahrscheinlich bricht in der Folgezeit der engagierte Architekt in Gustav durch, denn seine wichtigsten Vorzeige-Modelle beschränken sich auf den Eiffelturm, die damals kühnen Konstruktionen aus Glas und Stahl und auf pompös gestaltete Bahnhöfe.

Richtig Bewegung und somit Technik bringen dann andere Hersteller wie Matador, Walthers Stabilbaukasten und Meccano Anfang des 20. Jahrhunderts ins Spiel. Heute würde man allerdings von Me-Too-Produkten sprechen, denn das übernommene Basisprinzip eines Konstruktionsbaukastens mit gelochten Leisten in gleichmäßigen Abständen und passenden Verbindungselementen haben die Lilienthals erfunden. Normalerweise wird derjenige vom Leben bestraft, der zu spät kommt. Im Fall Lilienthal ist es genau umgekehrt: Sie sind zu früh und wohl auch mit zu wenig Kapital ausgestattet. Das erfinderische und vertriebliche Know-How nutzen schließlich andere und ernten die Früchte der Lilienthals.

Neben dem Stabilbaukasten von Walther macht besonders der Metallbaukasten von Meccano Furore. 1901 in England von Frank Hornby entwickelt, wird er auch bald in Deutschland zum Kassenschlager. Allerdings dauert der Siegeszug nur bis zum 1. Weltkrieg. Dann kassiert der deutsche Staat die in Berlin angemeldeten Meccano-Patente und verkauft sie an Märklin weiter. Die Zoll-Maße bei den Lochabständen weisen noch heute auf den Ursprung hin.

Der Metallbaukasten ist jahrzehntelang der Traum aller Jungen. Da wird getüftelt, geschraubt und konstruiert. Das ist nach 1945 schnell vorbei, denn neue Werkstoffe verändern auch die Welt der Spielzeuge. Mit Kunststoffen werden die Spielzeuge unempfindlicher und zudem ist die Verformung einfacher und die Einsatzmöglichkeiten sind vielseitiger. Die Spielwaren-Industrie erkennt diesen Trend schnell und folgt ihm. Vieles, was bisher aus Holz oder Metall gefertigt war, entsteht nun aus Kunststoff. Als erstes kommt Lego auf den Markt, allerdings lediglich als „Klötzchenspiel“, denn es sind fast nur architektonische Modelle ohne Bewegung möglich. Die Technik findet dort erst richtig im Laufe der 70er Jahre statt.

Fast 80 Jahre hält das Lilienthal’sche Konstruktionsbaukasten-Prinzip aus gelochten Leisten. Erst 1964/65 kommt mit dem fischertechnik-System von Artur Fischer im wahrsten Sinn des Wortes Bewegung in die Baukastenwelt Und das natürlich gleich aus Kunststoff. Statt gelochter Leisten oder Bleche, die mit Schrauben und Muttern verbunden werden, setzt er das Prinzip der Schwalbenschwanzbefestigung ein, bei dem Zapfen in Nuten geschoben werden. So erreicht er einen hohen Grad an Modellfestigkeit und Vielseitigkeit der einzelnen Bauteile. Die sichere Befestigung ist für Fischer kein unbekanntes Gebiet, denn als einer der weltgrößten Dübelhersteller hat er schon immer mit diesem Thema zu tun gehabt. Im übrigen ist auch die Entwicklung des fischertechnik-Systems eng mit dem Dübel verbunden: Nämlich immer wenn es weihnachtet, ärgert sich Fischer über die langweiligen und einfallslosen Weihnachtsgeschenke, die er von seinen Lieferanten bekommt, und die er letztlich auch seinen Kunden überreicht. So entsteht die Idee, ein Befestigungsmittel für Kinder zu entwickeln, das gleichzeitig ein Spielzeug sein soll. An eine kommerzielle Auswertung ist zunächst gar nicht gedacht. Das Ergebnis der Tüftelei ist ein Baustein, der an allen sechs Seiten mit dem nächsten Stein zu verbinden ist. Bereits nach zwölf Monaten ist aus diesem Stein ein ganzer Bau-kasten mit unterschiedlichen Elementen geworden.

Nach über 40 Jahren auf dem Markt hat fischertechnik nicht nur bei Kindern und Jugendlichen technisches Wissen vermittelt, sondern auch ganze Generationen von Technikern in ihrer Berufswahl beeinflusst und geformt. Bei Wettbewerben wie „Jugend forscht“ spielt es immer wieder eine Rolle und in vielen Schulen sorgt das Material im Technik- oder Werkunterricht für den technischen Durchblick. Maschinenbaubetriebe setzen aus fischertechnik gebaute Nachbildungen ihrer Großanlagen zur gefahrlosen Erprobung der notwendigen elektronischen Steuerung ein. Selbst die Nachwuchsförderung in der IT-Branche erfolgt unter Einsatz von fischertechnik-Modellen. So arbeitet der Software-Konzern Microsoft mit dem Forschungszentrum Informatik an der Universität Karlsruhe zusammen und lehrt Studenten, wie Roboter-Modelle aus dem Konstruktionsbaukasten mit passgenauen Programmen zum Laufen zu bringen sind.

Die Gebrüder Lilienthal gelten als die Luftfahrtpioniere. Dass sie den Konstruktionsbaukasten erfunden haben, ist weitgehend unbekannt oder wird in der Bedeutung vernachlässigt. Doch beide Erfindungen bzw. Pioniertaten können in der Weiterentwicklung als gleichbedeutend betrachtet werden, denn viele der heute bedeutenden Konstrukteure und Ingenieure haben ihre ersten Schritte in das Reich der Technik mit einem Konstruktionsbaukasten begonnen.
Dieter Tschorn

Nanotechnologie: Durchbruch bei winzigen molekularen Maschinen!

Abbildung: Wie eine Erbsenschote – metallorganische Moleküle eingesperrt in Kohlenstoff-Nanoröhrchen. M. Ashino, Universität Hamburg
Wie eine Erbsenschote - metallorganische Moleküle eingesperrt in Kohlenstoff-Nanoröhrchen.(idw). Wie die renommierte britische Fachzeitschrift “Nature Nanotechnology” in ihrer Online-Ausgabe vom 25. Mai 2008 berichtet, gelang es Forschern von der Universität Hamburg mit Hilfe eines Rasterkraftmikroskops die Bewegung von Molekülen, die in anderen größeren Molekülen eingesperrt sind, zu messen und zu kontrollieren. Diese herausragenden Forschungsergebnisse eröffnen völlig neuartige Wege für die Entwicklung von nanomechanischen Geräten, wie zum Beispiel molekulare Nano-Transporter.
Seit der Mensch den ersten Blick in den Nanokosmos warf, stand die Idee im Raum, diese winzige Welt der Atome und Moleküle gezielt zu manipulieren und molekulare Maschinen zu entwickeln, die selbständig beliebige Materialien und komplexe Systeme aus einzelnen Atomen und Molekülen aufbauen können. Immer wieder liest man von medizinischen Zukunftsvisionen, wie z. B. von Nano-Robotern, die durch den Blutkreislauf patrouillieren und gefährliche Viren aufspüren und bekämpfen. Den Nanokosmos können die Wissenschaftler inzwischen zwar mit aufwendigen Verfahren und großen Geräten gezielt Atom für Atom kontrollieren, aber molekulare Nano-Maschinen sind noch immer im Bereich der Science-Fiction angesiedelt. Nichtsdestotrotz wird an verschiedenen Antriebssystemen für solche Nano-Maschinen intensiv geforscht.Einen völlig neuen Ansatz eröffnen die Arbeiten der beiden Forscher Dr. Makoto Ashino und Prof. Dr. Roland Wiesendanger von der Universität Hamburg, die in dieser Woche von der Fachzeitschrift “Nature Nanotechnology” veröffentlicht wurden. Zusammen mit einem internationalen Team aus Wissenschaftlern vom Max Planck Institut für Festkörperforschung, der Technischen Universität von Eindhoven, der Universität Nottingham und der Universität Hong Kong fanden die Hamburger Forscher neue Möglichkeiten der Messung der Kräfte, die Moleküle innerhalb von anderen Molekülen bewegen.

Für ihre Experimente sperrten die Forscher metallorganische Moleküle in Kohlenstoff-Nanoröhrchen ein. Die dabei entstehende Struktur kann man sich wie eine Erbsenschote vorstellen (Abb. 1). Die so vorbereiteten Moleküle innerhalb von Nanoröhrchen wurden auf einer isolierenden Oberfläche platziert und mit Hilfe der berührungslosen Rasterkraftmikroskopie untersucht.

Ein Rasterkraftmikroskop arbeitet nicht mit Licht, wie ein herkömmliches Lichtmikroskop, sondern es funktioniert ähnlich wie ein Plattenspieler. An einem mikroskopisch kleinen Federbalken befindet sich eine atomar scharfe Spitze, die über eine Oberfläche gerastert wird. Die Auslenkung des Federbalkens wird mit Hilfe eines Laserstrahls bestimmt und aus den daraus resultierenden Daten am Computer eine dreidimensionale Abbildung der Oberfläche erzeugt. Im berührungslosen Modus eines Rasterkraftmikroskops schwingt der Federbalken über der Oberfläche, ohne dass die Spitze diese berührt.

Neben der Untersuchung der Oberflächentopographie der “Erbsenschote” ermittelten die Wissenschaftler auch gleichzeitig die Energie, die der vibrierenden Spitze des Rasterkraftmikroskops verloren ging, während sie über die Oberfläche der Struktur bewegt wurde. Dadurch konnten die Hamburger Wissenschaftler erstmalig die Kräfte, die die kleinen metallorganischen Moleküle innerhalb der Kohlenstoff-Nanoröhrchen bewegen, messen und sogar gezielt kontrollieren. Dies stellt einen entscheidenden Durchbruch in der Erforschung von molekularen Maschinen und molekularen Transportern dar, die für die weitere Entwicklung der Nanotechnologie eine hohe Bedeutung haben.

Weitere Informationen:

https://www.nanoscience.de

Wie die Uhrwerkhemmung zu einem gewaltigen Innovationsschub führte

Die Geburtsstunde des neuen Zeitalters. WISSEN DER ZUKUNFT berichtet :

Kirchturmuhr
Prof. Dohrn-van Rossum mit einem alten Uhrwerk, das einst vermutlich eine Kirchturmuhr in Hannover antrieb und später als technisch veraltet in einer Dorfkirche landete. Der Professor bewahrte es vor der Verschrottung.

(idw). Sie ist so wichtig wie das Rad, die Dampfmaschine oder das Feuermachen: die Uhrwerkhemmung, erfunden um 1270. Erst sie machte es möglich, die Zeit genau zu messen – damit wurde sie zur Geburtshelferin der modernen Gesellschaft mit all ihren Vor- und Nachteilen. Wie der Mensch auf die Zeit kam, das erforscht seit Jahren der Chemnitzer Historiker Prof. Gerhard Dohrn-van Rossum.

Ohne sie würden wir Verabredungen verpassen und zu spät zur Arbeit kommen. Flugzeuge würden ohne uns starten und Züge ohne uns abfahren. Auch die Tagesschau müßte auf uns als Zuschauer verzichten, und mit dem morgendlichen Aufstehen wäre es noch schlimmer als ohnehin schon. Gemeint ist natürlich die Uhr, die “Schlüsselmaschine der Neuzeit”, die “wichtiger als die Dampfmaschine” sei, so der amerikanische Techniksoziologe Lewis Mumford schon 1934. Wie keine andere Erfindung ordnet und regelt sie unser Leben. Und oft genug fühlen wir uns auch von ihr bevormundet.

Wie die Uhr vom späten Mittelalter an unser Leben bestimmte, wie die Teilung des Tages in 24 gleich lange Stunden erfunden wurde und welche Folgen dies für den Lauf der Geschichte hatte, das erforscht der Chemnitzer Historiker Prof. Gerhard Dohrn-van Rossum seit Jahren. Und er hat darüber auch ein Buch verfaßt: “Die Geschichte der Stunde – Uhren und moderne Zeitordnungen”, das mittlerweile auch in Französisch und Englisch vorliegt. Eine japanische Übersetzung ist gerade in Arbeit. Wenn das Buch eines Wissenschaftlers derart beachtet wird, dann spricht das für sich. Tatsächlich erlaubt das Werk einen Blick in das späte Mittelalter und die frühe Neuzeit, wie wir sie so nicht kennen.

Für die Menschen früherer Epochen spielte die Zeitmessung keine Rolle – sie standen auf, wenn es hell wurde und gingen bei Dunkelheit zu Bett. Immerhin gab es schon eine künstliche Beleuchtung, etwa in Form von Kienspänen, Öllampen oder Kerzen, aber die waren für den normalen Bürger ohnehin zu teuer. Die Arbeit wurde meist nach Tagen bezahlt. Zwar konnten auch schon die alten Griechen und Römer die Zeit messen: Sie benutzten dazu Sonnen- oder Wasseruhren. Die aber waren schwierig zu bauen, noch schwieriger zu regulieren. Deshalb waren sie recht ungenau und hatten besonders in Mitteleuropa ihre Nachteile. Auch die Einteilung des Tages in 2 mal 12 Stunden war schon in der Antike bekannt. Dazu wurden der Tag und die Nacht jeweils in zwölf etwa gleich lange Abschnitte geteilt, was schon schwierig genug war. Die Nacht begann, wenn die Sonne unterging, der Tag bei ihrem Aufgang. Als Folge davon waren die Tag- und die Nachtstunden je nach Jahreszeit unterschiedlich lang. Dieser Effekt verstärkte sich noch, je weiter man nach Norden kam.

Für eine Menschengruppe allerdings war es wichtig, die genaue Zeit zu kennen: die mittelalterlichen Mönche, die ihre Gebetsstunden einhalten mußten. Tagsüber war das kein Problem, doch war auch ein Gebet um Mitternacht vorgeschrieben, und dieser Zeitpunkt war
schwierig zu bestimmen. Zwar versuchten die Mönche, die antiken Wasseruhren zu verbessern, freilich mit mäßigem Erfolg. Also behalfen sie sich, etwa mit genau abgewogenen Kerzen, die außen Zeitmarkierungen oder auch Nägel trugen, die beim Abbrennen der Kerze mit einem Geräusch zu Boden fielen.

Doch die Lage änderte sich schlagartig gegen Ende des 13. Jahrhunderts. Wer genau die zündende Idee hatte, die letztendlich die Welt verändern sollte, verliert sich im Dunkel der Zeiten – vermutlich wurde sie in einem Kloster geboren, und ebenso vermutlich gleich mehrfach und unabhängig voneinander. Die Grundprinzipien des mechanischen Uhrwerks waren schon in der Antike bekannt: Der Antrieb durch ein Gewicht an einem Seil, Zahnräder zur Übersetzung und ein Anzeigewerk, das beispielsweise einen Zeiger bewegen konnte. Solche Zeigerwerke hatte man auch schon mit Wasseruhren oder anderen Instrumenten verbunden. Mit einem Gewichtsantrieb über eine Welle konnte man zwar einen Mechanismus in Gang setzen, er hatte aber einen Nachteil – er ließ sich nicht regulieren. Einmal in Gang gesetzt, fällt das Gewicht immer schneller, der Bewegungsablauf läßt sich nicht mehr aufhalten. Was fehlte, war mithin eine Vorrichtung, die solch eine Regulierung des Fallens des Gewichts ermöglicht, die Uhrwerkhemmung. Dabei ist auf der Welle mit dem Gewicht ein Zahnrad montiert, in das in regelmäßigen Abständen abwechselnd zwei auf einer Spindel angebrachte, rechtwinklig zueinander stehende Metallzungen, die Spindellappen, eingreifen. Die Spindel selbst, die in ihrer einfachsten Form oben einen Waagbalken mit zwei Regulierungsgewichten trägt, schwingt dabei hin und her. Der Zug des Gewichts verursacht immer dann, wenn einer der Spindellappen das Zahnrad freigibt, einen kurzen Vorwärtsruck: Das ist das Ticken der Uhr.

Uhrwerkhemmung Diese Hemmung kann kaum hoch genug eingeschätzt werden. Sie muß zwischen 1271 und etwa 1300 erfunden worden sein. 1271 nämlich hatte der an der Pariser Universität lehrende Engländer Robertus Anglicus in einem Kommentar zu einem Astronomielehrbuch geschrieben: “Die Macher von Uhrwerken arbeiten an einem Mechanismus, der sich einmal am Tag dreht, aber sie haben es bisher noch nicht geschafft” – zu diesem Zeitpunkt existierte die Hemmung also noch nicht. Andererseits sind uns Berichte von Chronisten überliefert, die um 1300 solche Hemmungen bezeugen. Etwa ab 1330 werden dann auch die ersten Schlagwerke erwähnt.

Mit der Erfindung der Uhrwerkhemmung bricht ein neues Zeitalter an. Die Zeit wird in gleichmäßige Abschnitte eingeteilt, die “Stunde” im heute gebräuchlichen Sinne also gleich mit erfunden. In den folgenden hundert Jahren (so lange etwa dauerte es auch später bei der Dampfmaschine) breiten sich die mechanischen Uhrwerke in ganz Europa aus, zunächst in den reichen Klöstern, den großen Kathedralen, an den Herrscherhöfen. Doch der Bau ist für die damaligen Verhältnisse extrem aufwendig, zudem verschleißen die aus Weicheisen hergestellten Zahnräder schnell und die Wartung ist teuer. In Bologna etwa murren die Bürger, als ihnen für den Uhrwerksbau eine Sondersteuer auferlegt wird. Dennoch schließen sich aus Prestigegründen die großen deutschen und französischen Städte an, bis 1400 folgen auch die kleineren. Anfangs dienen die Uhrwerke meist nicht zur Zeitmessung, sie treiben vielmehr Glocken- und Figurenspiele an. Die Kirchen zum Beispiel wollen mit ihnen Neugierige anlocken, die die Mechanik und damit die Schöpfung bewundern sollen.

Die Folgen der Erfindung gehen freilich weit darüber hinaus: Galten die Europäer bisher als primitiv und zurückgeblieben, waren die islamischen Länder und China technisch am weitesten fortgeschritten, so geht der Vorsprung nun auf Europa über. Den Menschen wird plötzlich bewußt, was in den zwei, drei Jahrhunderten zuvor schon alles erfunden wurde, ohne daß sie es groß bemerkt hätten – die Windmühle etwa, das Zaumzeug oder die Sporen. Daß es die früher nicht gab, wußte man, weil sie bei den antiken Schriftstellern nicht erwähnt wurden. Das schafft ein Gefühl für den eigenen Wert. Damit wird plötzlich auch die Person des Erfinders, sein geistiges Eigentum, anerkannt – folglich nennt und bewahrt man auch seinen Namen. Mit anderen Worten: Man erfindet die Idee des Individuums. Das ist neu, das hat es weder in anderen Kulturen noch vorher in Europa gegeben. In China, im Islam, im Frühmittelalter waren Erfinder noch namenlos. Allenfalls hieß es da “unter der Regierung des Kalifen Harun Ar Raschid”, oder es wird der Name eines kaiserlichen Beamten genannt, der gar nicht der eigentliche Urheber war. Wer die Windmühle oder das Spinnrad erfand, beide seit etwa 1200 in Europa verbreitet – wir wissen es nicht. Der erste Brillenschleifer, nur hundert Jahre später, ist dagegen bekannt.

Mit der Anerkennung des Erfinders und der geistigen Leistung ändert sich auch die Einstellung gegenüber Innovationen. Galt noch im frühen Mittelalter alles Neue als schlecht, als des Teufels – schließlich kamen Uhren in der Bibel nicht vor – so setzte sich nun der Gedanke durch, daß, was neu ist, auch gut ist. Diese Haltung führt ab 1330 zu einem gewaltigen Innovationsschub – an allen Ecken und Enden wird plötzlich Neues erfunden. Die Menschen spürten: Es gibt so etwas wie den Fortschritt, wir können unsere eigenen Probleme lösen. Dieses Gefühl hielt bis in die Vorkriegszeit, ja bis zum Club of Rome an – der allgemeine Technikpessimismus ist, von Splittergruppen abgesehen, jüngeren Datums.

Mit der Zeit wandelten sich die Figuren- und Glockenspiele der Anfangsjahre immer mehr zu “richtigen” Uhren. Der öffentliche Stundenschlag von der Rathausuhr auf dem Marktplatz regelte jetzt das Leben. Damit bürgen sich auch feste Zeiten für allerlei Verrichtungen ein. Ratssitzungen beispielsweise konnten auf feste Stunden angesetzt werden, wer zu spät kam, mußte eine Geldstrafe zahlen. Vorher dauerten solche Sitzungen oft sehr lange und konnten dadurch die Existenz der Ratsherren, die oft Handwerker waren, gefährden. In den Schulen tauchen die ersten Stundenpläne auf, zu Ende des 14. Jahrhunderts gibt es in Hamburg die ersten Verordnungen über Beginn und Ende der Arbeit – das Wort “Arbeitszeit” hingegen erscheint erst nach 1800 in unserer Sprache. Damit gibt es auch erstmals so etwas wie Freizeit – die wird erst dadurch möglich, daß sich die Arbeitszeit messen läßt. Zeiteinheit ist dabei immer die Stunde, allenfalls die Viertelstunde. Erst mit den Eisenbahnen gelangt um die Mitte des 19. Jahrhunderts auch die Minute ins Bewußtsein der Menschen. Die Sekunde muß sogar bis an den Rand des 20. Jahrhunderts warten, als die Zeitungen anfangen, über Sportereignisse zu berichten. Etwa ab 1880 sind auch “normale” Menschen, etwa der kleine Handwerker, nicht mehr auf öffentliche Uhren angewiesen: Uhren werden nicht mehr in Handarbeit, sondern als industrielles Massenprodukt hergestellt.

Sogar vor der Folter machte die neue Zeitrechnung nicht halt: Lagen nämlich keine Beweise, sondern lediglich Indizien vor, konnte ein Angeklagter nur nach einem Geständnis verurteilt werden. Dieses sollte durch die Folter erzwungen werden, die von sadistischen Richtern teilweise exzessiv angewandt wurde. Doch Bedenken dagegen gab es auch damals. Man löste sie zunächst, indem man je nach Schwere des Verbrechens verschiedene Grade der Folter einführte. Nun kam eine zeitliche Befristung hinzu, die meist mit einer Sanduhr kontrolliert wurde – freilich galt dies nicht für Hexenprozesse. Der mutmaßliche Täter durfte die Uhr aber nicht sehen, damit er das Ende nicht abschätzen konnte. Es ist verbürgt, daß Angeschuldigte damals ihre Richter fragten: “He! Wie lange läuft die Uhr noch?”

Diese Beispiele haben eines gemeinsam, so Prof. Dohrn-van Rossum: Sie ersetzen eine Sachdiskussion durch eine formale Diskussion. “Dadurch werden zwar die Probleme nicht lösbar, aber immerhin verhandelbar”, so der Wissenschaftler. Inhaltlich könne man über manche Probleme nicht diskutieren, das sei aber möglich, wenn man sie in Zeitprobleme verwandle. Stundenpläne etwa klären nicht, welches Fach das wichtigere ist, sondern weisen statt dessen jedem Fach eine feste Zeitspanne zu. Ein Untersuchungsausschuß kann einen Sachverhalt zwar meist auch nicht aufhellen, er macht aber deutlich: Wir nehmen uns Zeit für ein Problem. Mit Hilfe der Zeit und ihrer Messung lernen die Europäer seit dem Spätmittelalter, wie man organisiert – andere Kulturen haben ein solches Zeitgefühl nicht entwickelt.

(Autor: Hubert J. Gieß)

RoboCup: Technologie-Schub durch Roboter-Fußball

Neun Ligen gibt es beim Roboter-Fußball. WISSEN DER ZUKUNFT  berichtet über  den RoboCup.

Video: RoboCup 2007

(idw). Für eine Maschine ist das Fußballspiel eine höchst komplexe Aufgabe: Die Roboter müssen Ball, Seitenauslinie und Torkasten zuverlässig erkennen und Mitspieler von Gegnern unterscheiden können. Dazu sind sie mit allerlei Hightech gespickt: Kameras und Sensoren erfassen die Umwelt, bordeigene Prozessoren verarbeiten die Daten und errechnen Spielzüge und Abwehrmaßnahmen, innovative Antriebe lassen die kickenden Automaten über das Feld sprinten und in Gegners Nähe unerwartete Haken schlagen.

Mittlerweile gibt es neun Ligen, jede mit einem eigenen technischen Schwerpunkt. In der Middle-Size-Liga bewegen sich die Automaten auf Rädern fort. Vier Spieler und ein Torwart kicken auf einem 20 mal 14 Meter großen Spielfeld auf normale Fußballtore. Sie müssen komplett autonom sein, haben Kamerasysteme mit Echtzeit-Verarbeitung an Bord und schaffen bis zu zwei Meter pro Sekunde.

Andere Kick-Maschinen wie der Roboterhund Aibo von Sony laufen auf vier mechanischen Pfoten. Seit 2005 treten beim RoboCup auch automatische Zweibeiner gegeneinander an: “Diese humanoiden Roboter machen in den letzten Jahren sehr große Fortschritte”, sagt Dr. Ansgar Bredenfeld, der am IAIS für den RoboCup zuständig ist. “Wie richtige Spieler fallen sie hin und stehen wieder auf, suchen sich selbständig den Ball und schießen Tore.”

Doch der RoboCup steht nicht nur für Roboterfußball. Seit 2006 gibt es eine Liga namens “RoboCup@Home” – ein Wettbewerb für Serviceroboter. In einem nachgebauten Zimmer müssen die Maschinen Kühlschränke ansteuern, Müll aufsammeln und Personen erkennen. Und in der “RoboCup-Rescue”-Liga werden Rettungsroboter auf einen Hindernisparcours geschickt. “Vom RoboCup geht ein enormer Technologie-Schub aus, den man anders gar nicht bewirken könnte”, sagt Prof. Dr. Stefan Wrobel, geschäftsführender Direktor des IAIS. “Viele Bauteile, die ursprünglich für den Roboterfußball entwickelt wurden, finden sich heute in anderen Anwendungen wieder, etwa bei der Lokalisierungstechnologie für Inspektionsroboter.” Auch Roboter, die automatisch den Rasen mähen oder für Meeresforscher Bodenproben nehmen, haben RoboCup-Technologie an Bord.

Mehrere Großturniere stehen in diesem Jahr an, vor allem die “RoboCup German Open”: Vom 21. bis 25. April werden über 80 Forscherteams aus mehr als 15 Ländern in Halle 25 der Hannover-Messe erwartet, um in mehreren Ligen den Stand der Entwicklung zu demonstrieren. Initiiert und ausgetragen wird das Turnier vom Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS in Sankt Augustin.