Schlagwort-Archive: Raum

Bedrohung aus dem All: Komet ISON kommt uns nahe

München (ots) – Einst bombardierten Kometen unser Sonnensystem, brachten vermutlich Wasser und Leben auf die Erde und hinterließen bis heute sichtbare Krater. Würde heute ein Komet der Größe von Shoemaker-Levy 9, der 1994 auf Jupiter einschlug, auf die Erde treffen, gäbe es sie nicht mehr. Das schreibt das Weltraum-Magazin SPACE in seiner Ausgabe 1/2014.

Großes Bombardement – so nennt die Wissenschaft den Kometensturm, der vor vier Milliarden Jahren die Planeten und Monde unseres Sonnensystems traf und bis heute sichtbare Krater hinterließ. Wie viele Kometen am Rande unseres Sonnensystems – im Kuipergürtel und in der sogenannten Oortschen Wolke – herumfliegen und jederzeit der Erde gefährlich werden können, lässt sich nicht sagen. Gelegentlich verlässt ein Komet diesen Bereich und fliegt durch das Sonnensystem; das kann man von der Erde aus beobachten. Wenn die Theorie von der Oortschen Wolke stimmt, besteht durchaus Gefahr: “Wenn da 100 Millionen Kometen in der hypothetischen Ooortschen Wolke in einem Lichtjahr Entfernung herumkreisen und es dort zu einer Störung kommt, dann könnte es wirklich zu einem erneuten Großen Bombardement kommen”, meint Astronomie-Experte Nick Howes.

Die Folgen eines solchen Kometensturms auf unser Sonnensystem wären verheerend. Glücklicherweise lenken die Großplaneten wie Jupiter viele der anfliegenden Objekte auf sich, etwa den Kometen Shoemaker-Levy 9, der im Juli 1994 in Trümmer von bis zu zwei Kilometern Durchmesser zerbarst und auf dem Jupiter aufschlug. Würde ein ähnliches Ereignis die Erde treffen, wären die Folgen apokalyptisch. “Solch ein Komet könnte in 100 Millionen Jahren kommen oder nächste Woche. Wir wissen es nicht”, so Nick Howes.

Aktuell ist Komet Ison in Sichtweite gerückt: Seit Ende November 2013 ist er der Sonne besonders nah. Wissenschaftler vermuten, dass er unterwegs in Fragmente zerbersten könnte. Viele gehen davon aus, dass sein Schweif bis Januar hell leuchten und für auch für Hobby-Astronomen am Nachthimmel sichtbar sein wird.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Gigantische Versuchsanordnung im arktischen Eis findet Geisterteilchen

Neutrino-Jagd im ewigen Eis: Das Bild zeigt einen von 5.160 hochempfindlichen Lichtsensoren, die am Südpol installiert wurden.  (c) Foto: IceCube Collaboration/NSF
Neutrino-Jagd im ewigen Eis: Das Bild zeigt einen von 5.160 hochempfindlichen Lichtsensoren, die am Südpol installiert wurden.
(c) Foto: IceCube Collaboration/NSF

Darauf hat die IceCube-Kollaboration seit Jahren hingearbeitet. Nun deutet alles darauf hin, dass den Forschern im antarktischen Eis Neutrinos von außerhalb unseres Sonnensystems ins Netz gegangen sind. Unter den gefundenen Ereignissen befinden sich Neutrinos mit Energien, die tausendmal höher sind, als man sie auf der Erde selbst erzeugen kann. Diese kosmischen Neutrinos können einzigartige Informationen über den Aufbau von Supernovas, Gamma-Ray-Blitze oder Schwarzen Löchern liefern.

Das Neutrino-Teleskop IceCube am Südpol ist weltweit einmalig. In einem Kubikkilometer Eis sind insgesamt 5.160 hochempfindliche Lichtsensoren installiert. Wenn doch mal ein Neutrino im Eis wechselwirkt, entstehen geladene Teilchen die mit nahezu Lichtgeschwindigkeiten weiterfliegen. Diese erzeugen ein schwaches bläuliches Licht, das von den Detektoren aufgefangen wird.

„Wir sehen hochenergetische Neutrinos, von denen wir jetzt mit ziemlicher Sicherheit sagen können, dass sie astrophysikalischen Ursprungs sind“, sagt Prof. Dr. Marek Kowalski vom Physikalischen Institut der Universität Bonn. Neutrinos sind ganz besondere Teilchen: Sie können anders als elektromagnetische Strahlung sämtliche Materie durchdringen. Mit ihrer Hilfe lässt sich wie mit einem Röntgenapparat in die verstecktesten Winkel des Universums blicken. Allerdings wechselwirken diese Teilchen kaum und könnten selbst von einer Bleiabschirmung mit 1000 Kilometer Dicke nicht aufgehalten werden. Ihr Nachweis ist deshalb besonders schwierig. Mit der gigantischen Messeinrichtung „IceCube“ in der Antarktis sind nun dennoch zum ersten Mal Hinweise für hochenergetische Neutrinos aus dem Weltall gefunden worden.

Die meisten Neutrinos auf der Erde entstehen bei niedrigen Energien durch Kernfusion in der Sonne, sie können sich aber auch in der Erdatmosphäre bilden. Die Forscher des IceCube Projektes interessieren sich aber besonders für hochenergetische Neutrinos aus astrophysikalischen Quellen – zum Beispiel von Supernovas, Gamma-Ray-Blitzen oder galaktischen Schwarzen Löchern. Denn Neutrinos sind die einzigen Teilchen, die aus dem Inneren dieser Quellen entkommen können und damit einzigartige Informationen über ihren Aufbau liefern.

Morgendämmerung für ein neues Zeitalter der Astronomie

Gelungen ist der Nachweis der Neutrinos einem internationalen Team von rund 250 Wissenschaftlern und Ingenieuren der IceCube-Kollaboration unter Beteiligung der Astroteilchen-Gruppe von Prof. Kowalski. Mit der gigantischen Versuchsanordnung im antarktischen Eis wurden in den vergangenen zwei Jahren insgesamt 28 Neutrinos mit Energien größer als 30 Tera-Elektronenvolt (TeV), darunter zwei Ereignisse mit über 1000 TeV registriert. Dieser Fund war für die Forscher so bedeutsam, dass die Teilchen sogar eigene Namen bekamen: Ernie & Bert – den beiden beliebten Figuren aus der Fernsehserie „Sesamstraße“.

Mit der verbesserten Analyse der Daten, die nun auch die Richtung der Neutrinos liefert, konnten nicht nur diese beiden, sondern ein Großteil dieser Teilchen als potentielle kosmische Fernreisende identifiziert werden. „Das ist der erste Hinweis auf hochenergetische Neutrinos, die von außerhalb unseres Sonnensystems kommen“, sagt Prof. Dr. Francis Halzen, Projektleiter des IceCube-Experiments von der Universität Wisconsin-Madison (USA). „Dies ist die Morgendämmerung für ein neues Zeitalter der Astronomie.“

Ein Rätsel bleiben jedoch noch die Quellen, aus denen die Neutrinos im Weltraum stammen. Eine Möglichkeit sind Supernovas, bei denen die hochenergetischen Teilchen freigesetzt werden. Das Bild, das sich aus dem IceCube-Experiment abzeichnet, stellt sich für die Wissenschaftler noch verschwommen dar. „Wir können die kosmischen Quellen der Teilchen noch nicht nachweisen, weil wir bislang nicht exakt genug bestimmen konnten, aus welcher Richtung die Neutrinos aus dem Weltall in das Eis eindringen“, erklärt Prof. Kowalski. Die Forscher hoffen darauf, demnächst noch mehr Teilchen nachzuweisen, damit sich die Quellen allmählich schärfer abzeichnen.

Publikation: Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science, DOI: 10.1126/science.1242856

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Des genialen Forschers unendliche Mühsal

Detail einer Lithographie von Michael Faraday: Weihnachtsvorlesung an der Royal Institution 1856
Detail einer Lithographie von Michael Faraday: Weihnachtsvorlesung an der Royal Institution 1856

„Michael Faraday, auf dessen Entdeckungen die ganze moderne Elektrizitätslehre fußt, war ein besonders schwer gequältes Opfer seiner Genialität. Nachdem er in unendlicher Mühsal seine erste gewaltige Arbeit ausgeführt hatte, brach er zusammen.

Sein Geist erhob sich dann freilich noch hin und wieder zu ganz ungewöhnlichen Höhen, aber sein Leben ist doch fortab nur noch ein fortgesetztes Ringen gegen den Verfall. Er muss allmählich eines seiner Arbeitsgebiete nach dem anderen aufgeben und ist nur zu kurzer Tätigkeit fähig, nachdem er lange Zeit vollkommen geruht hat. »Mein Kopf ist so konfus«, schreibt er einmal, »dass ich wirklich nicht weiß, ob ich meine Worte richtig buchstabiere und schreibe. Ich wusste nicht, dass ich zunächst in einen animalischen Zustand versinken muss, bevor ich auf natürlichem und gesundem Weg herauskommen kann.«

Besonders furchtbar aber war für Faraday der Verlust seines Gedächtnisses. Welche Tragik klingt aus der folgenden Briefstelle: »Letztlich habe ich ganze sechs Wochen gearbeitet, um Resultate zu erhalten und habe auch wirklich welche bekommen; sie sind jedoch alle negativ. Aber das Schlimmste dabei ist, dass ich, als ich meine früheren Notizen ansah, gefunden habe, dass ich alle diese Resultate bereits vor acht oder neun Monaten festgestellt hatte; ich hatte sie völlig vergessen.« Man stelle sich die niederschmetternde Enttäuschung eines Forschers von der Größe Faradays vor, wenn er bemerkt, dass er seine letzten Kräfte an eine Sache gesetzt hat, deren Bearbeitung, nachdem er sie bereits einmal ausgeführt, nun einfach lächerlich war. So stark wie bei Faraday treten die Erschöpfungszustände bei anderen Forschern glücklicherweise nur selten auf.

Als Davy die Natur der Alkalimetalle endgültig festgestellt hatte, verfiel er sofort in eine schwere Krankheit, während der sein Geist gerade so schwach war wie sein Körper. Mayer hatte kaum seine berühmte Schrift »Bemerkungen über das mechanische Äquivalent der Wärme« abgeschlossen, als er in einem Anfall von Delirium aus dem Fenster seiner Wohnung im zweiten Stock sprang, wobei er sich schwer verletzte. Nicht lange darauf hatte er eine Gehirnhautentzündung durchzumachen.

Helmholtz pflegte nach größerer Arbeit fast stets eine böse Migräne zu bekommen, die ihm meist einen ganzen Arbeitstag raubte. Diese Erscheinung, so unangenehm sie an sich gewesen sein mag, hat dem Schöpfer der physiologischen Optik jedoch einen großen Teil seiner Gesundheit erhalten, indem sie ihn zwang, immer wieder einen Tag vollkommener geistiger Ruhe in die angespannte Tätigkeit einzuschalten.

Für dieses Niederbrechen der großen Geisteszentren gibt es eine sehr einleuchtende naturwissenschaftliche Erklärung. Beim genialen Menschen werden durch das andauernde, lange und schwere Ringen nach Erkenntnis, das jedem Meisterwerk vorhergeht, bestimmte Zellen des Gehirns außerordentlich stark in Anspruch genommen. Ist die Arbeit vollendet, so sind diese Zellen auch gewöhnlich vollkommen ausgepumpt und müssen durch eine Überernährung aus anderen Teilen des Gehirns wieder aufgefüllt werden, was nur durch eine Verminderung der gesamten geistigen Tätigkeit geschehen kann.

Außerordentlich günstig für den Genialen ist es, wenn er auf der Höhe seines Lebens in den Stand gesetzt wird, sein Arbeitsgebiet zu ändern. Dies war bei Liebig und bei Helmholtz der Fall, und wir sehen die beiden Forscher darum von Höhepunkt zu Höhepunkt schreiten. Denn es ist klar, dass bei einer anderen Art der Arbeit auch andere Gehirnzellen in Anspruch genommen werden, die noch frisch und »gefüllt« vorhanden sind und darum die volle Kraft hergeben können!”

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Verrückte Quanten bereiten klassischer Physik Niederlage

Quantenphysikalische Teilchen können an mehreren Orten gleichzeitig sein und hinterlassen dabei sogar Spuren. Das haben Physiker der Goethe-Universität in einem verblüffenden Experiment nachgewiesen, das Albert Einstein vor mehr als 80 Jahren anregte. Damals konnte sein wichtigster Kontrahent, der Physiker Niels Bohr, ihm lediglich Argumente entgegensetzten. Jetzt geben die neuen Experimente dem Dänen Recht.

FRANKFURT. Einstein hat Zeit seines Lebens die quantenphysikalische Aussage bekämpft, dass Teilchen – solange man sie nicht beobachtet – an mehreren Orten gleichzeitig sein können. Sein wichtigstes Gegenargument war: Die geisterhaften Teilchen müssten durch Zusammenstöße mit anderen Teilchen entlang ihrer Bahn eine sichtbare Spur hinterlassen. Eben diese Spur hat Dr. Lothar Schmidt in der Arbeitsgruppe von Prof. Reinhard Dörner am Institut für Kernphysik der Goethe-Universität nun gemessen.

Das klassische Experiment, das auch heutigen Physikstudenten noch Kopfzerbrechen bereitet, ist die Streuung quantenphysikalischer Teilchen am Doppelspalt. Solange es unbeobachtet ist, scheint jedes einzelne Teilchen durch beide Schlitze des Spalts zu gehen. Es bildet – ähnlich wie Wasserwellen – ein Interferenzmuster hinter dem Spalt. Dieses verschwindet aber, sobald man eine Information über den Weg des Teilchens zu gewinnen versucht.

Einstein argumentierte, man müsse gar nicht nachsehen, wo das Teilchen ist, denn es verrate seinen Ort indirekt, indem es beim Passieren des Spalts einen Impuls überträgt: Ginge es durch den linken Schlitz, erfahre das Beugungsgitter einen minimalen Stoß nach links, und entsprechend nach rechts, wenn es durch den rechten Spalt geht. Bohr konterte, auch das Beugungsgitter verhalte sich wie ein quantenmechanisches System, das heißt, es müsse gleichzeitig in beide Richtungen abgelenkt werden.

Dass diese verrückt klingende Vermutung tatsächlich richtig ist, haben Dörner und seine Mitarbeiter jetzt durch die Streuung von Helium-Atomen an einem „Doppelspalt“ nachgewiesen. Mit den Modellen der klassischen Physik lassen sich die gemessenen Ergebnisse nicht beschreiben. „Da wir bei dieser Versuchsanordnung nicht beobachten, durch welches Loch das Teilchen gegangen ist, passiert genau das, was Bohr vorhergesagt hat: Der Doppelspalt rotiert gleichzeitig mit und gegen den Uhrzeigersinn“, erklärt Schmidt. (Quelle: idw).

Buchtipps:

 

Die produktivsten Erfinder, Schriftsteller und Gelehrten aller Zeiten

Zeichnung von Leonardo da Vinci:  Helicopter und Flügel
Zeichnung von Leonardo da Vinci: Helicopter und Flügel


Leonardo da Vinci, der nach neuer Wertung »nebenher Maler und Bildhauer« war, im Hauptberuf aber Ingenieur, Physiker und Erfinder, ist auch den fruchtbarsten Schriftstellern aller Zeiten zuzurechnen.

Die Gesamtzahl seiner Buchwerke beträgt 120; viele davon sind untergegangen und teilen das Vergänglichkeitslos seiner Bildhauerarbeiten. Aber die Zahl der von Leonardo herrührenden Blätter mit Abhandlungen, Entwürfen und Berechnungen, soweit sie noch heute erhalten sind, geht immer noch in die Tausende!

Raimundus Lullus, (geboren 1235), Urheber der »Ars magna Lulli«, der man ehedem in der philosophischen Welt eine gewisse Bedeutung beimaß, betätigte sich als einer der kräftigsten Vielschreiber. Die Mindestzahl der von ihm herrührenden Schriften theologischen, philosophischen und alchimistischen Inhalts beträgt 500. Nach andern Quellen hat des Lullus Produktivität das Riesenmaß von 4000 Schriften erreicht.

Die Produktion des spanischen Dichters Lope de Vega ist in ihrer Üppigkeit weit über die Grenzen seiner Heimat sprichwörtlich geworden. Seiner eigenen Rechnung zufolge hat er bis zum Jahre 1631 weit über 1500 Komödien und 400 kleinere Bühnenspiele verfasst Ungefähr 500 davon sind erhalten, während die Mehrzahl verloren ging. Dazu kommt bei dem nämlichen Autor eine enorme Menge von Schriften erzählenden, lyrischen und didaktischen Inhalts, die in einer Madrider Ausgabe 21 weitere Bände füllten.

Auch Vegas genialer Landsmann Calderon hat mit seinen Gaben nicht gekargt. Er erreichte und überschritt mit seinen dramatischen Werken die Zahl 200.

Honoré de Balzac brachte es in seinem arbeitsreichen Leben bis auf 90 Romane und Novellen, die zusammen eine Bibliothek von 120 Bänden ausmachen.

Die Produktivität des älteren Alexandre Dumas wird von Eduard Engel in seiner Geschichte der französischen Literatur drastisch gekennzeichnet: Man hat berechnet, dass Dumas mehr als dreimal so viel zusammengeschrieben hat als Voltaire, dessen sämtliche Werke etwa hundert Bände umfassen. Scherzhaft wurde gesagt, aber man könnte es ebenso wohl im Ernst aussprechen: Niemand habe Dumas’ sämtliche Werke gelesen, nicht einmal – Dumas selber. Es gibt eine gut beglaubigte Anekdote, dass Dumas von einem der Romane, die seinen Namen trugen, unbefangen sagte: »Je l’ai signé, mais je ne l’ai pas lu.« Der Katalog seines Verlegers Lévy weist genau 300 Bände von Dumas dem Älteren aus, und dieser Katalog ist unvollständig!

Von den Gelehrten behauptet der große Mathematiker Leonhard Euler den Gipfel der Unbegreiflichkeit. Ihn feiert M. Cantors Monumentalwerk der Geschichte der Mathematik: „Man wird kaum ein Gebiet der reinen und angewandten Mathematik nennen können, in welchem Euler nicht tätig war, und Tätigkeit hieß bei ihm bahnbrechender Erfolg. Eine Gesamtausgabe alles dessen, was Euler geschrieben hat, würde mindestens 2000 Druckbogen stark werden.” Also nach der Größe gemessen mehr als 30 Bände größten Lexikonformats, worin Zeile auf Zeile die schwierigsten Probleme mit dem Maximum des Scharfsinns behandelt werden!

Auch unser Alexander von Humboldt kann sich in der Reihe der Hochproduzenten sehen lassen. Es genüge der Hinweis auf eine Notiz des Professors Leunis, der vom Jahre 1856 lakonisch meldet: »Humboldts sämtliche Werke kosten an 3000 Taler!« Das ist nach heutigem Wert mehr als 1 Million Euro.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse

Julius_Robert_Meyer
Julius_Robert_Meyer

Eine der wichtigsten naturwissenschaftlichen Erkenntnisse, die unsere gesamte Anschauung über das Wesen der Natur grundlegend beeinflusst hat, verdanken wir einem einfachen Arzt.

Der Vorgang ist deshalb noch besonders interessant, weil die tiefe Erkenntnis einem Menschen ganz plötzlich gelang, der bis dahin auch nicht das Geringste geleistet hatte, bei dem nichts auf eine besondere Befähigung hinwies, und der auch nicht zum zweiten Mal hervorgetreten ist.

Julius Robert Mayer wurde am 25. November 1814 als dritter Sohn eines Apothekers in Heilbronn geboren. Auf der Schule hat der Knabe sehr schlechte Leistungen aufzuweisen gehabt. Auch seine Doktordissertation über das damals gerade gefundene Santonin lässt in keiner Weise einen hervorragenden Denker oder Forscher erkennen. 1840 trat Mayer als Schiffsarzt in niederländische Dienste, um nach Java zu fahren. Der Inhalt des uns erhaltenen Tagebuchs dieser Reise ist durchaus belanglos.

Aber auf der Reede von Surabaya ging ihm durch eine an sich ganz nebensächliche Beobachtung plötzlich eine Gedankenreihe auf, die zu der grundlegenden Erkenntnis führte, dass Wärme und mechanische Arbeit miteinander verwandt seien, dass die eine sich in die andere umwandeln könne. Nach seiner Rückkehr fasste er am 16. Juni 1841 das von ihm entdeckte Gesetz von der Erhaltung der Kraft in einer kleinen Abhandlung zusammen, die er der damals bedeutendsten wissenschaftlich-physikalischen Zeitschrift, den »Poggendorff’schen Annalen« einsandte. Poggendorff erkannte den Wert der Arbeit nicht und schickte sie zurück. Man kann ihm daraus keinen allzu großen Vorwurf machen, da Mayer selbst seine Gedankenreihe sehr mangelhaft begründet hatte, wie es denn überhaupt scheint, dass er selbst die ganze epochale Bedeutung seiner Erkenntnis niemals ganz erfasst hat.

So ist es Julius Robert Mayer zu Lebzeiten denn auch niemals gelungen, sich durchzusetzen, und zahllose Gegner machten ihm so viel zu schaffen, dass er zwei Selbstmordversuche unternahm und 1878 verbittert starb. Dennoch steht fest, dass er als Erster das große Gesetz von der mechanischen Wärmeäquivalenz erkannt hat; nachdem es von Joule und namentlich von Helmholtz fester fundamentiert worden war, hat es auf die ganze Physik bedeutsamsten Einfluss gewonnen.

(Quelle: Moszkowski: 1000 Wunder; Wilhelm Ostwald: »Große Männer«. Akademische Verlagsgesellschaft m.b.H., Leipzig, 1909.)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Durchbruch bei Quantenteleportation: Quantenbits auf Knopfdruck übertragen

Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist. Quelle: University of Tokyo
Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.
Quelle: University of Tokyo

Mithilfe quantenmechanischer Verschränkung räumlich getrennter Lichtfelder ist es Wissenschaftlern aus Tokio und Mainz gelungen, photonische Quantenbits außerordentlich zuverlässig zu teleportieren. Rund 15 Jahre nach den ersten Versuchen auf dem Gebiet der optischen Teleportation ist damit ein entscheidender Durchbruch gelungen.

Der Erfolg des in Tokio durchgeführten Experiments beruht auf einer Hybridtechnik, bei der zwei konzeptionell verschiedene, bisher unvereinbare Ansätze verknüpft werden. „Diskrete, digitale optische Quanteninformation kann dabei kontinuierlich und damit sozusagen auf Knopfdruck übertragen werden“, erklärt Univ.-Prof. Dr. Peter van Loock von der Johannes Gutenberg-Universität Mainz (JGU). Van Loock hat als Physik-Theoretiker die experimentellen Physiker um Akira Furusawa von der Universität Tokio beraten, wie sie den Teleportationsversuch am effizientesten durchführen und eine erfolgreiche Quantenteleportation letztlich auch verifizieren können. Die Forschungsarbeiten wurden in dem renommierten Fachmagazin Nature am 15. August 2013 veröffentlicht.

Die Quantenteleportation ermöglicht den Transfer von beliebigen Quantenzuständen von einem Sender, als Alice bezeichnet, zu einem räumlich entfernten Empfänger, genannt Bob. Voraussetzung ist, dass sich Alice und Bob zunächst einen verschränkten Quantenzustand, z.B. in Form von verschränkten Photonen, über die Distanz teilen. Die Quantenteleportation ist von fundamentaler Bedeutung für die Verarbeitung von Quanteninformation (Quantencomputing) und die Quantenkommunikation. Insbesondere für die Quantenkommunikation gelten Photonen als optimale Informationsträger, da sie eine Signalübertragung mit Lichtgeschwindigkeit ermöglichen. Mit einem Photon kann man ein Quantenbit oder Qubit darstellen – analog zu einem Bit in der klassischen Informationsverarbeitung. Man spricht dann von „fliegenden Quantenbits“.

Erste Versuche zur Teleportation von einzelnen Photonen, die auch als Lichtteilchen bezeichnet werden, gehen auf den Wiener Physiker Anton Zeilinger zurück. In der Zwischenzeit wurden verschiedene Experimente durchgeführt, allerdings stieß die Teleportation eines photonischen Quantenbits mithilfe der herkömmlichen Methoden aufgrund von experimentellen Unzulänglichkeiten und grundsätzlichen Prinzipien an Grenzen.

Der Schlüssel für das Experiment in Tokio ist eine Hybridtechnik. Mit ihrer Hilfe ist es gelungen, experimentell eine vollkommen deterministische Quantenteleportation von photonischen Qubits zu erzielen, bei der die Teleportation mit außerordentlich hoher Zuverlässigkeit erfolgt. Die Genauigkeit der Übertragung liegt bei 79 bis 82 Prozent für vier unterschiedliche Qubits. Außerdem konnten die Qubits selbst bei einem geringen Grad der Verschränkung wesentlich effizienter teleportiert werden als in früheren Experimenten.

Verschränkung-on-Demand durch Lichtquetschung

Der Begriff der Verschränkung geht auf Erwin Schrödinger zurück und bezeichnet den Befund, dass zwei Quantensysteme, beispielsweise zwei Lichtteilchen, einen gemeinsamen Zustand einnehmen und in ihrem Verhalten auf stärkere Weise voneinander abhängen als es klassisch möglich ist. Bei dem Tokioter Experiment wurde durch die Verschränkung von vielen Photonen mit vielen Photonen eine kontinuierliche Verschränkung erzeugt, bei der nicht nur einzelne wenige Lichtteilchen, sondern die kompletten Amplituden und Phasen zweier Lichtfelder miteinander quantenkorreliert sind. Bisherige Experimente hatten dagegen jeweils nur ein einzelnes Photon mit einem anderen einzelnen Photon verschränkt – eine weniger effiziente Lösung. „Die Verschränkung von Photonen hat in dem Tokio-Experiment sehr gut funktioniert – praktisch auf Knopfdruck, sobald der Laser eingeschaltet wurde“, beschreibt van Loock, Professor für Theorie der Quantenoptik und Quanteninformation, den Versuch. Erreicht wurde diese kontinuierliche Verschränkung durch sogenanntes gequetschtes Licht, das im Phasenraum des Lichtfeldes die Form einer Ellipse annimmt. Ist die Verschränkung erzeugt, kann ein drittes Lichtfeld beim Sender angeheftet werden. Von dort können dann im Prinzip beliebige und beliebig viele Zustände an den Empfänger übertragen werden. „In unserem Experiment waren es genau vier ausreichend repräsentative Testzustände, die unter Benutzung der Verschränkung von Alice übermittelt wurden und bei Bob entsprechende Zustände erzeugt haben. Dank der kontinuierlichen Verschränkung ist es möglich, dass die photonischen Qubits deterministisch, also bei jedem Versuch, zu Bob übertragen werden“, ergänzt van Loock.

Frühere Experimente zur optischen Teleportation waren unterschiedlich angelegt und bis heute inkompatibel. Von physiktheoretischer Seite wurde zwar angenommen, dass die beiden unterschiedlichen Ansätze, die diskrete und die kontinuierliche Welt, zu verbinden sind. Dass es nun im Experiment mit der Hybridtechnik tatsächlich gelungen ist, stellt einen technologischen Durchbruch dar. „Jetzt nähern sich die beiden Welten an“, so van Loock.
( Quelle: idw. Veröffentlichung: Shuntaro Takeda et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 15. August 2013. DOI: 10.1038/nature12366)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Frühreife Wunderkinder

Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war
Carl Friedrich Gauß verfasste einen Teil der Untersuchungen aus seinem späteren berühmten Werk »Disquisitiones arithmeticae« als er noch Schüler war

Frühreife ist weniger selten, als man im allgemeinen anzunehmen geneigt ist. Erst die Besonderheit des Falls entscheidet über die Zugehörigkeit zum Wunder.

Ein höchst erstaunliches Phänomen früh erwachter Fähigkeiten war das Lübecker Wunderkind Christian Heinrich Heineken, das am 6. Februar 1721 geboren wurde. Schon als es zehn Monate zählte, kannte das Kind alle Gegenstände seiner Umgebung und wusste sie zu benennen. Es begann unter Anleitung seines Lehrers im fünfzehnten Monat das Studium der Weltgeschichte. Noch vor dem vollendeten dritten Lebensjahr kannte das Kind die dänische Geschichte, lernte bald darauf auch lateinisch und französisch sprechen, starb aber schon im fünften Lebensjahr. Frühreife Wunderkinder weiterlesen

Der Anfang des Lebens

Nach der Entstehung der Erde bildeten sich im Ur-Ozean aus einzelnen Molekülen nach und nach komplexe genetische Informationen. Physiker haben nun gezeigt, wie ein einfacher Temperaturgradient diesen Prozess in Gang gesetzt haben könnte.

Alles Leben fängt einmal klein an. So war es schon zu Beginn unseres Planeten, als sich aus einzelnen Atomen und kleinen Molekülen langsam komplexe Strukturen entwickeln konnten. Die wichtigste Verbindung war damals vermutlich die Ribonukleinsäure (RNA). Dieses lange Polymer kann ähnlich einem Enzym erste biochemische Reaktionen und seine eigene Synthese katalysieren. Zugleich ist es in der Lage, wie die erst später entstandene DNA genetische Informationen zu speichern.

Noch ist aber unklar, wie die allerersten RNA-Polymere entstanden sind. Die erste RNA-Struktur, welche RNA vervielfältigen kann wird auf eine Länge von mindestens 200 RNA-Bausteinen (Nukleotide) geschätzt, die sich ohne Katalysatoren zusammengesetzt haben müssen. Bisher konnten Wissenschaftler im Reagenzglas unter urzeitlichen Bedingungen aber nur Ketten von etwa 20 Nukleotiden bilden.

Gesteinspore als Mini-Labor

LMU-Physiker um Professor Dieter Braun und Professor Ulrich Gerland, die beide dem Exzellenzcluster „Nanosystems InitativeMunich” (NIM) angehören, haben nun gezeigt, wie die Physik das Problem der zu kurzen Polymere gelöst haben könnte – und sind damit dem Geheimnis über den Ursprung des Lebens ein gutes Stück näher gekommen.

Die Forscher entwickelten zunächst ein theoretisches Modell. Hiermit konnten sie zeigen, dass ein einfaches Temperaturgefälle ausreicht, um die nötigen Bausteine aufzukonzentrieren und selektiv die Bildung von langen Polymeren zu ermöglichen. Dabei gingen sie von einem realistischen Urzeit-Szenario aus: Eine mit Meerwasser gefüllte Gesteinspore liegt in der Nähe einer Wärmequelle, wie zum Beispiel einer heißen Tiefseequelle. Auf diese Weise ist die zugewandte Seite der Pore deutlich wärmer als die andere. Das so entstandene Temperaturgefälle erzeugt eine kreisförmige Bewegung der Flüssigkeit zwischen der heißen und der kalten Seite. Zusätzlich drückt es die darin enthaltenen Biomoleküle zur kalten Seite durch einen Effekt, der Thermophorese genannt wird.

„Die Bewegung der Flüssigkeit und die Thermophoresekombinieren sich zu einer thermalen Falle, dielange Polymere besser akkumuliert als kurzeund somit ein chemisches Ungleichgewicht bewirkt“, erklärt Christof Mast, Erstautor der Studie. „Da die Polymerisierung der Ketten allerdings auch von ihrer lokalen Konzentration abhängt, erhöht die Falle die Wahrscheinlichkeit, dass diese langen Polymere immer länger werden. Beide Effekte verstärken sich überexponenziell.“

Dem Urozean abgeschaut

Dieses Modell konnten die Münchner Physiker auch durch Experimente belegen: Dabei stellten sie die Pore in Form einer feinen Glaskapillare nach und sorgten für einen Temperaturgradienten von zehn Kelvin. Dem Meerwasser entsprach eine einfache Salzlösung. Statt RNA-Nukleotiden setzten siekurze DNA-Abschnitte als Bausteine ein, die reversibel miteinander polymerisieren können. DNA anstelle von RNA wurde verwendet, weil entsprechend der langen Evolutionsdauer im Urozean die Bildung von ausreichend langen RNA-Polymeren selbst unter optimalen Laborbedingungen hunderte Jahre dauern würde. Da sich die Polymerisation von RNA und der Versuchs-DNA jedoch prinzipiell nicht voneinander unterscheiden, bestätigte dieser Versuchsansatz das theoretische Modell im gleichen Maße.

„Die Physik hinter einem einfachen Temperaturgradient in einer Pore reicht also aus, auch die Polymerisation von sehr langen RNA Polymeren zu ermöglichen“, fasst Professor Dieter Braun die Ergebnisse zusammen. „Durch diese Forschungsarbeit ist ein wichtiger Zwischenschritt für den Ursprung des Lebens erstmalig demonstriert.“ (Quelle: idw)

Publikation:
Escalation of Polymerization in a Thermal Gradient.Christof B. Mast, SeverinSchink, Ulrich Gerland and Dieter Braun. PNAS online 30. April 2013

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Physikprofessor Zeilinger schließt letztes Schlupfloch der spukhaften Fernwirkung

Ein Team um Anton Zeilinger, Professor für Experimentalphysik der Universität Wien und Direktor des Instituts für Quantenoptik und Quanteninformation (IQOQI) der ÖAW, hat einen Versuch mit Photonen durchgeführt, bei dem nun ein wichtiges “Schlupfloch” geschlossen werden konnte.

Wenn wir einen Gegenstand beobachten, dann gehen wir davon aus, dass einerseits seine Eigenschaften schon vor der Beobachtung eindeutig feststehen und dass andererseits diese Eigenschaften unabhängig sind vom Zustand anderer, weit entfernter Objekte. Für Gegenstände unseres Alltags ist dem auch so. Für Quantenobjekte hingegen treffen diese scheinbar selbstverständlichen Annahmen nicht ohne weiteres zu. In den vergangenen 30 Jahren haben zahlreiche Experimente gezeigt, dass das Verhalten von Quantenteilchen – wie Atome, Elektronen oder Photonen – in klarem Widerspruch mit obiger Wahrnehmung stehen kann. Jedoch haben diese Experimente nie über alle Zweifel erhabene Antworten geliefert. Stets war es im Prinzip möglich, dass die beobachteten Teilchen eine Schwäche des Experiments “ausgenützt” hatten. Ein Team um Physiker Anton Zeilinger hat nun einen Versuch mit Photonen durchgeführt und dabei ein wichtiges “Schlupfloch” geschlossen. Die ForscherInnen haben damit den bisher vollständigsten experimentellen Nachweis erbracht, dass und wie die Quantenwelt unserer Alltagserfahrung widerspricht.

Die Quantenphysik liefert ein extrem präzises und fundamentales Werkzeug, um die Welt um uns bis in kleinste Details zu verstehen. Sie ist aber auch Grundlage für die moderne Hochtechnologie: Halbleiter (und damit Computer), Laser, Magnetresonanztomographen und andere Geräte basieren auf quantenphysikalischen Effekten. Dies kann jedoch nicht darüber hinwegtäuschen, dass nach mehr als einem Jahrhundert intensiver Forschung fundamentale Aspekte der Quantentheorie noch nicht vollkommen verstanden sind. Auch heute noch werden aus Laboratorien weltweit – jeder Intuition widersprechende Ergebnisse – gemeldet, die jedoch im Rahmen der Quantentheorie erklärt werden können.

Dem Rätsel der Quantenverschränkung auf der Spur

Die Wiener PhysikerInnen berichten nun aber nicht von einem neuen Effekt, sondern sind einem der grundlegendsten Phänomene der Quantenphysik, der sogenannten “Verschränkung”, tiefer auf den Grund gegangen. Die Konsequenzen der Quantenverschränkung sind verblüffend: Wenn man ein Quantenobjekt misst, das mit einem anderen verschränkt ist, dann, so sagt die Quantentheorie, ist der Zustand eines Teilchens von der Messung, die an dem anderen durchgeführt wird, abhängig. Dies ist auch der Fall, wenn die beiden Teilchen so weit voneinander entfernt sind, dass sie selbst im Prinzip nicht miteinander kommunizieren können (die Kommunikationsgeschwindigkeit ist grundlegend durch die Lichtgeschwindigkeit beschränkt). Eine große Aufgabe ist es, die Vorhersage der gegenseitigen Beeinflussung verschränkter Quantenteilchen in realen Experimenten zu testen.

Auf dem Weg zu einer abschließenden Antwort

Anton Zeilinger und den jungen WissenschafterInnen Marissa Giustina, Alexandra Mech, Rupert Ursin, Sven Ramelow und Bernhard Wittmann ist in einer internationalen Kooperation mit dem National Institute of Standards and Technology (USA), der Physikalisch-Technischen Bundesanstalt (Deutschland) und dem Max-Planck-Institut für Quantenoptik (Deutschland) ein wichtiger Schritt gelungen, um einen endgültigen experimentellen Beweis zu erbringen, dass Quantenteilchen in der Tat mehr können als die klassische Physik ihnen erlaubt. Technologische Verbesserungen gemeinsam mit einem geeigneten Aufnahmeprotokoll ermöglichten den Forschenden, verschränkte Photonen mit einer bisher nicht dagewesenen Effizienz zu detektieren. “Die erzeugten Photonen können sich nicht mehr davor drücken, gemessen zu werden”, bringt es Zeilinger auf den Punkt.

Diese engmaschige Überwachung der Photonen ist wichtig, weil damit ein wesentliches “Schlupfloch” geschlossen wird. Bei bisherigen Experimenten dieser Art blieb stets die Möglichkeit offen, dass die gemessenen Lichtteilchen zwar die Gesetze der klassischen Physik verletzt hatten, dies aber nicht der Fall gewesen wäre, wenn alle im Experiment involvierten Teilchen hätten gemessen werden können. Diese Möglichkeit wird in dem neuen Experiment ausgeschlossen. “Viele Wissenschaftler haben sich bis jetzt gescheut, Experimente mit Photonen durchzuführen, weil diese zu einfach verloren gehen – genau dieses Problem haben wir jetzt im Griff”, erklärt Marissa Giustina, Erstautorin der aktuellen Publikation.

Noch ein Schritt zum krönenden Abschluss

Mit dem neuen Experiment von Marissa Guistina und ihren KollegInnen sind Photonen die ersten Quantenteilchen, für die – zwar nicht in einem einzigen, aber – in mehreren separaten Experimenten jede mögliche Hintertür geschlossen wurde. Die Krönung wäre jedoch noch ein einziges Experiment, in welchem den Photonen durch Mittel der klassischen Physik sämtliche mögliche Wege versperrt werden würde. Ein solches Experiment wäre auch für eine wichtige praktische Anwendung von grundlegender Bedeutung: Die sogenannte Quantenkryptographie beruht auf quantenmechanischen Prinzipien und gilt als absolut abhörsicher. Ein Lauschangriff ist aber im Prinzip möglich, solange “Schlupflöcher” bestehen. Nur wenn diese geschlossen sind, ist ein vollkommen sicherer Austausch von Nachrichten möglich.

“Ein Experiment ohne jedes Schlupfloch”, sagt Zeilinger, “ist eine große Herausforderung. Daran arbeiten einige Gruppen weltweit.” Diese Experimente werden nicht nur mit Photonen versucht, sondern auch mit Atomen, Elektronen und anderen Systemen, die quantenmechanisches Verhalten an den Tag legen. Das Experiment der Wiener PhysikerInnen zeigt aber deutlich das Potenzial, das in Photonen steckt, auf. Dank diesen Fortschritten gehen dem Photon die “Schlupfwinkel” aus und die PhysikerInnen sind näher denn je an einem Experiment, das belegt, dass die Quantenphysik wirklich so sehr gegen unsere Intuition und Alltagserfahrung verstößt, wie dies die Forschungsarbeiten der vergangenen Jahrzehnte nahelegen. (Quelle: idw).

Publikation
Bell violation using entangled photons without the fair-sampling assumption: Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittmann, Johannes Kofler, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, Anton Zeilinger. In: Nature (Advance Online Publication/AOP). April 14, 2013. DOI: 10.1038/nature12012

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit