Schlagwort-Archive: Nanotechnologie

Die Entdeckung des Zufalls

Als Max Planck vor 100 Jahren mit einem Vortrag vor der Deutschen Physikalischen Gesellschaft in Berlin den Grundstein zur Quantentheorie legte, brachte er damit eine tiefgreifende Umwälzung des physikalischen Weltbilds in Gang. Hatten die Wissenschaftler bis dahin geglaubt, die Natur gleiche einem überdimensionalen Uhrwerk mit vorhersehbaren Abläufen, so wurden sie im Zuge der quantenmechanischen Revolution mit der Entdeckung des Zufalls konfrontiert.
Die Erkenntnis, dass es zum Beispiel für den Zeitpunkt des Zerfalls eines radioaktiven Atoms keinerlei Ursache gibt, war für die Physiker zu Beginn des 20. Jahrhunderts keineswegs erfreulich. Die sogenannte deterministische, klassische Physik hatte es ihnen ermöglicht, die Natur zu verstehen und Ereignisse wie Springfluten oder Mondfinsternisse vorherzusagen. Das gab ihnen über viele Jahrhunderte ein Gefühl von Sicherheit und Macht. Das Ende des Determinismus, der Vorhersagbarkeit, war daher nur schwer zu akzeptieren.
Dabei hatten statistische Theorien, die lediglich Aussagen über die Wahrscheinlichkeit eines Ereignisses machen, die Physiker in früheren Zeiten nicht beunruhigt. Man wusste, hochkomplexe Systeme wie Gase ließen sich nur über statistische Aussagen in den Griff bekommen. Denn es ist einfach unmöglich, die Orte und Geschwindigkeiten aller Teilchen eines Gases zu kennen. Würde aber ein „Superhirn” existieren, das über sämtliche nach dem Urknall entstandenen Teilchen Bescheid wüsste, dann müsste es den Lauf der Welt vorausberechnen können – so die damalige Meinung. Nun stellte sich heraus, dass dem Zufall in der Quantentheorie mit dieser Art von Allwissenheit nicht beizukommen war. Die sogenannte Unbestimmtheitsrelation machte es grundsätzlich unmöglich, Ort und Geschwindigkeit eines Gasatoms zur gleichen Zeit exakt zu messen.
Die Quantentheorie brachte aber nicht nur den Zufall ins Spiel. Es stellte sich heraus, dass quantenmechanische Dinge ein merkwürdig schemenhaftes Dasein führen, das erst durch eine Messung, also den Eingriff eines Beobachters, in einen eindeutigen Zustand überführt wird. Der Zustand eines Elektrons ist ohne eine Messung, die uns diesen Zustand offenbart, nicht nur nicht bekannt, sondern einfach nicht definiert. Hieraus ergab sich die Notwendigkeit, über erkenntnistheoretische Fragen nachzudenken. Denn nachdem sicher war, dass es keine vom Beobachter losgelöste Realität gibt, stellte sich die zentrale Frage, was wir dann überhaupt über die Natur wissen können. Was treibt ein Elektron, wenn ihm keiner zusieht? Auf diese Frage gibt es schlichtweg keine Antwort.
Die Quantenmechanik ist die am besten überprüfte und bestätigte Theorie überhaupt. Gleichzeitig sind ihre möglichen Konsequenzen wie Zeitreisen, „geisterhafte Fernwirkungen” oder die Quanten- Teleportation mit unserem an der Alltagswelt geschulten Verstand kaum zu erfassen. Die Quantentheorie bildet die Grundlage der gesamten modernen Physik, denn erst durch sie wurde ein tieferes Verständnis der Materie möglich. Mit ihrer Hilfe können wir beispielsweise erklären, warum Atome stabil sind, wie ein Laser funktioniert und warum Metalle den Strom besser leiten als die meisten Kunststoffe. Und nicht nur für die Elektronik, Optik oder Nanotechnologie ist die Quantenphysik entscheidend – auch die Vorgänge in der Chemie und Molekularbiologie sind letztlich auf Quanteneffekte zurückzuführen. „Bei der Interpretation der Quantentheorie mag es Schwierigkeiten geben”, schreibt der britische Elementarteilchenphysiker Robert Gilmore, „aber sie funktioniert zweifellos aufs beste.”
(Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Nanotechnologie: Durchbruch bei winzigen molekularen Maschinen!

Abbildung: Wie eine Erbsenschote – metallorganische Moleküle eingesperrt in Kohlenstoff-Nanoröhrchen. M. Ashino, Universität Hamburg
Wie eine Erbsenschote - metallorganische Moleküle eingesperrt in Kohlenstoff-Nanoröhrchen.(idw). Wie die renommierte britische Fachzeitschrift “Nature Nanotechnology” in ihrer Online-Ausgabe vom 25. Mai 2008 berichtet, gelang es Forschern von der Universität Hamburg mit Hilfe eines Rasterkraftmikroskops die Bewegung von Molekülen, die in anderen größeren Molekülen eingesperrt sind, zu messen und zu kontrollieren. Diese herausragenden Forschungsergebnisse eröffnen völlig neuartige Wege für die Entwicklung von nanomechanischen Geräten, wie zum Beispiel molekulare Nano-Transporter.
Seit der Mensch den ersten Blick in den Nanokosmos warf, stand die Idee im Raum, diese winzige Welt der Atome und Moleküle gezielt zu manipulieren und molekulare Maschinen zu entwickeln, die selbständig beliebige Materialien und komplexe Systeme aus einzelnen Atomen und Molekülen aufbauen können. Immer wieder liest man von medizinischen Zukunftsvisionen, wie z. B. von Nano-Robotern, die durch den Blutkreislauf patrouillieren und gefährliche Viren aufspüren und bekämpfen. Den Nanokosmos können die Wissenschaftler inzwischen zwar mit aufwendigen Verfahren und großen Geräten gezielt Atom für Atom kontrollieren, aber molekulare Nano-Maschinen sind noch immer im Bereich der Science-Fiction angesiedelt. Nichtsdestotrotz wird an verschiedenen Antriebssystemen für solche Nano-Maschinen intensiv geforscht.Einen völlig neuen Ansatz eröffnen die Arbeiten der beiden Forscher Dr. Makoto Ashino und Prof. Dr. Roland Wiesendanger von der Universität Hamburg, die in dieser Woche von der Fachzeitschrift “Nature Nanotechnology” veröffentlicht wurden. Zusammen mit einem internationalen Team aus Wissenschaftlern vom Max Planck Institut für Festkörperforschung, der Technischen Universität von Eindhoven, der Universität Nottingham und der Universität Hong Kong fanden die Hamburger Forscher neue Möglichkeiten der Messung der Kräfte, die Moleküle innerhalb von anderen Molekülen bewegen.

Für ihre Experimente sperrten die Forscher metallorganische Moleküle in Kohlenstoff-Nanoröhrchen ein. Die dabei entstehende Struktur kann man sich wie eine Erbsenschote vorstellen (Abb. 1). Die so vorbereiteten Moleküle innerhalb von Nanoröhrchen wurden auf einer isolierenden Oberfläche platziert und mit Hilfe der berührungslosen Rasterkraftmikroskopie untersucht.

Ein Rasterkraftmikroskop arbeitet nicht mit Licht, wie ein herkömmliches Lichtmikroskop, sondern es funktioniert ähnlich wie ein Plattenspieler. An einem mikroskopisch kleinen Federbalken befindet sich eine atomar scharfe Spitze, die über eine Oberfläche gerastert wird. Die Auslenkung des Federbalkens wird mit Hilfe eines Laserstrahls bestimmt und aus den daraus resultierenden Daten am Computer eine dreidimensionale Abbildung der Oberfläche erzeugt. Im berührungslosen Modus eines Rasterkraftmikroskops schwingt der Federbalken über der Oberfläche, ohne dass die Spitze diese berührt.

Neben der Untersuchung der Oberflächentopographie der “Erbsenschote” ermittelten die Wissenschaftler auch gleichzeitig die Energie, die der vibrierenden Spitze des Rasterkraftmikroskops verloren ging, während sie über die Oberfläche der Struktur bewegt wurde. Dadurch konnten die Hamburger Wissenschaftler erstmalig die Kräfte, die die kleinen metallorganischen Moleküle innerhalb der Kohlenstoff-Nanoröhrchen bewegen, messen und sogar gezielt kontrollieren. Dies stellt einen entscheidenden Durchbruch in der Erforschung von molekularen Maschinen und molekularen Transportern dar, die für die weitere Entwicklung der Nanotechnologie eine hohe Bedeutung haben.

Weitere Informationen:

https://www.nanoscience.de

Ist das Wundertier Axolotl die Lösung für nachwachsende Organe?

Wissen Sie ob nachwachsende Organe und Gliedmaßen möglich sind? Hier jetzt der Bericht!

Der Axolotl, ein mexikanischer Schwanzlurch, ist ein Wundertier. Er verfügt über die erstaunliche Fähigkeit, Gliedmaßen, Organe und sogar Teile des Gehirn vollständig zu regenerieren. Schwanz oder Beine wachsen dem Axolotl innerhalb weniger Tagen wieder nach, einschließlich Nerven, Muskulatur und Blutgefäßen. Die Regenerate sind in der Regel keine Verkrüppelungen, sondern vollständig und funktionstüchtig. Wenn Wissenschaftler erkennen könnten, welcher Wirkungsmechanismus dahinter steckt, könnte das jedes Jahr tausende von Leben retten.

Ca. 3500 Nieren, Lebern und Herzen werden in Deutschland pro Jahr transplantiert. Der Bedarf ist ungleich größer. Jeder dritte Aspirant stirbt im Verlaufe der Wartezeit, weil sein eigenes Organ endgültig den Dienst versagt hat. Jedoch nicht nur an diesen Organen besteht ein Mangel, auch Gewebe wie Haut, Knochen und Knorpel fehlen beispielsweise zur Behandlung von Verbrennungsopfern und Schwerverletzten.

Forscherinnen und Forscher haben es sich zum Ziel gesetzt, diesen Mangel zu beheben und für Ersatz aus dem Labor zu sorgen. Mit modernsten biotechnologischen Methoden wollen sie Körperzellen vermehren – in der Regel die des späteren Empfängers – und daraus im Labor Gewebe und Organe entstehen lassen. “Tissue Engineering” nennt man das Verfahren in der Fachsprache. Diese Vision ist in ersten Ansätzen schon Realität. So können unter bestimmten Voraussetzungen Knorpeldefekte und chronische Wunden mit körpereigenem Ersatzgewebe versorgt werden. Leberfunktionsverluste werden durch biohybride Ersatzorgane (biologische Zellen in Verbindung mit technischen Materialien), die noch außerhalb des Körpers funktionieren, ausgeglichen, bis ein geeignetes Spenderorgan verfügbar ist. Der Weg bis zum kompletten, “auf Bedarf” nachwachsenden Organ ist noch sehr weit, aber die ersten Schritte sind getan.

In einem Zeitreiseroman (der Buch-Titel: “Professor Allman – Auf der Suche nach der Weltformel”) sorgt die Nanotechnologie mit einer fiktiven Limbox für das Nachwachsen verlorener Gliedmaßen.

Links:

Von Zellen und nachwachsenden Organen
Nachwachsende Organe bei Tieren