Schlagwort-Archive: Raumzeit

Neues Buch – Einsteins Relativitätstheorie ganz ohne Mathematik

Der Herausgeber Klaus-Dieter Sedlacek stellt seine neue Buchveröffentlichung über ‘Spezielle und allgemeine Relativitätstheorie’ vor. Es geht unter Anderem auch um das Relativitätsprinzip, krumme Lichtstrahlen und kosmologische Folgerungen. Neues Buch — Einsteins Relativitätstheorie ganz ohne Mathematik weiterlesen

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps:

 

Wie die letzte große Lücke der Physik geschlossen werden kann

Sie ist die letzte große Lücke im Gebäude der Physik: eine Theorie, die Quantenphysik mit Einsteins allgemeiner Relativitätstheorie vereint. Claus Kiefer von der Universität Köln zeigt in der April-Ausgabe von Spektrum der Wisenschaft, wie Forscher das Problem lösen wollen, die Mikrowelt mit der Schwerkraft zu verschmelzen.

Im Januar 1957 trafen sich Forscher an der University of North Carolina in Chapel Hill zu einer aufregenden Konferenz. Fast alle bedeutenden Gravitationsphysiker jener Zeit hatten sich versammelt. Die eine Hälfte der Tagung befasste sich mit Einsteins Allgemeiner Relativitätstheorie, der modernen Theorie der Gravitation, die darin als Geometrie von Raum und Zeit gedeutet wird. Sie beschreibt das Große und Ganze: von unserer direkten Umgebung über Sonnensystem, Sterne und Galaxien bis hin zum Universum.

Die zweite Hälfte der Tagung befasste sich mit Verallgemeinerungen von Einsteins Theoriegebäude unter Einbezug der Quantentheorie. Eine solche erweiterte Theorie nennen Fachleute Quantengravitation. Sie vereinigt Mikro- und Makrokosmos, da die Quantentheorie hauptsächlich für die Beschreibung von Molekülen, Atomen und Elementarteilchen zuständig ist. Wie der Kölner Physikprofessor Claus Kiefer in der April-Ausgabe von Spektrum der Wissenschaft berichtet, konnte bisher trotz jahrzehntelanger Bemühungen noch keine allgemein anerkannte Theorie der Quantengravitation entwickelt worden. Allerdings existiert dafür eine Reihe mehr oder weniger aussichtsreicher Kandidaten. Wie die letzte große Lücke der Physik geschlossen werden kann weiterlesen

Existiert doch keine Dunkle Materie?

ZwerggalaxienDas kosmologische Standardmodell auf dem Prüfstand
Die meisten Astrophysiker und Kosmologen gehen davon aus, dass die so genannte Dunkle Materie den weitaus größten Teil der Materie im Universum stellt. “Normale” Materie, aus der Galaxien ebenso wie Planeten und auch Menschen bestehen, wäre demzufolge relativ selten. Doch es gibt ein Problem: Bislang konnte keines der zahlreichen Experimente, die weltweit nach Dunkle-Materie-Teilchen fahnden, diese auch nachweisen. Existiert die Dunkle Materie vielleicht doch nicht?

In der August-Ausgabe von Spektrum der Wissenschaft berichten die Astrophysiker Pavel Kroupa und Marcel Pawlowski von der Universität Bonn über ihre Forschung an Zwerggalaxien in unserer kosmischen Nachbarschaft. Solche kleinen Galaxien sollten sich gemäß dem kosmologischen Standardmodell, in dem die Dunkle Materie eine der zentralen Rollen spielt, inmitten großräumiger Ansammlungen von Dunkler Materie bilden.
Doch nun ist Kroupas Team, das seine Arbeit jüngst im angesehenen Wissenschaftsjournal “Astronomy and Astrophysics” publiziert hat, auf eine ganze Reihe von Widersprüchen gestoßen. Das Standardmodell sagt beispielsweise voraus, dass die unsere Milchstraße umkreisenden kleinen Satellitengalaxien rein zufällig in deren Umgebung verteilt sein sollten. Stattdessen bilden sie aber eine Art Scheibe, ihre Anordnung folgt also einer klaren Struktur. Auch sagen Simulationen weit mehr Satellitengalaxien vorher, als tatsächlich gefunden wurden. Und schließlich sollten die Satellitengalaxien dem Modell zufolge umso leuchtkräftiger sein, je mehr Dunkle Materie sie enthalten – dies bestätigen die Beobachtungen aber ebenfalls nicht. Im Rahmen der populären Dunklen-Materie Hypothese scheint es keine Lösungen zu diesen Problemen zu geben.
Für die Existenz der rätselhaften Materieform führen die Astronomen zwar gute Gründe an. Beobachtungen von Scheibengalaxien belegen, dass Sterne in deren Außenbereichen schneller um das Zentrum der Galaxien rotieren, als es das newtonsche Gravitationsgesetz vorhersagt. Infolge der dabei entstehenden Fliehkräfte müssten die Galaxien sogar in kürzester Zeit auseinanderfliegen. Erklären lässt sich dieses Rätsel bislang nur, wenn man annimmt, dass die Sternsysteme über wesentlich mehr Masse verfügen als wir beobachten. Diese Masse soll darum von Teilchen beigesteuert werden, die sich praktisch nur durch ihre Schwerkraftwirkung bemerkbar machen, aber kein Licht aussenden – weshalb sie als “dunkle” Materie bezeichnet werden.
Doch mit der Annahme dunkler Materie gerät man nun offenbar an anderer Stelle in große Widersprüche. Gibt es denn eine Alternative? Kroupa und Pawlowski zufolgen richten immer mehr Forscher ihre Hoffnungen auf die so genannte Modifizierte Newtonsche Dynamik (MOND) und ihre Varianten. Zwar ist das Newtonsche Gravitationsgesetz in gewissen Bereichen hervorragend bestätigt. Doch auf der Skala ganzer Galaxien konnte es noch nicht überprüft werden. Möglicherweise, so die Autoren, ist die Schwerkraft auf einer solchen Skala um ein weniges stärker als bislang gedacht. Denn dann ließe sich auch ohne die Annahme Dunkler Materie erklären, warum sich Sterne in den Außenbezirken von Galaxien so schnell bewegen.
“Der Ursprung dieser winzigen Abweichung könnte nach unserer Sicht möglicherweise in quantenmechanischen Prozessen liegen, die sich in der Raumzeit abspielen”, schreiben die Autoren, “oder in der Existenz zusätzlicher, noch unbekannter Felder.” Diese könnten die von Massen verursachten Störungen der Raumzeit weiter tragen, als dies die herkömmliche Theorie voraussagt. Aber auch andere Erklärungen seien denkbar.
Neue Erkenntnisse über die Satellitengalaxien der Milchstraße und anderer Galaxien in der kosmischen Nachbarschaft erhoffen sich die Forscher nun von der GAIA-Satellitenmission der Europäischen Weltraumagentur und vom australischen “Stromlo Milky Way Satellites Survey”. Sie könnten für spannende Erkenntnisse sorgen, schreiben die Bonner Forscher: “Noch ist nichts entschieden, eins aber ist schon jetzt sicher: Die wahre Geschichte des Universums muss erst noch geschrieben werden.”
Quelle: Spektrum der Wissenschaft, August 2010

Abbildung oben
Zwerggalaxien

In dem langen Gezeitenarm (rechts oben im Bild) der miteinander verschmelzenden Mäusegalaxien bilden sich kleine so genannte Gezeitenzwerggalaxien. Der Mechanismus ihrer Entstehung könnte auch vollständig beschreiben, wie sich Satellitengalaxien um unsere Milchsstraße bildete. Dunkle Materie, einer der Stützpfeiler des kosmologischen Standardmodells, wäre für die Erklärung ihrer Existenz dann überflüssig.

© NASA / ESA, H. Ford (JHU), G. Illingworth (UCSC / LO ), M. Clampin (STScI), G. Hartig (STScI) und das ACS Science Team]

Schwarze Löcher im All: Reise mit Wiederkehr?

Video: Schwarze Löcher – Materiefresser im All

Nackt trotz kosmischer Zensur? Wenn ein Schwarzes Loch die Hüllen fallen lässt

Ein Schwarzes Loch – singulärer Endpunkt eines massereichen Sterns – wird nach gängiger Meinung umhüllt vom Ereignishorizont, der die Grenze herkömmlicher Physik markiert. Aber muss das so sein?

Die moderne Naturwissenschaft hat viele höchst ungewohnte Ideen hervorgebracht, aber kaum eine ist so seltsam wie das Schicksal eines großen Sterns. Nachdem er im Lauf von Millionen Jahren seinen Brennstoff verbraucht hat, kann er seiner eigenen Schwere nicht mehr widerstehen und beginnt zu kollabieren. Bei einem genügend massereichen Himmelskörper überwindet seine Gravitation letztlich alle Kräfte, die den Kollaps aufhalten könnten, und ein Millionen Kilometer großes Objekt schrumpft praktisch auf einen Punkt zusammen.

Die meisten Physiker und Astronomen glauben, das Resultat sei ein Schwarzes Loch – ein Körper, dessen ungeheure Schwerkraft alles in seiner unmittelbaren Nachbarschaft verschlingt. Dieses Monstrum besteht aus zwei Teilen. In seinem Zentrum liegt eine Singularität – der unendlich kleine Punkt, in dem sich die gesamte Materie des Sterns zusammenballt. Rundherum liegt ein Gebiet, dessen Rand Ereignishorizont heißt und aus dem es kein Entkommen gibt. Sobald etwas in diese Zone eindringt, verschwindet es auf Nimmerwiedersehen. Falls das hineinstürzende Objekt Licht aussendet, wird auch dies von der Singularität eingefangen; ein äußerer Beobachter sieht es niemals wieder.

Aber ist dieses Bild wirklich wahr? Pankaj S. Joshi, Physikprofessor am Tata Institute of Fundamental Research in Mumbai (Indien) und Spezialist für Gravitation und Kosmologie, hat seine Zweifel, die er in der Dezember-Ausgabe von Spektrum der Wissenschaft begründet. Aus den bekannten physikalischen Gesetzen, so Joshi, geht zwar hervor, dass eine Singularität entsteht, aber über den Ereignishorizont sind die Aussagen verschwommen. Den meisten Physikern kommt der Horizont als wissenschaftliches Feigenblatt sehr gelegen, denn sie müssen erst herausfinden, was bei einer Singularität genau vor sich geht: Materie wird zermalmt, aber was wird dann aus ihr? Indem der Ereignishorizont die Singularität versteckt, kaschiert er diese Wissenslücke durch eine so genannte “kosmische Zensur”: Was auch immer in einem Schwarzen Loch geschehen mag – es bleibt drin.

Doch neue Forschungen ziehen diese Arbeitshypothese zunehmend in Zweifel. In manchen Kollaps-Szenarien bildet sich kein Ereignishorizont, und die Singularität bleibt sichtbar oder, wie Physiker sagen, nackt. Sowohl Materie als auch Strahlung können hineinfallen und wieder herauskommen. Während der Besuch der Singularität in einem Schwarzen Loch eine Reise ohne Wiederkehr wäre, könnte man sich im Prinzip einer nackten Singularität beliebig weit nähern und zurückkehren, um davon zu berichten.

Falls nackte Singularitäten existierten, wären die Folgen enorm; sie würden fast jeden Aspekt der Astro- und Grundlagenphysik berühren. Wenn es keine Horizonte gibt, können mysteriöse Vorgänge in der Nähe der Singularitäten die Außenwelt beeinflussen. Vielleicht erklären nackte Singularitäten gewisse rätselhafte astronomische Phänomene bei hohen Energien, und vielleicht bieten sie die Möglichkeit, das Gewebe der Raumzeit bei kleinsten Größenordnungen zu erforschen. Quelle: Spektrum der Wissenschaft, Dezember 2009

Dunkle Energie: Welches Schicksal erwartet unser Universum?

Geheimnisse des Universums: Dunkle Energie

Umstrittene Dunkle Energie

Gibt es eine Alternative, die beschleunigte Expansion des Weltalls zu erklären?
Das Universum scheint sich beschleunigt auszudehnen. Ursache dafür soll eine seltsame neue Energieform sein, Fachleute nennen sie die Dunkle Energie. Das Problem: Niemand weiß wirklich, was diese Dunkle Energie wirklich ist. Bisher suchen sie jedenfalls vergeblich nach Erklärungen für das rätselhafte Verhalten des Kosmos.

Kein Wunder, dass immer wieder alternative Modelle entwickelt werden, um vielleicht ohne exotischen Energieformen auszukommen. Wie zwei Kosmologen von der Oxford University im aktuellen August-Heft von “Spektrum der Wissenschaft” in der Titelgeschichte beschreiben, könnte ein solches Alternativmodell so aussehen: Falls wir kosmisch gesehen inmitten einer Region leben, in der weniger Sterne und andere Materie zu finden sind als anderswo, dann würde sich der astronomische Befund vom gleichmäßig beschleunigten Universum anders darstellen. Dann variiert nämlich die kosmische Expansionsrate mit dem Ort – und das würde den Astronomen eine kosmische Beschleunigung nur vorspiegeln, ohne es wirklich zu sein.

Könnte es also sein, dass wir im Universum nicht in einer gleich verteilten Ansammlung von Sternen und Galaxien leben, wie das kosmische Standardmodell annimmt? Eine riesige Leere um die Erde und ihr Milchstraßensystem herum kommt den meisten Kosmologen deshalb auch sehr unwahrscheinlich vor, doch einige Forscher ziehen sie der mysteriösen Dunklen Energie vor. Was spricht dafür? Was spricht dagegen?

Die Entdeckung des beschleunigten Universums kündigte sich vor vor elf Jahren an. Aus einer winzigen Abweichung in der Helligkeit explodierender Sterne folgerten die Astronomen, sie hätten keine Ahnung, woraus über 70 Prozent des Kosmos bestehen. Sie konnten nur feststellen, dass der Raum anscheinend von einer ganz unvergleichlichen Substanz erfüllt wird, welche die Expansion des Universums nicht bremst, sondern vorantreibt. Diese Substanz erhielt damals den Namen Dunkle Energie.

Inzwischen ist ein Jahrzehnt vergangen, und die Dunkle Energie gibt noch immer so viele Rätsel auf, dass einige Kosmologen die grundlegenden Postulate, aus denen ihre Existenz gefolgert wurde, in Zweifel ziehen. Eines dieser Postulate ist das kopernikanische Prinzip. Ihm zufolge nimmt die Erde keinen zentralen oder sonst wie ausgezeichneten Platz im All ein. Wenn wir dieses Grundprinzip preisgeben, bietet sich eine überraschend einfache Erklärung für die neuen Beobachtungen an.

Wir haben uns längst an die Idee gewöhnt, dass unser Planet nur ein winziger Fleck ist, der irgendwo am Rand einer durchschnittlichen Galaxie einen typischen Stern umkreist. Nichts scheint unseren Ort inmitten von Milliarden Galaxien, die sich bis an unseren kosmischen Horizont erstrecken, besonders auszuzeichnen. Doch woher nehmen wir diese Bescheidenheit? Und wie könnten wir herausfinden, ob wir nicht doch einen speziellen Platz einnehmen? Meist drücken sich die Astronomen um diese Fragen und nehmen an, unsere Durchschnittlichkeit sei offensichtlich genug. Die Idee, wir könnten tatsächlich einen besonderen Ort im Universum bewohnen, ist für viele undenkbar. Dennoch ziehen einige Physiker dies seit Kurzem in Betracht.

Zugegeben: Die Annahme, wir seien kosmologisch unbedeutend, erklärt viel. Mit ihrer Hilfe können wir von unserer kosmischen Nachbarschaft auf das Universum im Großen und Ganzen schließen. Alle gängigen Modelle des Universums beruhen auf dem kosmologischen Prinzip. Die beschleunigte Expansion war also die große Überraschung, mit der die aktuelle Revolution in der Kosmologie begann.

Angenommen, die Expansion verlangsamt sich überall, weil die Materie an der Raumzeit zieht und sie bremst. Nehmen wir ferner an, dass wir in einer gigantischen kosmischen Leere leben – in einem Gebiet, das zwar nicht völlig leer gefegt ist, wo aber die mittlere Materiedichte nur etwa halb so groß ist wie anderswo. Je leerer eine Raumregion ist, desto weniger Materie bremst dort die räumliche Expansion, und entsprechend höher ist die Expansionsgeschwindigkeit innerhalb des Leerraums. Am höchsten ist sie in der Mitte; zum Rand hin, wo sich die höhere Dichte des Außenraums bemerkbar macht, nimmt sie ab. Zu jedem Zeitpunkt expandieren verschiedene Raumpartien unterschiedlich schnell – wie der ungleichmäßig aufgeblasene Luftballon.

Wie ausgefallen ist diese Idee einer monströsen Abnormität? Auf den ersten Blick sehr. Sie scheint in eklatantem Widerspruch zur kosmischen Hintergrundstrahlung zu stehen, die bis auf Hunderttausendstel genau gleichförmig ist, ganz zu schweigen von der im Großen und Ganzen ebenmäßigen Verteilung der Galaxien. Doch bei näherer Betrachtung muten diese Indizien weniger zwingend an. Die Gleichförmigkeit der Reststrahlung erfordert nur, dass das Universum in jeder Richtung nahezu gleich aussieht. Wenn eine Leere ungefähr kugelförmig ist und wir einigermaßen nahe ihrem Zentrum sitzen, muss sie nicht unbedingt den Beobachtungen widersprechen.

In kommenden Jahren werden Himmelsbeobachtungen zwischen beiden Erklärungen entscheiden.
Quelle: Spektrum der Wissenschaft, August 2009

Elektronen auf frischer Tat beim Tunneln ertappt

Was sich wie ein Delikt anhört, nämlich das »Tunneln« ist ein ganz normaler quantenphysikalischer Vorgang. Erstmals ist es nun gelungen Elektronen live zu beobachten, wie sie die Atome verließen, von denen sie gefangen gehalten wurden (Heraustunneln).

Der Tunneleffekt erklärt unter anderem, wie es zur Kernfusion in der Sonne kommt oder auch die Funktionsweise des Raster-Tunnelmikroskops, mit dem man bis zu 100-Millionenfach vergrößern kann. Der Fernsehprofessor der Physik, Harald Lesch, demonstriert in der Bildungssendung Alpha Centauri eindrucksvoll, was es mit diesem Phänomen »Tunneleffekt« auf sich hat. Zu Beginn schwebt er durch die Tafelwand der Fernsehkulisse, so wie ein Geist, den keine Barriere von einem Spuk abhalten kann. Gleich darauf nimmt er wieder eine feste Gestalt an und erklärt, dass der Zuschauer seine Vorführung mit Vorsicht genießen soll. Mit dieser Warnung hat er wohl recht. Denn wenn ein Zuschauer es ihm gleich tun wollte, würde er nur Beulen und blaue Flecke davontragen. Die Wahrscheinlichkeit, dass Menschen durch Wände gehen können, ist verschwindend gering. Nur mikroskopischen Quantenobjekten wie Elektronen oder Protonen gelingt dieses Kunststück mit deutlich höherer Wahrscheinlichkeit.

Man kann den Effekt am Beispiel einer Kugel erklären, die ein Mensch mit Schwung einen Hügel hochrollen lässt. Wenn die Energie, welche der Kugel mitgegeben wird, nicht genügt, rollt die Kugel immer wieder zurück, anstatt die Kuppe zu überwinden und ins nächste Tal zu gelangen. In der Quantenphysik besteht dagegen für Quantenobjekte die Möglichkeit den Potentialwall, wie der Hügel genannt wird, zu durchtunneln. In einem Augenblick befindet sich das Quantenobjekt noch vor dem Potentialwall und im nächsten Augenblick schon dahinter im nächsten Tal. Es ist ein sprunghafter Übergang ohne Zwischenzustände.

Heraustunneln von Elektronen aus Atomen

Noch niemand konnte bisher das Quanten-Tunneln in Echtzeit beobachten. Dieses Kunststück ist nun Physikern des Max-Planck-Instituts für Quantenoptik gelungen. Sie haben das Heraustunneln von Elektronen aus einem Atom erstmals in live verfolgt. Die elektrischen Kräfte innerhalb eines Atoms halten normalerweise jene Elektronen fest, die sich in seinem Inneren aufhalten. Die Kräfte bilden den Potentialwall, den es zu überwinden gilt, wenn sich ein Elektron aus dem Atom herauslösen soll.

Der Trick der Max-Planck-Physiker bestand darin, mit Hilfe von Attosekunden-Laserblitzen die Elektronen näher an den Rand ihres Atomgefängnisses zu bringen. Eine Attosekunde ist milliardster Teil einer milliardstel Sekunde und damit unvorstellbar kurz. Der Laserblitz vergrößert die Wahrscheinlichkeit, dass die Elektronen aus ihrem Atomgefängnis entkommen können. Und tatsächlich, nach einem zweiten Laserblitz, der die Breite des Potentialwalls ein wenig verringerte, nutzen die Elektronen die Gelegenheit, um herauszutunneln.

Atome, denen ein Elektron fehlt, sind positiv geladen. Als die Physiker im Anschluss an das Experiment die positiv geladenen Atome zählten, waren sie nicht schlecht überrascht, dass zahlreiche Elektronen entkommen waren. Noch interessanter ist aber die Feststellung, dass der Zeitbedarf für das Heraustunneln praktisch kaum messbar ist, sodass die Physiker annehmen, der Tunnelprozess benötige überhaupt keine Zeit. Die Erkenntnisse sollen helfen, bessere Röntgenlaser für die medizinische Therapie zu entwickeln.

Tunneleffekt und Hirnforschung

In der Hirnforschung kann das quantenmechanische Tunneln möglicherweise eine Erklärung für die Geschwindigkeit von bewussten Denkprozessen liefern. Die einzelnen Neuronen des Gehirns werden durch Schnittstellen verbunden, die Synapsen heißen. Diese besitzen einen winzigen Spalt, der überwunden werden muss, wenn ein Signal von Neuron zu Neuron übertragen werden soll. Die herkömmliche Theorie besagt nun, dass zur Übertragung von Signalen an den Synapsen, das ursprünglich elektrische Signal in ein chemisches umgewandelt werden muss. Die Theorie kann aber nicht die Geschwindigkeit von bewussten Denkprozessen erklären. Wie jeder weiß, der schon mal einen Akku am Stromnetz geladen hat, benötigt die Umwandlung von elektrischer Energie in chemische erhebliche Zeit. Würde die herkömmliche Theorie stimmen, müsste Denken schneckengleich langsam sein. Weil das der Erfahrung widerspricht, nehmen einige Hirnforscher an, dass der extrem schnelle quantenmechanische Tunneleffekt zur Überwindung des synaptischen Spalts eine Rolle spielt. Sollte man das experimentell bestätigen können, hätte man gleichzeitig eine Verbindung von Bewusstsein zur Welt der Quanten mit all ihren seltsamen Phänomenen gefunden. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs mit dem Titel »Unsterbliches Bewusstsein, Raumzeit-Phänomene, Beweise und Visionen« in dem aufgrund quantenphysikalischer Phänomene die Existenz von Bewusstsein auch außerhalb des Gehirns nachgewiesen wird.

Elektronen an zwei Orten gleichzeitig

Video: Die Quantenphysik

In einer Art molekularem Doppelspaltexperiment haben Wissenschaftler des Fritz-Haber-Instituts (FHI) der Max-Planck Gesellschaft in Zusammenarbeit mit Forschern vom California Institute of Technology in Pasadena/USA erstmals an Elektronen nachgewiesen, dass diese gleichzeitig Eigenschaften von Welle und Teilchen besitzen und quasi per Knopfdruck zwischen beiden Zuständen hin- und hergeschaltet.

Vor hundert Jahren begann man den in der Naturphilosophie postulierten dualen Charakter der Natur auch auf der Ebene elementarer physikalischer Vorgänge schrittweise zu erkennen. Albert Einstein war der erste, der 1905 diese Konsequenz aus Plancks Quantenhypothese zog. Er ordnete dem eindeutig als elektromagnetische Welle bekannten Photon Teilchencharakter zu. Dies ist die Quintessenz seiner Arbeit zum Photoeffekt. Später war es vor allem deBroglie, der 1926 erkannte, dass alle uns als Teilchen bekannten Bausteine der Natur – Elektronen, Protonen etc. – sich unter bestimmten Bedingungen wie Wellen verhalten.
Die Natur in ihrer Gesamtheit ist also dual; kein einziger ihrer Bestandteile ist nur Teilchen oder Welle. Niels Bohr führte zum Verständnis dieser Tatsache 1923 das Korrespondenz-Prinzip ein, das vereinfacht besagt: Jeder Bestandteil der Natur hat sowohl Teilchen- als auch Wellencharakter und es hängt nur vom Beobachter ab, welchen Charakter er gerade sieht. Anders gesagt: Es hängt vom Experiment ab, welche Eigenschaft – Teilchen oder Welle – man gerade misst. Dieses Prinzip ist als Komplementaritätsprinzip in die Geschichte der Physik eingegangen.

Albert Einstein war diese Abhängigkeit der Natureigenschaften vom Beobachter Zeit seines Lebens suspekt. Er glaubte, es müsse eine vom Beobachter unabhängige Realität geben. Doch die Quantenphysik hat die Tatsache, dass es keine unabhängige Realität zu geben scheint, im Laufe der Jahre einfach als gegeben akzeptiert, ohne sie weiter zu hinterfragen, da alle Experimente sie immer wieder und mit wachsender Genauigkeit bestätigt haben.

Bestes Beispiel ist das Young’sche Doppelspaltexperiment. Bei diesem Doppelspaltexperiment lässt man kohärentes Licht auf eine Blende mit zwei Schlitzen fallen. Auf einem Beobachtungsschirm hinter der Blende zeigt sich dann ein Interferenzmuster aus hellen und dunklen Streifen. Das Experiment kann aber nicht nur mit Licht, sondern auch mit Teilchen wie z. B. Elektronen durchgeführt werden. Schickt man einzelne Elektronen nacheinander durch den offenen Young’schen Doppelspalt, erscheint auf der dahinterstehenden Photoplatte ein streifenförmiges Interferenzmuster, das keinerlei Information über den Weg, den das Elektron genommen hat, enthält. Schließt man jedoch einen der beiden Spalte, so erscheint auf der Photoplatte ein verwaschenes Abbild des jeweils offenen Spaltes, aus dem man den Weg des Elektrons direkt ablesen kann. Eine Kombination aus Streifenmuster und Lagebild ist in diesem Doppelspaltexperiment jedoch nicht möglich, dazu bedarf es eines molekularen Doppelspaltexperiments.

Obwohl jedes Elektron einzeln durch einen der beiden Spalte zu laufen scheint, baut sich am Ende ein wellenartiges Interferenzmuster auf, als ob sich das Elektron beim Durchgang durch den Doppelspalt geteilt hätte, um sich danach wieder zu vereinen. Hält man aber einen Spalt zu oder beobachtet man, durch welchen Spalt das Elektron geht, verhält es sich wie ein ganz normales Teilchen, das sich zu einer bestimmten Zeit nur an einem bestimmten Ort aufhält, nicht aber an beiden gleichzeitig. Je nachdem also, wie man das Experiment ausführt, befindet sich das Elektron entweder an Ort A oder an Ort B oder an beiden gleichzeitig.
Das diese Doppeldeutigkeit erklärende Bohrsche Komplementaritäts-Prinzip fordert aber zumindest, dass man nur eine der beiden Erscheinungsformen zu einer gegebenen Zeit in einem gegebenen Experiment beobachten kann – entweder Welle oder Teilchen, aber nicht beides zugleich. Entweder ist ein System in einem Zustand des wellenartigen “Sowohl-als-auch” oder aber des teilchenartigen “Entweder-oder” in Bezug auf seine Lokalisierung.

In jüngster Zeit hat eine Klasse von Experimenten ergeben, dass diese verschiedenen Erscheinungsformen der Materie ineinander überführbar sind, das heißt, man kann von einer Form in die andere schalten und unter bestimmten Bedingungen wieder zurück. Diese Klasse von Experimenten nennt man Quantenmarker und Quantenradierer. Sie haben in den letzten Jahren an Atomen und Photonen und seit jüngstem auch an Elektronen gezeigt, das es ein Nebeneinander von “Sowohl-als-auch” und “Entweder-oder” für alle Formen der Materie gibt, also eine Grauzone der Komplementarität. Es gibt demzufolge experimentell nachweisbare Situationen, in denen die Materie sowohl als Welle aber auch als Teilchen gleichzeitig in Erscheinung tritt.

Beispiele dafür sind die Atom-Interferometrie, wo dieses Verhalten 1997 erstmalig bei Atomen, d.h. zusammengesetzten Teilchen, gefunden wurde. In der Ausgabe [nature, 29. September 2005] berichten die Berliner Max-Planck-Forscher gemeinsam mit Forschern vom California Institute of Technology in Pasadena/USA nun von molekularen Doppelspaltexperimenten. Diese beruhen darauf, dass sich Moleküle mit identischen und damit spiegelsymmetrischen Atomen wie ein von der Natur aufgebauter mikroskopisch kleiner Doppelspalt verhalten. Dazu gehört Stickstoff, wo sich jedes Elektron – auch die hochlokalisierten inneren Elektronen – an beiden Atomen gleichzeitig aufhält. Ionisiert man nun ein solches Molekül etwa mit weicher Röntgenstrahlung, führt diese Eigenschaft zu einer wellenartig streng gekoppelten Emission eines Elektrons von beiden atomaren Seiten, genauso wie im Doppelspaltexperiment mit Einzelelektronen.

Die Experimente wurden von Mitarbeitern der Arbeitsgruppe “Atomphysik” des FHI an den Synchrotronstrahlungslaboren BESSY in Berlin und HASYLAB bei DESY in Hamburg durchgeführt. Die Messungen mittels einer Multi-Detektoranordnung für kombinierten Elektronen- und Ionen-Nachweis fanden hinter so genannten Undulator-Strahlrohren statt, die weiche Röntgenstrahlung mit hoher Intensität und spektraler Auflösung liefern. Quelle: idw

Wenn sich jedes Elektron an zwei Orten gleichzeitig aufhalten kann, wie im vorletzten Absatz angeführt, dann hat das Folgen für unser Weltbild. Welche Folgen das sind, ist im Sachbuch mit dem Titel  Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen näher beschrieben.

Künstliche Lebewesen aus der Retorte

Die synthetische Biologie ist ein junger Forschungszweig, der sich anschickt, in einer Art zweiter Schöpfung nach vier Milliarden Jahren ein künstliches Lebewesen aus der Retorte zu erschaffen. Forscher wie Tom Knight, Drew Endy und Randy Rettberg (MIT Cambridge, USA) entwerfen nach dem Legoprinzip zunächst modulare biologische Bausteine die sogenannten »BioBricks«. Diese Biobricks erfüllen definierte biologische Aufgaben, analog den elektronischen Schaltkreisen, wie sie in Mikroprozessoren (Computer) zu finden sind.

Biobricks befinden sich in der experimentellen Phase und werden bereits in die »Baupläne des Lebens« von Bakterien eingebaut. In ersten Erfolgen hat die kalifornische Firma LS9 das Darmbakterium Escherichia coli reprogrammiert. Nun erzeugt das Bakterium Biosprit aus Mais-Sirup und Zuckerrohr.

Als Bauplan des Lebens oder DNA bezeichnet man ein in allen Lebewesen vorkommendes Biomolekül, welches die komplette Erbinformation (Genom) trägt. DNA besteht aus zwei parallelen Strängen, die einander schraubenartig umlaufen (Doppelhelix). Die Stränge sind durch Sprossen miteinander verbunden. So eine Sprosse wird als Basenpaar bezeichnet, weil sie aus zwei sich ergänzenden Basen und einer Wasserstoffbrücke gebildet wird. Chemisch gesehen handelt es sich bei der Base um ein Nukleotid, welches zu den vier Gruppen der Biomoleküle gehört. Ein Basenpaar stellt die unterste Informationseinheit der DNA dar und entspricht zwei Bit herkömmlicher Information. Die Abschnitte der DNA, welche die Information über die einzelnen Erbanlagen enthalten, werden Gene genannt. Bei Katzen kann beispielsweise ein Gen das Merkmal kurzer oder langer Schwanz bedeuten, ein anderes Gen braunes oder weißes Haar. Menschen besitzen ca. 25.000 Gene mit 3 Billionen Basenpaaren, ein Bakterium 500 bis 7000 Gene mit 1 – 10 Millionen Basenpaaren.

Video: Craig Venter (in englisch)

Schöpfung oder bekanntes Verfahren?

Einer, dem es kürzlich gelungen ist, das komplette Erbgut eines Bakteriums im Labor synthetisch herzustellen und zusammenzusetzen, ist der US-amerikanische Biochemiker Craig Venter. Venter hatte sich bereits früher einen Namen gemacht, als er im Jahr 2000 das menschliche Genom entschlüsselte. Auch wenn die Synthese von DNA unter den Forschern als allseits bekanntes Verfahren gilt, ist das von Venter erzeugte synthetische Genom mit rund 500.000 Basenpaaren nach seinen Angaben zwanzig Mal größer als alles, was man bisher zusammenhängend produziert hat.

Im nächsten Schritt will Venter das synthetische Genom in eine lebende Bakterienzelle einschleusen. In dieser soll es anstelle des natürlichen Genoms die Kontrolle übernehmen. Dadurch würde er nach seiner Ansicht einen neuen künstlich hergestellten Organismus schaffen. Das wäre ein Durchbruch gegenüber der herkömmlichen Gentechnologie, die nur einzelne Gene verändern kann, aber nicht ganze Gen-Systeme.

Komplette biologische Systeme nach Maß

Noch einen Schritt weiter geht das Zusammenstellen kompletter biologischer Systeme aus Biobricks nach Maß. Die Forscher am Massachusetts Institute for Technology (MIT) haben, um das Ziel zu erreichen, schon mehr als zweitausend Biobricks in einer Datenbank gesammelt. Wie Elektroingenieure ein Schaltbild aus elektronischen Komponenten am Reißbrett zeichnen, wollen die MIT-Zellingenieure nun aus den Genabschnitten der Biobricks komplette Gen-Systeme zusammenstellen. Das so entworfene Genom wird nach Plan produziert und anschließend sollen leere Zellhüllen mit dem künstlichen Erbgut bestückt werden. Das auf diese Weise künstlich geschaffene »Lebewesen« soll dann die geplanten Substanzen produzieren, beispielsweise Biokraftstoffe, Medikamente oder Biokunststoffe.

Kritiker wie Professor André Rosenthal sind allerdings der Ansicht, dass man von der Schaffung künstlichen Lebens noch Jahrhunderte entfernt ist. Rosenthal ist Leiter der Signature Diagnostics AG in Potsdam, die Gen-Tests zur Krebs-Früherkennung erstellt. Auch wenn das Genom synthetisiert werden kann, ist doch die Hülle der Zelle nicht künstlich hergestellt und das ist für ihn entscheidend. Nach seiner Meinung wäre Craig Venters Arbeit nur interessant, wenn er eine künstliche Zelle mit den entsprechenden Zellorganellen im Reagenzglas erzeugen könnte. Wie die Zeitschrift »Bild der Wissenschaft« in ihrer Ausgabe 3/2009 berichtet, gibt es aber bereits Ansätze zur Erschaffung einer kompletten funktionstüchtigen Zelle einschließlich Hülle, wenn auch noch ein langer Weg vor den Forschern liegt. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs »Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen«. In dem Buch wird unter anderem der Zusammenhang zwischen den fundamentalen Bausteinen der Welt und Bewusstsein aufgedeckt.