Schlagwort-Archive: Planck

Wie Exoplaneten entdeckt werden können

Das bunte Spektrum des Lichts trifft auf einen Frequenzkamm, der durch ein gelbes Band mit weißen Linien dargestellt ist.

Frequenzkämme

Um hochfrequente Schwingungen zu messen, nutzen Forscher ein ganz spezielles Lineal – den sogenannten Frequenzkamm, für den es 2005 den Nobelpreis für Physik gab. Inzwischen kommt das Laserlineal in vielen Gebieten zum Einsatz.

Sichtbares Licht besitzt Frequenzen im Bereich von Hunderten von Terahertz. Diese Frequenzen lassen sich elektronisch nicht direkt messen oder zählen. Man muss also ein Hilfsmittel erfinden, das diese Frequenzen der elektronischen Messtechnik zugänglich macht. Dieses Hilfsmittel ist der Frequenzkamm, eine besondere Art von Laser. Ein handelsüblicher roter Laser sendet eben nur rotes Licht aus – der Laser des Frequenzkamms hingegen strahlt weiß, ähnlich wie Sonnenlicht. Zerlegt man das weiße Sonnenlicht mit einem Prisma in seine Einzelteile, wird man alle Farben des Regenbogens beobachten. Dies ist das Spektrum des Sonnenlichts. Auch der Frequenzkamm deckt den gesamten Wellenbereich des sichtbaren Lichts ab, allerdings ist sein Spektrum nicht kontinuierlich. Er sendet nur bestimmte Frequenzen aus.

Tobias Wilken: „Das Fantastische am Frequenzkamm ist, dass der Abstand zwischen jeder einzelnen dieser Frequenzen exakt gleich ist, wobei der Abstand im Radiofrequenzbereich liegt. Das heißt, auch wenn jede Frequenz, die dieser Laser emittiert, im optischen Bereich liegt, also bei Hunderten von Terahertz, so liegt der Abstand zwischen den Frequenzen im Radiofrequenzbereich, also bei unter einem Gigahertz.“

Mit dem Frequenzkamm lassen sich optische Frequenzen deshalb mit äußerster Präzision vermessen, weshalb man ihn auch als Laserlineal für Licht bezeichnet. Zum Einsatz kommt dieses Lineal zum Beispiel bei Lasern, die kontinuierlich Licht abstrahlen – sogenannte Continuous-Wave- oder kurz CW-Laser. Wie Exoplaneten entdeckt werden können weiterlesen

Geheimnisvolle Signale aus einer fernen quantenkosmologischen Vergangenheit

Was passierte bei der Geburt des Weltalls? Wie konnten sich Sterne, Planeten und ganze Galaxien überhaupt bilden? Das sind die Fragen, die Viatcheslav Mukhanov mit seinen Berechnungen zu beantworten versucht. Mukhanov ist Physik-Ordinarius an der LMU und Experte für Theoretische Quantenkosmologie. Und es ist seine Idee der Quantenfluktuationen, die ein entscheidendes Moment in der Startphase des Universums beschreibt: Ohne die Dichteschwankungen, die aus den minimalen Fluktuationen entstehen, lässt sich die spätere Verteilung der Materie und die Bildung von Sternen, Planeten und Galaxien schwerlich erklären.

Jetzt hat das Planck-Konsortium neue Auswertungen von Messergebnissen veröffentlicht. Das Weltraumteleskop hat die kosmische Hintergrundstrahlung vermessen und damit ein Abbild des frühen Universums geliefert. Diese neuen Planck-Daten decken sich exakt mit den Berechnungen des LMU-Kosmologen, etwa für die entscheidende Größe des sogenannten Spektralindexes. „Die Planck-Daten haben die grundlegende Voraussage bestätigt, dass Quantenfluktuationen am Anfang aller Strukturen im Universum stehen“, bekräftigt Jean-Loup Puget, der leitende Wissenschaftler des HFI-Instruments der Planck-Mission. „Besser könnte meine Theorie nicht bestätigt werden“, sagt Mukhanov. Schon 1981 hatte der Wissenschaftler, seit 1997 an der LMU, seinen Ansatz erstmals publiziert.

Spuren aus ferner Vergangenheit

Dass auch die Quanten im frühen Universum gewissen Fluktuationen unterlegen haben müssen, ergibt sich für Mukhanov aus der Heisenbergschen Unschärferelation. Sie besagt, dass sich Ort und Impuls eines Teilchens nicht exakt angeben lassen. Aus den submikroskopisch winzigen Fluktuationen entstanden makroskopische Dichteschwankungen. Ohne diesen Mechanismus, dessen genaue Ausprägung und Größenordnung Mukhanov berechnet, ließe sich die Verteilung von Materie im heutigen Universum nicht vorhersagen.

Die neuen Planck-Datensätze sind noch detaillierter und aussagekräftiger als die ersten Auswertungen, die vor knapp zwei Jahren veröffentlicht wurden. Mit niemals zuvor erreichter Präzision zeigen sie die Muster, mit denen sich die Fluktuationen in die Strahlung des jungen Universums eingebrannt haben. Als eine Botschaft aus ferner Vergangenheit können Teleskope wie Planck sie heute – 13,8 Milliarden Jahre später – als Mikrowellenstrahlung einfangen. So geben die Planck-Messungen Aufschluss über die Geburt des Weltalls.

Gravitationswellen nicht beglaubigt

Die Existenz von sogenannten primordialen Gravitationswellen konnten die Planck-Daten indes nicht zeigen. Diese weiteren lange gesuchten Signale des fernen Urknalls meinte das BICEP2-Team aus seinen Daten herauslesen zu können, das Teleskop vermisst von der Antarktis aus die kosmische Hintergrundstrahlung. Im März 2014 meldete das Team seine sensationelle Entdeckung – vorschnell, wie sich bald herausstellte. Und soeben veröffentlichten Planck- und BICEP2-Forscher gemeinsam einen Abgleich ihrer Daten, der keinen Nachweis der Gravitationswellen erbrachte. LMU-Forscher Mukhanov hatte schon im Frühjahr 2014 erklärt, dass die Ergebnisse von BICEP2 und Planck nicht gleichzeitig stimmen können. „Gravitationswellen mag es trotzdem geben“, sagt der LMU-Wissenschaftler. „Aber unsere Messgeräte sind offenbar noch nicht genau genug.“ Doch unabhängig davon, ob ein tatsächlicher Nachweis der Gravitationswellen gelingt: Ohne den Mechanismus der Quantenfluktuation, ergänzt Mukhanov, kommt kein Modell aus, das erklären soll, was unmittelbar nach dem Urknall geschah. (Quelle: idw)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Künstliche Fotosynthese: Lösung aller Energieprobleme?

Heidelberg. Die Sonne ist eine unerschöpfliche und zudem saubere Energiequelle. Fotovoltaikanlagen und Solarthermiekraftwerke zapfen sie bereits an und gewinnen aus Sonnenlicht Strom. Der ist jedoch nur sehr begrenzt speicherbar und muss sofort verbraucht werden. Sein Transport über weite Strecken ist zudem mit großen Verlusten verbunden. Nur über den Umweg der Wasserelektrolyse lässt sich elektrischer Strom in den breiter einsetzbaren Energieträger Wasserstoff umwandeln, was aber sehr ineffektiv ist.

Eine wesentlich elegantere Lösung macht uns die Natur seit jeher vor: die Fotosynthese. Dabei erzeugen Pflanzen, Algen und gewisse Bakterien mit Hilfe von Sonnenlicht aus Kohlendioxid und Wasser direkt energiereiche Zuckermoleküle. Schon seit einiger Zeit versuchen Forscher deshalb, den Vorgang künstlich nachzuahmen. Dabei geht es ihnen vor allem um den ersten Schritt der Fotosynthese: die Spaltung von Wasser in Wasserstoff und Sauerstoff.

Die bisher erzielten Erfolge sind beachtlich. So präsentierte Daniel Nocera vom Massachussetts Institute of Technology vor zwei Jahren ein “künstliches Blatt”. Es besteht aus einer Solarzelle, in der auftreffendes Sonnenlicht freie Elektronen und “Löcher” (Elektronenfehlstellen) erzeugt. Die dem Licht zugewandte Seite ist mit einem cobalthaltigen Katalysator beschichtet, der mit Hilfe der Löcher aus Wasser Sauerstoff freisetzt. Die zurückbleibenden Protonen wandern zur anderen Seite und werden dort von einer Legierung aus Nickel, Molybdän und Zink mit Hilfe der Elektronen zu Wasserstoff reduziert. Der Wirkungsgrad liegt mit 2,5 bis 4,7 Prozent – je nach genauer Konfiguration – schon recht hoch. Pflanzen verwerten das auftreffende Sonnenlicht sogar nur zu 0,3 Prozent.

Allerdings ist dieses “Blatt” wegen der enthaltenen Metalle noch ziemlich teuer und auch nicht lange beständig. Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Golm hat sich deshalb auf ein anderes Material verlegt, das nicht nur sehr stabil, sondern auch einfach und preiswert herstellbar ist: graphitisches Kohlenstoffnitrid. Schon Justus Liebig kannte die Substanz im 19. Jahrhundert. Sie ist entfernt mit dem Chlorophyll des Blattgrüns verwandt und ähnelt stark dem Graphen – einer maschendrahtartigen Anordnung von Kohlenstoffatomen, der viele eine große Zukunft in der Elektronik vorhersagen.

Kohlenstoffnitrid als solches ist allerdings nicht sehr aktiv, was unter anderem an seinem zu geringen Verhältnis von Oberfläche zu Volumen liegt. Wie Antonietti in Spektrum der Wissenschaft berichtet, konnte seine Gruppe aber bereits eine Steigerung um das Zehnfache erreichen, indem sie gezielt die Porosität des Materials erhöhte.

Eine weitere Verbesserung ließ sich durch Dotieren mit Schwefel oder Barbitursäure erreichen. Auf diese Weise konnten die Forscher die Quantenausbeute der Oxidation von Wasser zu Protonen und Sauerstoff für violette Strahlung einer Wellenlänge von 440 Nanometern immerhin auf 5,7 Prozent steigern. Hilfreich war auch die Zugabe von Nanoteilchen aus Cobaltoxid. Dadurch erhöhte sich die Quantenausbeute für die Wasserspaltung insgesamt auf 1,1 Prozent.

Alles in allem sehen die bisherigen Ergebnisse also ermutigend aus. Zwar veranschlagt Antonietti bis zur praktischen Einsatzreife seines Systems noch mindestens 20 Jahre. Doch die Aussichten wären verlockend. Wenn sich mit künstlichen Fotosynthesesystemen 10 Prozent der Solarenergie nutzen ließen, müssten sie nur 0,16 Prozent der Erdoberfläche bedecken, um den für 2030 vorausgesagten globalen Energiebedarf von 20 Terawattstunden zu decken. Als Standorte kämen dabei in erster Linie Wüsten in Frage, wo die Sonne fast immer scheint und keine Konkurrenz zu Agrarnutzflächen besteht. Ein Zehntel der Sahara, die 1,76 Prozent der Erdoberfläche einnimmt, würde bereits genügen.

Wie heutige Solarzellen ließen sich künstliche Fotosynthesesysteme aber auch auf Dächern installieren. Bei einer Lichtausbeute von 10 Prozent könnten sie beispielsweise 300 Tonnen Methanol pro Hektar und Jahr liefern. “Wären nur 100 Quadratmeter des eigenen Grundstücks damit bedeckt, bräuchte selbst ein leidenschaftlicher Autofahrer bei heutigem Treibstoffverbrauch nie mehr zur Tankstelle”, erklärt Antonietti.  (Quelle: Spektrum der Wissenschaft, September 2013)

Gehört Spiritualität zu den zentralen Elementen der Modernität?

Spätestens als zur Sommersonnenwende sich mehrere tausend Menschen gemeinsam auf dem Times Square zum Sonnengruß streckten, wurde allgemein sinnfällig, wie sehr Yoga zu einer westlichen Massenbewegung geworden ist. Spiritualität ist nicht mehr das, was sie mal war – soviel steht für den Anthropologen Peter van der Veer fest. Peter van der Veer bezweifelt, ob solche Veranstaltungen tatsächlich noch etwas mit den ursprünglichen Vorstellungen von Spiritualität zu tun haben: “Es fehlen die kritischen Elemente, wie sie noch in den spirituellen Ideen zu Beginn des 20. Jahrhunderts steckten.“

Für van der Veer gehört die Spiritualität zusammen mit anderen säkularen Ideen von Nationen, Gleichheit, Bürgertum, Demokratie und Rechten zu den zentralen Elementen in der Geschichte der Modernität, die sich gegen die althergebrachten Gesellschaftsordnungen und Wertvorstellungen richteten. “Das Spirituelle und das Säkulare sind im 19. Jahrhundert gleichzeitig als zwei miteinander verbundene Alternativen zur institutionalisierten Religion in der Euro-Amerikanischen Moderne entstanden”, so lautet eine der Kernthesen des gebürtigen Niederländers. Damit verweist er ganz nebenbei auch die verbreitete Ansicht, dass die Wiege der Spiritualität in Indien liegt, ins Reich der modernen Mythen. “Es gibt nicht einmal ein Wort für Spiritualität in Sanskrit”, sagt van der Veer. Gehört Spiritualität zu den zentralen Elementen der Modernität? weiterlesen

Lebensfreundlicher Mars: Opportunity entdeckt Gipsader

Dieses mit Opportunitys Panoramakamera (Pancam) aufgenommene Farbbild zeigt 'Homestake', eine mit den wissenschaftlichen Instrumenten des Rovers im Detail untersuchte Gipsader. Homestake ist etwa 1 - 1,5 cm breit und 50 cm lang Bildquelle: NASA/JPL-Caltech/Cornell/ASU

Bild: Dieses mit Opportunitys Panoramakamera (Pancam) aufgenommene Farbbild 
zeigt 'Homestake', eine mit den wissenschaftlichen Instrumenten des 
Rovers im Detail untersuchte Gipsader. Homestake ist etwa 1 - 1,5 cm 
breit und 50 cm lang

Der NASA Mars-Rover Opportunity hat Ende 2011 am Rande des Meteoriten-Einschlagskraters Endeavour Gipsadern entdeckt. Gips wird in Wasser mit einer Temperatur unterhalb von 60°C abgeschieden. Der Fund belegt damit zumindest vorübergehend lebensfreundliche Bedingungen auf dem Mars. Das Gestein des Kraterrandes ist Suevit sehr ähnlich, eine für Einschlagskrater typische Gesteinsart. Die Ergebnisse der von Steve Squyres an der Cornell Universität in Ithaca, New York geleiteten Studie werden am 4. Mai 2012 vom Wissenschaftsjournal Science veröffentlicht. An dieser Studie ist der Geowissenschaftler Dr. Christian Schröder von der Universität Tübingen beteiligt

Christian Schröder erforscht am Zentrum für Angewandte Geowissenschaften die Biogeochemie von Eisenmineralen. Seit dem Start der NASA Mars Exploration Rover im Jahr 2003 ist er als Mitglied des Wissenschaftlerteams u.a. für den Einsatz des Röntgenfluoreszenz-Spektrometers des Rovers, dem APXS (Alpha-Particle X-ray Spectrometer) zuständig. Es wurde am Max-Planck-Institut für Chemie in Mainz entwickelt und wird nun unter der Leitung von Ralf Gellert an der Unversität Guelph in Kanada weiter betrieben. Das APXS dient der Elementaranalyse und ermöglichte die entscheidenden Messungen zur Identifizierung der Gipsadern und Charakterisierung des Gesteins.

Opportunity ist seit nunmehr acht Jahren auf der Oberfläche des Mars unterwegs und hat dabei mehr als 33 km zurückgelegt. Endeavour hat einen Durchmesser von 22 Kilometern und ermöglicht den Zugang zu Gestein aus einer geologisch älteren Periode als der schwefelreiche Sandstein, der eine große Fläche um die Landestelle Opportunitys bedeckt. Der Krater war daher ein Fernziel des Rovers. Während der Fahrt zu Endeavour galt Schröders Interesse insbesondere den verstreut am Wegesrand liegenden losen Gesteinsbrocken. Einige dieser Gesteinsbrocken entpuppten sich als Meteorite, andere stammen von entfernten Einschlagskratern, jedoch nicht von Endeavour, wie die APXS-Analysen zeigen.

Gips mit der chemischen Formel CaSO4∙2H2O bildet sich nur im Beisein von Wasser. Es grenzt die Temperatur des Wassers auf maximal 60°C ein. Bei höherer Temperatur hätten sich andere Mine-rale wie z.B. Anhydrit, CaSO4, gebildet. Damit gab es am Rande des Endeavour-Kraters zumindest vorübergehend lebensfreundliche Bedingungen. Das Wasser zirkulierte durch Risse und Spalten im Gestein des Kraterrandes, nachdem dieser entstanden war. Die gleiche Quelle schwefelreichen Wassers hat wahrscheinlich auch zur Ablagerung des schwefelreichen Sandsteins an Opportunitys Landestelle beigetragen.

Endeavour ist sowohl von seiner Größe, als auch von der Gesteinszusammensetzung des Krater-randes dem Nördlinger Ries vergleichbar. Das Nördlinger Ries ist ein weltweit bekanntes Beispiel für einen Meteoriteneinschlagskrater auf der Erde. Suevit, ein sogenannter Impaktit, ist ein typisches Gestein am Rande eines Einschlagskraters. Es setzt sich zusammen aus zermahlenem Grundgestein, eingeschlossen Gesteinsbruchstücken, durch den Einschlag aufgeschmolzenes und zu Glas erstarrtes Material sowie durch Minerale, die nur bei extrem hohen Drucken und Tempera-turen entstehen. Suevit leitet sich vom lateinischen Suevia – Schwaben – ab und wurde am Nörd-linger Ries zum ersten Mal beschrieben. Das Nördlinger Ries entstand vor fast 15 Millionen Jahren durch den Einschlag eines etwa einen Kilometer durchmessenden Asteroiden. Endeavour entstand auf ähnliche Weise vor mehr als 3,7 Milliarden Jahren. (Quelle: idw, Bildquelle: NASA/JPL-Caltech/Cornell/ASU)

Entwickelt sich das Gehirn durch Selbstorganisation?

Selbstorganisierte Prozesse spielen neben Umwelteinflüssen und genetischen Faktoren eine entscheidende Rolle bei der Entwicklung des Gehirns. Zu diesem Ergebnis kommt ein internationales Team von Forschern, unter anderem aus Wissenschaftlern des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Bernstein Center for Computational Neuroscience und der Universität Göttingen.

Die Gehirne von Frettchen, Spitzhörnchen und Buschbabys zeigen beispielsweise überraschende Ähnlichkeit: So folgt die Anordnung der Nervenzellen in den Sehrinden der Arten folgt exakt demselben Design. Weder frühe Einflüsse der Umwelt noch Vererbung können diesen Befund erklären. Mithilfe eines mathematischen Modells jedoch konnten die Wissenschaftler die Gehirnarchitektur exakt vorhersagen. Es beschreibt, wie sich neuronale Schaltkreise im Gehirn selbstorganisiert entwickeln. (Science, Online-Ausgabe vom 4. November 2010)

Abb. 1 Die Vorfahren von Spitzhörnchen (rechts) und Buschbaby (links) gehen seit 65 Millionen Jahren getrennte Wege. Dennoch gleichen sich Details ihrer Sehrinden auf verblüffende Weise. Bild: Wikimedia

Nervenzellen in der Sehrinde reagieren auf definierte Bildelemente wie Kanten und Konturen. Jede Zelle hat dabei eine “Orientierungspräferenz”: Sie ist auf bestimmte Kantenverläufe spezialisiert, wie etwa horizontale, vertikale oder schräge Kanten. Werden Zellen gleicher Spezialisierung mit derselben Farbe eingefärbt, erhält man so eine Karte der Orientierungspräferenz. Das fundamentale Strukturelement dieser Karten, das sich über die Sehrinde tausendfach wiederholt, bezeichnen Forscher als Pinwheel (deutsch: Windrad), denn Gebiete derselben Orientierungspräferenz treffen an einem Punkt zusammen – wie die Flügel eines Spielzeug-Windrades (siehe Abbildung 2).

Während frühere Arbeiten erwartet ließen, dass sich die Verteilung der Windräder in den Sehrinden verschiedener Arten stark unterscheiden, fanden die Forscher eine verblüffende Ähnlichkeit bei Frettchen, Spitzhörnchen und Buschbaby. Ein Erkennungszeichen dieses gleichen Designs ist die Dichte der Windrädchen. Diese und eine große Zahl anderer Merkmale stimmen bei diesen Arten genau überein. Auf einen vererbten genetischen Bauplan lässt sich dies jedoch nicht zurückführen. Denn der letzte gemeinsame Vorfahre von Frettchen, Spitzhörnchen und Buschbaby lebte vor mehr als 65 Millionen Jahren im Zeitalter der Dinosaurier. Die Gehirne hatten also reichlich Zeit, sich verschieden zu entwickeln. Zudem gibt es Säugetiere, die deutlich enger miteinander verwandt sind als die untersuchten Spezies und dennoch verschieden strukturierte Sehrinden aufweisen. Ebenso wenig bietet der Einfluss von Erfahrung auf die frühe Hirnentwicklung eine Erklärung. Die untersuchten Tierarten finden nach ihrer Geburt völlig verschiedene Umweltbedingungen vor.

Abb. 2 Karte der Orientierungspräferenz in der Sehrinde eines Frettchens. Zwei Pinwheels (Windrädchen) sind vergrößert. Falschfarbendarstellung der Orientierung (siehe Balken links). Bild: Max-Planck-Institut für Dynamik und Selbstorganisation

In empirischen und theoretischen Untersuchungen zeigten die Forscher, dass sich die gleiche Windräderdichte am besten durch Selbstorganisationsprozesse in der Hirnentwicklung erklären lässt. Sobald die Tiere nach der Geburt zu sehen beginnen, bilden sich die Karten der Orientierungspräferenz nach und nach wie von selbst aus. Die mathematische Analyse neuronaler Selbstorganisation zeigte, dass bereits wenige Voraussetzungen ausreichen, um die beobachtete Nervenzellarchitektur hervorzubringen. Zu diesen gehört etwa, dass sich Nervenzellen über weite Distanzen direkt Signale zusenden können. Sind diese und wenige weitere Voraussetzungen erfüllt, stimmen sich die Nervenzellen im Modell während der Hirnentwicklung so aufeinander ab, dass ein so genanntes “quasiperiodisches Muster” ihrer bevorzugten Orientierungen entsteht, ein Muster das sich nie exakt wiederholt.

“Vertraute Beispiele für Selbstorganisationsprozesse sind etwa die La-Ola-Welle begeisterter Zuschauer, die sich bei Sportveranstaltungen über die Stadionränge ausbreitet, oder Stop-and-Go-Wellen im Autoverkehr, die ohne jede äußere Behinderung des Verkehrsflusses spontan auftreten können”, sagt Matthias Kaschube, Lewis-Sigler-Fellow an der Princeton Universität und Erstautor der Studie. Bei diesen Beispielen, wie auch bei allen anderen Selbstorganisationsprozessen, gibt es weder einen versteckten “Lenker”, noch ein verstecktes “Drehbuch”, das die Systemelemente (die Sportfans oder die Verkehrsteilnehmer in obigen Beispielen) dazu zwingt zu tun, was sie tun. Die Bewegung der Elemente resultiert nur aus der Art, wie sie sich gegenseitig beeinflussen.

In den vergangenen Jahrzehnten haben Forscher für viele Systeme der unbelebten Natur ausgearbeitet, wie mathematische Modelle beim Verständnis solcher Selbstorganisationsprozesse helfen können. Wie Fred Wolf, Leiter der Untersuchung und theoretischer Physiker am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen betont, liefern die neuen Ergebnisse nun maßgeschneiderte mathematische Konzepte für das Verständnis der Wechselwirkungen neuronaler Elemente in der Sehrinde.

Quelle: Max-Planck-Institut für Dynamik und Selbstorganisation. Originalveröffentlichung: Matthias Kaschube, Michael Schnabel, Siegrid Löwel, David M. Coppola, Leonard E. White & Fred Wolf
Universality in the Evolution of Orientation Columns in the Visual Cortex

Science, Online-Ausgabe vom 4. November 2010

Mehr Info:
Emergenz: Strukturen der Selbstorganisation in Natur und Technik

Supernovae-Explosion: Wie das Weltall vermessen wird

NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory
NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Vom genauen Mechanismus hängt es ab, wie gut wir das Verhalten unseres Universums verstehen
Manche Sterne beenden ihr Dasein mit einem enormen Knall: Binnen Stunden steigern sie ihre Helligkeit um das Millionen- oder gar Milliardenfache und leuchten für einige Tage so hell wie eine ganze Galaxie. Astronomen entdecken jedes Jahr mehrere hundert solcher Supernovae, die zumeist in entlegenen Winkeln des Universums aufleuchten.

Supernovae künden aber nicht nur vom gewaltsamen Ende eines Sterns, sondern erweisen sich auch als wichtige Hilfsmittel für die Vermessung des Weltalls. Denn ein spezieller Typ dieser Sternexplosionen, genannt Ia, erreicht stets die gleiche Maximalhelligkeit. Gelingt es, dieses Maximum zu beobachten, dann folgt aus der gemessenen Helligkeit der Supernova direkt ihre Entfernung. Denn so, wie der fernere zweier gleich heller Autoscheinwerfer einem Beobachter lichtschwächer erscheint, verhält es sich auch mit Supernovae: Je größer ihre Distanz zur Erde ist, umso weniger hell erscheinen sie.

Die Entfernungsbestimmung mit Supernovae vom Typ Ia klappt so gut, dass sie sich als Maßstab oder Standardkerze zur Auslotung des Universums verwenden lassen. Seit rund achtzig Jahren ist bekannt, dass sich das Weltall ausdehnt. Aber erst vor wenigen Jahren fanden die Astronomen heraus, dass sich diese Ausdehnung sogar beschleunigt– ein Befund, der sich anhand der Distanzen der Supernovae vom Typ Ia ergab. Um diese Beschleunigung zu erklären, mussten die Wissenschaftler die Existenz einer ominösen »Dunklen Energie« annehmen, die das Universum beschleunigt auseinandertreibt.

Wegen der kosmologischen Bedeutung dieses Supernova-Typs interessieren sich die Astronomen für die Ursachen und den Ablauf der Sternexplosionen. Zwei Arten von Explosionen sind bekannt, in denen jeweils so genannte Weiße Zwerge eine Rolle spielen. Weiße Zwerge bilden das Endstadium verbrauchter Sterne ähnlich unserer Sonne. Bei der einen Art saugt ein Weißer Zwerg Materie von seinem Partnerstern ab. Er macht dies solange, bis er sich gewissermaßen überfressen hat und er von einer thermonuklearen Explosion zerrissen wird. Dies passiert stets mit der gleichen Maximalhelligkeit. Bei der anderen Art bilden zwei Weiße Zwerge ein Doppelsternpaar und verschmelzen schließlich, wobei es ebenfalls zur Supernovaexplosion kommt. Hier hängt die Maximalhelligkeit von der jeweiligen Masse der Weißen Zwerge ab. Die Astronomen besaßen Hinweise darauf, dass die erste Art deutlich häufiger vorkommt und sich Supernovae vom Typ Ia deshalb als Standardkerzen verwenden lassen.

Neue Untersuchungen von Astronomen des Max-Planck-Instituts für Astrophysik in Garching bei München belegen nun, dass nur fünf Prozent aller Supernovaexplosionen vom Typ Ia in elliptischen Galaxien auf Materie aufsammelnde Weiße Zwerge zurückgehen. Offenbar geht der größte Teil der gewaltigen Sternexplosionen auf die Vereinigung zweier Weißer Zwerge zurück, wie der Physiker Jan Hattenbach im aktuellen Mai-Heft der Zeitschrift “Sterne und Weltraum” berichtet. Dieser Befund schränkt allerdings die Verwendung der Supernovae vom Typ Ia als Standardkerzen ein. Denn nun erwarten die Astronomen, dass die Maximalhelligkeiten wegen der unterschiedlichen Massen der Weißen Zwerge bei ihrer Verschmelzung unterschiedlich ausfallen. Spannend ist jetzt, wie sich diese Erkenntnis auf die Messung der beschleunigten Expansion des Raums auswirkt. Quelle: Sterne und Weltraum, Mai 2010 – Bild: Zwei weiße Zwerge, die sich zunehmend enger umkreisen, verschmelzen schließlich was eine Supernova-Explosion zur Folge hat. (c) NASA / Tod Strohmayer, GSFC / Dana Berry, Chandra X-Ray Observatory

Riesige Wasservorkommen im All aufgefunden

Wasser im All

Wasser gilt als Elixier des Lebens – und das Weltall ist voll davon. Jetzt haben Wissenschaftler das kostbare Element in einer Scheibe um einen jungen Stern vom Typ unserer Sonne gefunden. Die Scheibe, in der später vermutlich Planeten geboren werden, beinhaltet hundertmal mehr Wasser als alle Ozeane der Erde zusammen. Die Beobachtungen gelangen mit dem IRAM-Interferometer und werfen ein Licht auf die rätselhafte Herkunft von Wasser in unserem eigenen Sonnensystem (The Astrophysical Journal, 10. Februar 2010).

Ein Großteil des Wassers in den irdischen Ozeanen stammt sehr wahrscheinlich aus einer überaus instabilen molekularen Wolke, aus der einst unser Planetensystem entstand. Wo sich das Wasser allerdings genau gebildet hat und wie die einzelnen Moleküle schließlich vor ungefähr 4,5 Milliarden Jahren ihren Weg von der riesigen Wolke auf einen so winzigen Himmelskörper wie die Erde fanden, zählt zu den wichtigsten Fragen unserer Ursprungsgeschichte. Riesige Wasservorkommen im All aufgefunden weiterlesen

Elektronen auf frischer Tat beim Tunneln ertappt

Was sich wie ein Delikt anhört, nämlich das »Tunneln« ist ein ganz normaler quantenphysikalischer Vorgang. Erstmals ist es nun gelungen Elektronen live zu beobachten, wie sie die Atome verließen, von denen sie gefangen gehalten wurden (Heraustunneln).

Der Tunneleffekt erklärt unter anderem, wie es zur Kernfusion in der Sonne kommt oder auch die Funktionsweise des Raster-Tunnelmikroskops, mit dem man bis zu 100-Millionenfach vergrößern kann. Der Fernsehprofessor der Physik, Harald Lesch, demonstriert in der Bildungssendung Alpha Centauri eindrucksvoll, was es mit diesem Phänomen »Tunneleffekt« auf sich hat. Zu Beginn schwebt er durch die Tafelwand der Fernsehkulisse, so wie ein Geist, den keine Barriere von einem Spuk abhalten kann. Gleich darauf nimmt er wieder eine feste Gestalt an und erklärt, dass der Zuschauer seine Vorführung mit Vorsicht genießen soll. Mit dieser Warnung hat er wohl recht. Denn wenn ein Zuschauer es ihm gleich tun wollte, würde er nur Beulen und blaue Flecke davontragen. Die Wahrscheinlichkeit, dass Menschen durch Wände gehen können, ist verschwindend gering. Nur mikroskopischen Quantenobjekten wie Elektronen oder Protonen gelingt dieses Kunststück mit deutlich höherer Wahrscheinlichkeit.

Man kann den Effekt am Beispiel einer Kugel erklären, die ein Mensch mit Schwung einen Hügel hochrollen lässt. Wenn die Energie, welche der Kugel mitgegeben wird, nicht genügt, rollt die Kugel immer wieder zurück, anstatt die Kuppe zu überwinden und ins nächste Tal zu gelangen. In der Quantenphysik besteht dagegen für Quantenobjekte die Möglichkeit den Potentialwall, wie der Hügel genannt wird, zu durchtunneln. In einem Augenblick befindet sich das Quantenobjekt noch vor dem Potentialwall und im nächsten Augenblick schon dahinter im nächsten Tal. Es ist ein sprunghafter Übergang ohne Zwischenzustände.

Heraustunneln von Elektronen aus Atomen

Noch niemand konnte bisher das Quanten-Tunneln in Echtzeit beobachten. Dieses Kunststück ist nun Physikern des Max-Planck-Instituts für Quantenoptik gelungen. Sie haben das Heraustunneln von Elektronen aus einem Atom erstmals in live verfolgt. Die elektrischen Kräfte innerhalb eines Atoms halten normalerweise jene Elektronen fest, die sich in seinem Inneren aufhalten. Die Kräfte bilden den Potentialwall, den es zu überwinden gilt, wenn sich ein Elektron aus dem Atom herauslösen soll.

Der Trick der Max-Planck-Physiker bestand darin, mit Hilfe von Attosekunden-Laserblitzen die Elektronen näher an den Rand ihres Atomgefängnisses zu bringen. Eine Attosekunde ist milliardster Teil einer milliardstel Sekunde und damit unvorstellbar kurz. Der Laserblitz vergrößert die Wahrscheinlichkeit, dass die Elektronen aus ihrem Atomgefängnis entkommen können. Und tatsächlich, nach einem zweiten Laserblitz, der die Breite des Potentialwalls ein wenig verringerte, nutzen die Elektronen die Gelegenheit, um herauszutunneln.

Atome, denen ein Elektron fehlt, sind positiv geladen. Als die Physiker im Anschluss an das Experiment die positiv geladenen Atome zählten, waren sie nicht schlecht überrascht, dass zahlreiche Elektronen entkommen waren. Noch interessanter ist aber die Feststellung, dass der Zeitbedarf für das Heraustunneln praktisch kaum messbar ist, sodass die Physiker annehmen, der Tunnelprozess benötige überhaupt keine Zeit. Die Erkenntnisse sollen helfen, bessere Röntgenlaser für die medizinische Therapie zu entwickeln.

Tunneleffekt und Hirnforschung

In der Hirnforschung kann das quantenmechanische Tunneln möglicherweise eine Erklärung für die Geschwindigkeit von bewussten Denkprozessen liefern. Die einzelnen Neuronen des Gehirns werden durch Schnittstellen verbunden, die Synapsen heißen. Diese besitzen einen winzigen Spalt, der überwunden werden muss, wenn ein Signal von Neuron zu Neuron übertragen werden soll. Die herkömmliche Theorie besagt nun, dass zur Übertragung von Signalen an den Synapsen, das ursprünglich elektrische Signal in ein chemisches umgewandelt werden muss. Die Theorie kann aber nicht die Geschwindigkeit von bewussten Denkprozessen erklären. Wie jeder weiß, der schon mal einen Akku am Stromnetz geladen hat, benötigt die Umwandlung von elektrischer Energie in chemische erhebliche Zeit. Würde die herkömmliche Theorie stimmen, müsste Denken schneckengleich langsam sein. Weil das der Erfahrung widerspricht, nehmen einige Hirnforscher an, dass der extrem schnelle quantenmechanische Tunneleffekt zur Überwindung des synaptischen Spalts eine Rolle spielt. Sollte man das experimentell bestätigen können, hätte man gleichzeitig eine Verbindung von Bewusstsein zur Welt der Quanten mit all ihren seltsamen Phänomenen gefunden. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs mit dem Titel »Unsterbliches Bewusstsein, Raumzeit-Phänomene, Beweise und Visionen« in dem aufgrund quantenphysikalischer Phänomene die Existenz von Bewusstsein auch außerhalb des Gehirns nachgewiesen wird.

Geist in der Materie entdeckt?

Der Nobelpreisträger Max Planck (1858-1947) war einer der Pioniere der Quantenphysik und deshalb nicht verdächtig einem esoterischen Weltbild anzuhängen. Er vermutete hinter der Kraft, welche die Atomteilchen in Schwingung bringt und die Materie zusammenhält »einen bewussten, intelligenten Geist«. Diesen hielt er für den »Urgrund aller Materie«. Das waren seine Worte auf einem Vortrag, den er 1944 in Florenz hielt. Er sagte außerdem noch, dass es »keine Materie an sich gibt«.

Das materialistische Weltbild des 19. Jahrhunderts, dessen Nachbeben wir bis heute spüren, sah Materie als etwas an, das aus ewigen, unteilbaren und unvergänglichen Atomen aufgebaut ist. Über das, was es mit der angeblichen Unteilbarkeit von Atomen auf sich hat, weiß die Allgemeinheit zumindest seit Hiroshima Bescheid. Was die Allgemeinheit weniger weiß ist, dass die Atomspaltung nicht nur mit Zerstörung gleichzusetzen ist, sondern einhergeht mit Erkenntnissen, denen wir das Handy, den CD-Player, den PC und den Scanner in den Supermarktkassen verdanken. Wie von Zauberhand erscheinen nach dem Scannen der Ware Preise auf dem Kassendisplay. Welchen Vorstellungen von der Materie verdanken wir diese Errungenschaften unserer Wissenschaft, die einen mittelalterlichen Magier zum größten Zauberer seiner Zeit gemacht hätten, wenn er sie nur hätte vorführen können?

Für die heutige Physik gehört alles zur Materie, was aus Elektronen und Quarks und zwar aus Up-Quarks und Down-Quarks aufgebaut ist. Das muss man erst einmal verinnerlichen: Materie ist alles, was aus nur drei elementaren Bestandteilen besteht! Egal ob Gold, Blei, Wasserstoff oder Kohlenstoff. Egal ob ein Holzstuhl oder ein Hamburger. Alles besteht nur aus drei sogenannten Elementarteilchen: den Elektronen und zwei Sorten Quarks.

Elektronen kann man leicht erzeugen und beobachten. Die alten Röhrenfernseher liefern ein Zeugnis davon. Bei den Quarks ist das anders. Noch nie hat jemand Quarks beobachten, geschweige denn vorführen können. Und dennoch sollen die Protonen und Neutronen im Kern des Atoms aus diesen Quarks bestehen. Die Physiker schließen auf die Existenz von Quarks aufgrund von Beobachtungen, die sie machen, wenn sie in den Teilchenbeschleunigern wie CERN Protonen des Atomkerns mit anderen Teilchen und hoher Geschwindigkeit zusammenstoßen lassen. Das ist so, als würde man davon ausgehen, dass ein Fliegengewichtsboxer, der ein Schwergewicht K. O. schlägt, ein Hufeisen in seinem Boxhandschuh versteckt habe. Bevor man nicht in den Boxhandschuh reinschauen kann, weiß man es aber nicht.

Noch seltsamer mutet einem die Vorstellung von Materie an, wenn man weiß, dass Atome fast ausschließlich aus leerem Raum bestehen. Der Atomkern, in dem man die Protonen mit den Quarks finden kann, macht höchstens den zehntausendsten Teil des Atomdurchmessers aus. Der Raum um den Kern herum ist der Bereich, für den es eine größere Wahrscheinlichkeit gibt, dass man dort ein Elektron findet. Aber das gilt nicht als sicher. Die Regeln der Quantenphysik besagen, dass man das Elektron eines bestimmten Atoms genauso gut auch in New York oder sonst wo im Weltall finden kann, wenn auch mit sehr geringer Wahrscheinlichkeit. Aber unmöglich ist es nicht.

Völlig unerklärlich ist, dass Atome, Elektronen oder Protonen bei bestimmten Untersuchungen überhaupt nichts Materielles mehr an sich haben. Sie scheinen Welleneigenschaft zu besitzen und auf dem Beobachtungsschirm tauchen Wellenmuster auf. So verflüchtigt sich auf einmal das noch verbliebene Materielle an der Materie. Wenn es »keine Materie an sich gibt«, wie Planck sagte, was ist es dann, was die Materie ausmacht? Ist es eine Art Geist?

Eine Form von Geist, der in der Materie steckt, ist Information. Das kann man sich klar machen, wenn man ein Beispiel betrachtet, das drei Bausteine zum Gegenstand hat und damit dem Aufbau der Atome aus drei Elementarteilchen entspricht. Beispielsweise kann man sich zwei Kinder, einen Jungen und ein Mädchen vorstellen. Sie besitzen einen Eimer voll mit Lego-Bausteinen. Es sind drei Sorten Steine, nämlich solche mit zwei, vier und acht Noppen. Aus diesen Steinen baut das Mädchen ein kleines Puppenhaus mit zwei Zimmern, Möbeln, Ofen usw. Der Junge baut dagegen eine große Burg mit mächtigen Mauern, Zinnen, Toröffnung und Graben.

Die Frage ist nun, worin sich Puppenhaus und Burg unterscheiden? Beide Bauwerke sind aus den gleichen Steinen hergestellt. Die einzige Unterscheidung zwischen Puppenhaus und Burg ist die Zahl und Anordnung der Steine. Das gleiche gilt für unsere Welt, in der die unterschiedlichen Elemente Gold, Blei, Wasserstoff oder Kohlenstoff usw. sich nur in der Zahl und Anordnung der Elementarteilchen unterscheiden. Da alle Materie aus den Elementen aufgebaut ist, unterscheidet sich alles, was materiell existiert nur durch die Zahl und Anordnung der Elementarteilchen.

Die Anordnung ist nichts anderes als Information. Die Formen, anhand denen man erkennt, ob es sich um ein Puppenhaus oder eine Burg handelt, sind Informationen und auch die unterschiedlichen Formen und Muster der materiellen Welt sind alles Informationen. Aber Information ist sicher nicht der Geist, den Planck meinte. Denn Information ist nichts Lebendiges. Information ist passiv. Planck sprach dagegen von einem bewussten, intelligenten Geist und ein bewusster Geist ist etwas Lebendiges.

Einen Hinweis auf diesen bewussten Geist finden wir in der Interpretation der physikalischen Experimente mit Quanten. Quanten sind winzige Energiepakete, die sich je nach Art der Messung als Wellen oder Teilchen zeigen. Wegen dieses Verhaltens gelten Atome, Elektronen, Photonen (Lichtteilchen) und dergleichen – gleichgültig, ob die Objekte zur Materie zählen oder nicht – alle als Quanten. Zu einem der wichtigsten Experimente der Quantenphysik gehört jenes, bei dem man Lichtteilchen oder Elektronen auf eine Wand schickt, in der sich ein kleiner Doppelspalt befindet. Dahinter fängt man auf einem Beobachtungsschirm auf, was durch die Spalte hindurchkommt. Auf diese Weise beobachtet man das Verhalten der Quantenobjekte und kann es interpretieren.

Um Bewusstsein bei Quanten feststellen zu können, muss man wissen, anhand welcher Kriterien man Bewusstsein überhaupt feststellen kann. Bewusstsein ist kein Untersuchungsgegenstand der Quantenphysik. Deshalb findet man in dieser Disziplin keine geeigneten Kriterien zur Erkennung von Bewusstsein. Hier muss die Psychologie aushelfen. Die Psychologie hat mithilfe geeigneter Kriterien schon bei zahlreichen Tierarten Bewusstsein nachgewiesen. Das Hauptkriterium zur Erkennung einer primären Form von Bewusstsein, das allerdings noch nicht das höhere Ich-Bewusstsein einschließt, ist erstens die Fähigkeit, sich auf unerwartete Veränderungen der Wirklichkeit einzustellen und zweitens ein nicht sicher vorhersehbares, eigengesteuertes Verhalten.

Das ist aber genau das, was man an dem Verhalten von Lichtteilchen oder anderen Quanten feststellen kann, die offensichtlich selbst entscheiden, welchen Weg sie an einem Strahlenteiler durchlaufen oder welche Polarisierung sie bei einer Polarisationsmessung annehmen. Es gibt keine Formeln oder physikalischen Gesetze, anhand derer man dieses Verhalten vorausberechnen könnte. Man hat nur die Möglichkeit das Verhalten mit einer gewissen Wahrscheinlichkeit vorauszusagen. Sicherheit gibt es aber nicht. Und das entspricht beim Kriterium für primäres Bewusstsein, dem nicht sicher vorhersehbaren, eigengesteuerten Verhalten.

Immer wenn Lichtteilchen sich unbeobachtet glauben, bilden sie ein Wellenmuster auf dem Beobachtungsschirm beim Doppelspaltexperiment. Sie sind allerdings sehr eigenwillig: Wenn man nämlich einzelnen Quanten nachspürt, um mehr zu erfahren, verschwindet das Wellenmuster und es bleiben nur noch zwei Streifen übrig. Das gleiche gilt, wenn man abwechselnd einen der Spalte schließt, um mit Sicherheit sagen zu können, durch welchen Spalt ein bestimmtes Lichtteilchen gegangen ist. Die Quanten stellen sich auf alle Veränderungen der Wirklichkeit sofort ein. Ein Psychologe würde aus dem eigenwilligen Verhalten schließen, dass Quanten primäres Bewusstsein zeigen.

Planck kannte natürlich die grundlegenden Experimente der Quantenphysik einschließlich des Doppelspalt-Experiments. So ließ ihn möglicherweise das in den Experimenten offengelegte Verhalten der Materie zu dem Schluss kommen, dass ein bewusster, intelligenter Geist der »Urgrund aller Materie« ist. – Klaus-Dieter Sedlacek

Der Text enthält zum Teil Inhalte aus dem Sachbuch mit dem Titel »Unsterbliches Bewusstsein – Raumzeit-Phänomene, Beweise und Visionen« (ISBN 978-3837043518 )