Schlagwort-Archive: Physik

Geistermaterie lauert in der Milchstraße

Eine mysteriöse Form von Materie durchzieht unser Universum. Sie ist etwa fünf Mal häufiger als die sichtbare Materie, jedoch von nach wie vor unbekannter, „dunkler“ Natur. Dass diese mysteriöse Entität, der man den Namen “Dunkle Materie” oder Geistermaterie gab, existieren muss, belegten Forschungsarbeiten bereits in den 1970er Jahren. Erstmals ist es nun einem internationalen Wissenschaftlerteam gelungen, Dunkle Materie auch im Inneren unserer Galaxie zu belegen. Woraus Dunkle Materie  besteht, konnte allerdings nicht herausgefunden werden.

Die allgegenwärtige Präsenz der Dunklen Materie im Universum ist heute ein zentraler Grundsatz der modernen Kosmologie und Astrophysik. In verschiedenen Galaxien wurde ihre Existenz seit den 1970er Jahren mit einer Reihe von Methoden belegt. Eine dieser Methoden ist die Messung der Drehgeschwindigkeit von Gas und Sternen. Wissenschaftler können so eine Galaxie „wiegen“ und ihre Gesamtmasse bestimmen. Dabei zeigt sich, dass die gewöhnliche Materie nur einen Bruchteil des Gesamtgewichts ausmacht, den überwiegenden Teil trägt die Dunkle Materie bei.

Auch in den äußeren Bereichen unserer eigenen Galaxie, die wir bei klarem Nachthimmel als „Milchstraße“ sehen können, wurden die Astronomen mit diese Methodik fündig. Doch im inneren Bereich unserer Galaxie war es bisher unmöglich, die Anwesenheit Dunkler Materie sicher zu belegen.

Der Durchmesser unserer Galaxie beträgt etwa 100.000 Lichtjahre. Unser Sonnensystem ist etwa 26.000 Lichtjahre vom Zentrum der Milchstraße entfernt. Je näher man der Mitte kommt, desto schwieriger wird es, die Rotation des Gases und der Sterne mit der benötigten Genauigkeit zu messen.

Auf Basis der Messung von Sternenbewegungen haben nun Wissenschaftler der Technischen Universität München (TUM), der Universität Stockholm, der Freien Universität Madrid, des Internationalen Zentrums für Theoretische Physik des Südamerikanischen Instituts für Grundlagenforschung (ICTP-SAIFR) in São Paulo und der Universität Amsterdam erstmalig einen Beweis für die Anwesenheit Dunkler Materie im Inneren der Milchstraße vorgelegt. Dunkle Materie existiert danach auch im Bereich unseres Sonnensystems und in unserer direkten „kosmischen Nachbarschaft“.

In einem ersten Schritt erstellten die Forscher die umfassendste Sammlung veröffentlichter Messungen der Bewegung von Gas und Sternen in der Milchstraße. Dann berechneten sie auf Basis aktuellster Forschungsergebnisse die Rotationsgeschwindigkeit, die die Milchstraße haben müsste, wenn sie nur aus sichtbarer Materie bestünde. Der Vergleich der gemessenen und der berechneten Geschwindigkeit zeigte eindeutig, dass hier die Dunkle Materie einen entscheidenden Beitrag leistet.

„Wir konnten mit unserer Arbeit belegen, dass sich das Gas und die Sterne in unserer Galaxie ohne den Beitrag von Dunkler Materie nicht mit den beobachteten Geschwindigkeiten drehen könnten“, sagt Dr. Miguel Pato, der die Analyse an der TU München durchführte. „Allerdings wissen wir immer noch nicht, aus was die Dunkle Materie besteht. Dies ist eine der wichtigsten Wissenschaftsfragen unserer Zeit“.

Auch für geringe Entfernung vom Zentrum der Milchstraße besitzen die Daten der Forschungsarbeit eine hohe Evidenz. Sie erschließen damit neue Wege zur Bestimmung der Verteilung Dunkler Materie in unserer Galaxie. Zukünftige astronomische Beobachtungen könnten damit die Verteilung der Dunklen Materie in unserer Galaxie mit bisher unerreichter Genauigkeit bestimmen.

„Damit können wir das Verständnis der Struktur und der Entwicklung unserer Galaxie wesentlich verbessern. Und es wird präzisere Vorhersagen für die vielen Experimente ermöglichen, die weltweit nach Teilchen der Dunklen Materie suchen“, sagt Miguel Pato, der inzwischen zum Oskar Klein-Zentrum für Astroteilchen-Physik an der Universität Stockholm gewechselt ist. (Quelle: idw)

Publikation:
Evidence for dark matter in the inner Milky Way
Fabio Iocco, Miguel Pato, Gianfranco Bertone
Nature Physics, advanced online publication, 9 February 2015
DOI: 10.1038/nphys3237 – Link: https://nature.com/articles/doi:10.1038/nphys3237
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps:

 

Verrückte Quanten bereiten klassischer Physik Niederlage

Quantenphysikalische Teilchen können an mehreren Orten gleichzeitig sein und hinterlassen dabei sogar Spuren. Das haben Physiker der Goethe-Universität in einem verblüffenden Experiment nachgewiesen, das Albert Einstein vor mehr als 80 Jahren anregte. Damals konnte sein wichtigster Kontrahent, der Physiker Niels Bohr, ihm lediglich Argumente entgegensetzten. Jetzt geben die neuen Experimente dem Dänen Recht.

FRANKFURT. Einstein hat Zeit seines Lebens die quantenphysikalische Aussage bekämpft, dass Teilchen – solange man sie nicht beobachtet – an mehreren Orten gleichzeitig sein können. Sein wichtigstes Gegenargument war: Die geisterhaften Teilchen müssten durch Zusammenstöße mit anderen Teilchen entlang ihrer Bahn eine sichtbare Spur hinterlassen. Eben diese Spur hat Dr. Lothar Schmidt in der Arbeitsgruppe von Prof. Reinhard Dörner am Institut für Kernphysik der Goethe-Universität nun gemessen.

Das klassische Experiment, das auch heutigen Physikstudenten noch Kopfzerbrechen bereitet, ist die Streuung quantenphysikalischer Teilchen am Doppelspalt. Solange es unbeobachtet ist, scheint jedes einzelne Teilchen durch beide Schlitze des Spalts zu gehen. Es bildet – ähnlich wie Wasserwellen – ein Interferenzmuster hinter dem Spalt. Dieses verschwindet aber, sobald man eine Information über den Weg des Teilchens zu gewinnen versucht.

Einstein argumentierte, man müsse gar nicht nachsehen, wo das Teilchen ist, denn es verrate seinen Ort indirekt, indem es beim Passieren des Spalts einen Impuls überträgt: Ginge es durch den linken Schlitz, erfahre das Beugungsgitter einen minimalen Stoß nach links, und entsprechend nach rechts, wenn es durch den rechten Spalt geht. Bohr konterte, auch das Beugungsgitter verhalte sich wie ein quantenmechanisches System, das heißt, es müsse gleichzeitig in beide Richtungen abgelenkt werden.

Dass diese verrückt klingende Vermutung tatsächlich richtig ist, haben Dörner und seine Mitarbeiter jetzt durch die Streuung von Helium-Atomen an einem „Doppelspalt“ nachgewiesen. Mit den Modellen der klassischen Physik lassen sich die gemessenen Ergebnisse nicht beschreiben. „Da wir bei dieser Versuchsanordnung nicht beobachten, durch welches Loch das Teilchen gegangen ist, passiert genau das, was Bohr vorhergesagt hat: Der Doppelspalt rotiert gleichzeitig mit und gegen den Uhrzeigersinn“, erklärt Schmidt. (Quelle: idw).

Buchtipps:

 

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse

Julius_Robert_Meyer
Julius_Robert_Meyer

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse, die unsere gesamte Anschauung über das Wesen der Natur grundlegend beeinflusst hat, verdanken wir einem einfachen Arzt.

Der Vorgang ist deshalb noch besonders interessant, weil die tiefe Erkenntnis einem Menschen ganz plötzlich gelang, der bis dahin auch nicht das Geringste geleistet hatte, bei dem nichts auf eine besondere Befähigung hinwies, und der auch nicht zum zweiten Mal hervorgetreten ist.

Julius Robert Mayer wurde am 25. November 1814 als dritter Sohn eines Apothekers in Heilbronn geboren. Auf der Schule hat der Knabe sehr schlechte Leistungen aufzuweisen gehabt. Auch seine Doktordissertation über das damals gerade gefundene Santonin lässt in keiner Weise einen hervorragenden Denker oder Forscher erkennen. 1840 trat Mayer als Schiffsarzt in niederländische Dienste, um nach Java zu fahren. Der Inhalt des uns erhaltenen Tagebuchs dieser Reise ist durchaus belanglos.

Aber auf der Reede von Surabaya ging ihm durch eine an sich ganz nebensächliche Beobachtung plötzlich eine Gedankenreihe auf, die zu der grundlegenden Erkenntnis führte, dass Wärme und mechanische Arbeit miteinander verwandt seien, dass die eine sich in die andere umwandeln könne. Nach seiner Rückkehr fasste er am 16. Juni 1841 das von ihm entdeckte Gesetz von der Erhaltung der Kraft in einer kleinen Abhandlung zusammen, die er der damals bedeutendsten wissenschaftlich-physikalischen Zeitschrift, den »Poggendorff’schen Annalen« einsandte. Poggendorff erkannte den Wert der Arbeit nicht und schickte sie zurück. Man kann ihm daraus keinen allzu großen Vorwurf machen, da Mayer selbst seine Gedankenreihe sehr mangelhaft begründet hatte, wie es denn überhaupt scheint, dass er selbst die ganze epochale Bedeutung seiner Erkenntnis niemals ganz erfasst hat.

So ist es Julius Robert Mayer zu Lebzeiten denn auch niemals gelungen, sich durchzusetzen, und zahllose Gegner machten ihm so viel zu schaffen, dass er zwei Selbstmordversuche unternahm und 1878 verbittert starb. Dennoch steht fest, dass er als Erster das große Gesetz von der mechanischen Wärmeäquivalenz erkannt hat; nachdem es von Joule und namentlich von Helmholtz fester fundamentiert worden war, hat es auf die ganze Physik bedeutsamsten Einfluss gewonnen.

(Quelle: Moszkowski: 1000 Wunder; Wilhelm Ostwald: »Große Männer«. Akademische Verlagsgesellschaft m.b.H., Leipzig, 1909.)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Frühreife Wunderkinder

Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war
Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war

Frühreife ist weniger selten, als man im allgemeinen anzunehmen geneigt ist. Erst die Besonderheit des Falls entscheidet über die Zugehörigkeit zum Wunder.

Ein höchst erstaunliches Phänomen früh erwachter Fähigkeiten war das Lübecker Wunderkind Christian Heinrich Heineken, das am 6. Februar 1721 geboren wurde. Schon als es zehn Monate zählte, kannte das Kind alle Gegenstände seiner Umgebung und wusste sie zu benennen. Es begann unter Anleitung seines Lehrers im fünfzehnten Monat das Studium der Weltgeschichte. Noch vor dem vollendeten dritten Lebensjahr kannte das Kind die dänische Geschichte, lernte bald darauf auch lateinisch und französisch sprechen, starb aber schon im fünften Lebensjahr. Frühreife Wunderkinder weiterlesen

Meerwasserentsalzung: Neue energiesparende Technik entwickelt

Eine neue Methode zur Entsalzung von Meerwasser wird von einem amerikanisch-deutschen Team in der Zeitschrift Angewandte Chemie vorgestellt. Anders als herkömmliche Verfahren schluckt diese Methode wenig Energie und ist sehr einfach. Diese „elektrochemisch vermittelte Meerwasserentsalzung“ basiert auf einem Mikrokanalsystem und einer bipolaren Elektrode.

Die Vereinten Nationen schätzen, dass bereits ein Drittel der Weltbevölkerung in wasserarmen Gegenden lebt, bis 2025 soll sich diese Zahl verdoppeln. An Salzwasser herrscht dagegen kein Mangel. Eine naheliegende Lösung ist daher, Meerwasser zu entsalzen. Allerdings ist das gar nicht so einfach. Verfahren wie die Verdampfung und anschließende Kondensation des Wassers verbrauchen enorme Mengen an Energie. Die Umkehrosmose benötigt darüber hinaus teure, empfindliche Membranen, die leicht verkeimen, und aufwendige Vorbehandlungsschritte.

Der von Richard M. Crooks (University of Texas at Austin), Ulrich Tallarek (Universität Marburg) und ihren Kollegen mit Unterstützung des US-Energieministeriums entwickelte elektrochemische Ansatz kommt dagegen ohne Membran und hohe Energiemengen aus. Die Forscher drücken das Meerwasser durch ein System aus zwei Mikrokanälen von je 22 µm Breite, einem „Hilfskanal“ und einem verzweigten Arbeitskanal, sodass ein Fluss in Richtung der Auslassöffnungen entsteht. Die beiden Kanälchen sind elektrisch über eine bipolare Elektrode verbunden. Der Hilfskanal wird an eine Spannungsquelle angeschlossen, der Arbeitskanal geerdet und eine Potentialdifferenz von 3.0 V zwischen den Kanälen eingestellt.

Entscheidend ist der Aufbau des Kanalsystems: Die Elektrode ragt in die Verzweigungsstelle des Arbeitskanals. Aufgrund der Spannung wird ein Teil der negativ geladenen Chloridionen des Meerwassers an diesem Ende der Elektrode zu neutralem Chlor oxidiert. In dem feinen Kanalsystem entsteht dadurch an der Stelle der Abzweigung eine Zone, die an negativ geladenen Ionen verarmt ist, und als Folge ein elektrischer Feldgradient, der die positiv geladenen Ionen des Meerwassers in den abzweigenden Kanal dirigiert. Da aus physikalischen Gründen aber die Elektroneutralität innerhalb des Mikrokanals gewahrt bleiben muss, wandern auch die Anionen mit in die Abzweigung. Im abzweigenden Kanälchen entsteht so ein mit Salz angereicherter Strom, während in der Weiterführung des Arbeitskanälchens teilentsalztes Wasser fließt.

Die für die neue Technik benötigte Energiemenge ist so gering, dass das System mit einer einfachen Batterie arbeiten kann. Anders als bei der Umkehrosmose sind lediglich Sand und Schmutz aus dem Meerwasser zu entfernen, weitere Vorbehandlungsschritte, eine Desinfektion oder Zugabe von Chemikalien sind nicht erforderlich. Durch einfache Parallelschaltung vieler Mikrokanalsysteme kann der Wasserdurchsatz entsprechend erhöht werden. (Quelle: idw).

Der Anfang allen Seins

Die moderne Kosmologie geht davon aus, dass unser Universum aus dem Nichts entstanden ist. Wenn man so eine Aussage liest oder hört, drängt sich sofort die Frage auf, wie denn aus nichts etwas entstehen kann. Nicht nur das physikalische Prinzip, dass es zu jedem physischen Ereignis eine physische Ursache geben muss, sondern auch der »gesunde Menschenverstand« lässt die Aussage eher als eine philosophische Idee erscheinen und weniger als eine wissenschaftlich fundierte Theorie. Eine wissenschaftliche Theorie muss empirisch überprüfbar sein. Wie kann aber der Anfang allen Seins durch ein Experiment überprüft werden? Welche Fakten sprechen für den Beginn von Raum, Zeit und Materie aus dem Nichts?
Trotz der Zweifel gibt es gute und rational nachvollziehbare Gründe, von einem Beginn des Universums aus dem Nichts auszugehen. Den Beginn, kurz Urknall, darf man sich nicht als eine riesige Explosion im Weltall vorstellen. Der Urknall ist ganz unspektakulär ein nicht näher bekannter physikalischer Zustand, bei dem Raum und Zeit sowie die beteiligten Energien in einem winzigen Bereich extrem hoher Dichte zusammenfallen (Singularität). Wenn die Theorie richtig ist, dann existierte das Weltall vor der Singularität genauso wenig, wie es davor Materie gab. Auch Zeit hätte ihren Ursprung erst im Urknall.
Der englische Astronom Fred Hoyle, der Anhänger eines ewigen, statischen Universums war, wollte durch die unwissenschaftliche Bezeichnung Urknall (engl. »Big Bang«) die Theorie der Urknall-Verfechter unglaubwürdig erscheinen zu lassen. Zu diesen Verfechtern gehörte sein belgischer Kollege, der Theologe und Astrophysiker, Georges Lemaître. Hoyle sprach sich dafür aus, dass sich das Universum in einem Zustand der Gleichförmigkeit (Steady-State-Theorie) ohne Anfang und ohne Ende befinde.
Wie begründete Lemaître die Idee vom Anfang allen Seins aus dem Nichts? Handelte es sich um seine theologische Vorstellung oder gab es harte Fakten?

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

 

Überraschendes Experiment: Neutrinos schneller als das Licht?



Unter der Leitung des Berner Teilchenphysikers Antonio Ereditato hat eine internationale Forschungskollaboration im OPERA-Experiment am CERN Erstaunliches entdeckt: Neutrinos sind schneller unterwegs als das Licht, welches bisher die höchste existierende Geschwindigkeit war.

«Dieses Resultat ist eine komplette Überraschung», sagt Antonio Ereditato, Professor für Hochenergiephysik an der Universität Bern und Leiter des OPERA-Projekts: Die Teilchenphysiker haben im sogenannten OPERA-Experiment herausgefunden, dass Neutrinos, die unterirdisch vom CERN in Genf losgeschickt werden und nach einer 730 Kilometer langen Reise durch die Erde schliesslich ein Untergrund-Labor in den Bergen bei Rom erreichen, schneller unterwegs sind als das Licht. Dies teilt das CERN, das Europäische Laboratorium für Teilchenphysik, heute Freitag, 23. September 2011, mit. «Die Neutrinos sind signifikante 60 Nanosekunden schneller am Ziel, als man dies mit Lichtgeschwindigkeit erwarten würde», so der OPERA-Leiter. Eine Publikation der Daten folgt, und Antonio Ereditato stellt klar: «Dieses Ergebnis kann grosse Auswirkungen auf die geltende Physik haben – so gross, dass zurzeit eine Interpretation schwierig ist. Weitere Experimente für die Bestätigung dieser Daten müssen unbedingt folgen.»

Die Besonderheiten der Neutrinos

Neutrinos sind winzige Elementarteilchen, die Materie praktisch widerstandslos durchdringen. Ihre Spuren sind schwierig aufzuspüren, da sie nicht geladen sind und kaum mit ihrer Umgebung interagieren. Neutrinos kommen in drei verschiedenen Typen vor: Elektron-, Müon- und Tau-Neutrinos. Sie können sich auf einer langen Flugstrecke von einem Typ in einen anderen verwandeln. In der Elementarteilchenphysik wird diese Umwandlung «Neutrino-Oszillation» genannt.

Das OPERA-Projekt wurde 2006 gestartet, um die Umwandlung von verschiedenen Neutrino-Typen ineinander zu beweisen – was den Forschenden aus der Kollaboration von 13 Ländern auch gelang; letztes Jahr wurde die Verwandlung von Müon-Neutrinos in Tau-Neutrinos nachgewiesen.

Mit Atomuhren auf Nanosekunden genau

Die Daten, die im OPERA-Experiment in den letzten drei Jahren gesammelt wurden, weisen neben der Neutrino-Oszillation nun auch die Abweichung bei der erwarteten Geschwindigkeit der Kleinstteilchen nach: Eine aufwändige und hochpräzise Analyse von über 15’000 Neutrinos weist «die winzige, aber signifikante Differenz zur Lichtgeschwindigkeit nach», wie das CERN mitteilt. Die 60 Nanosekunden Zeitunterschied auf der Strecke CERN-Rom hat die OPERA-Kollaboration mit Expertinnen und Experten vom CERN sowie unter anderem mit Hilfe des nationalen Metrologieinstituts METAS in einer Hochpräzisions-Mess-Serie überprüft: Mit Hilfe von GPS und Atomuhren wurde die Flugdistanz auf 10 Zentimeter genau bestimmt und die Flugzeit auf 10 Milliardstel einer Sekunde – also auf Nanosekunden – genau gemessen. (Quelle: idw)

Buchtipp:
Supervereinigung: Wie aus nichts alles entsteht. Ansatz einer großen einheitlichen Feldtheorie

Werden Roboter den Wissenschaftler aus Fleisch und Blut ersetzen?

Jem Rowland, Aberystwyth University Ist es möglich, einen Roboterwissenschaftler zu bauen, der neue Erkenntnisse gewinnt? Ein solcher lernfähiger, mit Künstlicher Intelligenz gefütterter Automat muss den gesamten Forschungsprozess beherrschen: Er bildet Hypothesen, testet sie durch eigenständig entworfene und durchgeführte Experimente, interpretiert die Resultate und wiederholt diesen Zyklus, bis er auf neues Wissen stößt. In der Märzausgabe von Spektrum der Wissenschaft präsentiert der Informatiker Ross D. King von der Aberystwyth University in Wales einen Apparat, der all das kann.

Der Roboter heißt Adam, sieht aber einem Menschen gar nicht ähnlich: Adam ist ein automatisches Labor von der Größe eines kleinen Bürozimmers. Die Ausrüstung umfasst unter anderem einen Kühlschrank, Vorrichtungen zum Manipulieren von Flüssigkeiten, Roboterarme, Inkubatoren und eine Zentrifuge – alles automatisiert. Natürlich besitzt Adam auch ein leistungsstarkes Computergehirn, das Schlüsse zieht und die Einzelrechner für die Hardwaresteuerung kontrolliert.

Der Forschungsroboter untersucht, wie einzellige Kleinstlebewesen wachsen, indem er bestimmte Mikrobenstämme und Nährstoffe auswählt und dann mehrere Tage lang beobachtet, wie die Kulturen gedeihen. Der Roboter kann pro Tag rund tausend solche Versuche in Gang setzen. Auf diese Weise erforscht Adam ein wichtiges und gut automatisierbares Gebiet der Biologie, die funktionelle Genomik. Sie untersucht den Zusammenhang zwischen Genen und ihrer Funktion.

Tatsächlich fand Adam einen zuvor unbekannten Zusammenhang zwischen drei Genen der Backhefe und einem bestimmten Enzym. Doch darf man Adam deshalb gleich als Wissenschaftler bezeichnen? Die Maschine ist ein Prototyp, und immer wieder muss ein Techniker eingreifen, um Fehler in der Hardware und Software zu beheben. Auch arbeiten die Softwaremodule ohne menschliche Hilfestellung noch nicht problemlos zusammen. Trotzdem: Adams Vorgehensweise, Hypothesen zu bilden und neues Wissen experimentell zu bestätigen, benötigt keine intellektuelle oder körperliche Anstrengung seitens des Menschen. In diesem Sinne arbeitet er autonom.

Unterdessen hat Kings Team einen zweiten Roboter gebaut: Eva wendet dieselben automatisierten Forschungszyklen wie Adam an, aber diesmal auf das Entwickeln und Testen von Medikamenten. Evas Forschungen konzentrieren sich auf Tropenkrankheiten wie Malaria und Schlafkrankheit. Adams automatische Kollegin hat bereits einige interessante Verbindungen gefunden, die gegen Malaria zu wirken scheinen. King ist überzeugt, dass mit fortschreitender Computertechnik und Künstlicher Intelligenz immer gewieftere Roboterwissenschaftler entstehen werden.

Ob sie jemals zu umwälzenden Erkenntnissen oder immer nur zur Routineforschung fähig sein werden, ist eine Grundfrage über die Zukunft der Naturwissenschaft. Einige Forscher meinen, durch Automatisierung sei keine wissenschaftliche Revolution zu erreichen. Andere behaupten, in hundert Jahren würde der beste Physiker eine Maschine sein. Die Zukunft wird zeigen, wer Recht behält. (Quelle: Spektrum der Wissenschaft, März 2011, Foto: Jem Rowland, Aberystwyth University )