Schlagwort-Archive: Relativitätstheorie

Neues Buch – Einsteins Relativitätstheorie ganz ohne Mathematik

Der Herausgeber Klaus-Dieter Sedlacek stellt seine neue Buchveröffentlichung über ‘Spezielle und allgemeine Relativitätstheorie’ vor. Es geht unter Anderem auch um das Relativitätsprinzip, krumme Lichtstrahlen und kosmologische Folgerungen. Neues Buch — Einsteins Relativitätstheorie ganz ohne Mathematik weiterlesen

Einsteins Gravitationswellen entdeckt

(11.02.2016) Idw. In diesem Jahr jährt sich Einsteins Vorhersage von Gravitationswellen zum hundertsten Mal. Und an diesem Donnerstag, um 16:30 Ortszeit, hat die amerikanische National Science Foundation eine Pressekonferenz im National Press Club in Washington, DC, einberufen, auf der Wissenschaftler von Caltech, MIT und dem Laser Interferometer Gravitational-wave Observatory (LIGO) die neuesten Resultate von LIGOs Suche nach Gravitationswellen bekanntgeben werden.

Einsteins Gravitationswellen entdeckt weiterlesen

Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps:

 

Überlichtgeschwindigkeit: Schneller als Einstein erlaubt?

Heidelberg. Viele wissenschaftliche Erkenntnisse haben sich fest im Fundus der Allgemeinbildung verankert. So beispielsweise, dass Licht sich stets geradlinig ausbreitet oder sich ein Objekt höchstens mit Lichtgeschwindigkeit bewegen kann. Doch in unserem Universum trifft das nicht immer zu – und das wusste schon Einstein und war damit völlig einverstanden.

Seine Umwelt verstehen zu wollen, liegt in der Natur des Menschen. Um diesem Wunsch nachzukommen, bedienen wir uns unseres gesunden Menschenverstandes. Dies tun wir auch dann, wenn dieses Streben uns hinaus in die Weiten des Kosmos führt. Doch wenn wir versuchen, zur Erklärung kosmologischer Phänomene die uns aus dem Alltag vertrauten Vorstellungen über Raum und Zeit zu nutzen, stoßen wir rasch an unsere Grenzen. Denn eine ganze Reihe kosmischer Phänomene lässt sich mit dem Konzept eines unveränderlichen dreidimensionalen Raums nicht erklären. Das geht nur anhand einer formbaren vierdimensionalen Raumzeit. Dass sich auch dieses Konzept anschaulich verstehen lässt und wie es all die merkwürdigen Vorgänge im Kosmos erklärt, ist in der Titelgeschichte ‘Kosmologische Kuriositäten’ (Teil 1) der Februarausgabe von “Sterne und Weltraum” zu lesen.

Die Kosmologie ist die Wissenschaft, die unser Universum als Ganzes beschreibt. Ihr zu Grunde gelegt ist die Einsteinsche allgemeine Relativitätstheorie, in der der Physiker die Gravitation erklärt – jene Kraft, die als einzige über die riesigen Distanzen im Kosmos hinweg wirken kann. In seiner Theorie stellte Albert Einstein die Verbindung zwischen der Schwerkraft und der Raumzeit her. Seitdem ist die vierdimensionale Raumzeit als ein formbares dynamisches Gebilde zu verstehen.

Zu den Kuriositäten dieser Theorie gehört beispielsweise, dass sich Licht von Massen auf krumme Bahnen zwingen lässt. Im Weltraum breitet es sich also nicht unbedingt entlang gerader Linien aus! Ebenfalls kurios ist die Expansion unseres Universums. Doch was dehnt sich dabei eigentlich aus? Das Weltall mit all seinen Inhalten? Es ist der Raum, der mit der Zeit expandiert, nicht jedoch darin enthaltene Körper, die durch die Schwerkraft zusammengehalten werden. Unsere Erde etwa oder auch die Galaxien behalten ihre Größe bei.

Auch, dass sich manche Galaxien mit Überlichtgeschwindigkeit von uns entfernen, lässt die Kosmologie zu – und das widerspricht nirgends der Tatsache, dass die Lichtgeschwindigkeit eine konstante Größe ist, die auch durch größte Beschleunigung nicht überschritten werden kann.

Zum Hintergrund: Albert Einstein entwickelte die allgemeine Relativitätstheorie völlig eigenständig in jahrelanger mühsamer Arbeit. Sie beschreibt die Wirkung der Schwerkraft durch das Konzept einer gekrümmten Raumzeit. Unser Universum dehnt sich aus, und das sogar immer schneller. Physiker bezeichnen dies als beschleunigte Expansion und verstehen darunter, dass die Abstände in unserem Universum mit der Zeit immer schneller anwachsen. Für den Nachweis dieses Expansionsverhaltens wurde 2011 der Nobelpreis für Physik verliehen.

Bestimmt wird diese Expansion des Universums von seinem Materie- und Energieinhalt. Dass Licht von Massen abgelenkt wird, kann sogar bei Sonnenfinsternissen durch astronomische Beobachtungen gemessen werden. Auch Gravitationslinsen im Universum zeigen die Wechselwirkung von Licht mit Massen auf: Bei diesen Objekten handelt es sich um kosmische Ansammlungen von Materie, die Licht von dahinter liegenden Quellen verzerren. (Quelle: Sterne und Weltraum, Februar 2013 )

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Experiment zur Vereinigung von Quantenmechanik und Relativitätstheorie


Die Vereinigung der Quantenmechanik mit Einsteins allgemeiner Relativitätstheorie ist eine wichtige offene Frage der modernen Physik. Die allgemeine Relativitätstheorie, welche die Gravitation, den Raum und die Zeit beschreibt, tritt auf großen Skalen, also bei Sternen und Galaxien, zum Vorschein. Auf der anderen Seite machen sich die fragilen Quanteneffekte bei den kleinsten Teilchen bemerkbar. Deswegen ist es schwer, Effekte zu erforschen, wo beide Theorien zusammenwirken. Theoretische PhysikerInnen unter der Leitung von Časlav Brukner der Universität Wien schlagen ein neuartiges Experiment vor, um genau dies zu tun. Die Ergebnisse erscheinen nun im Journal “Nature Communications”.

Zeit in der allgemeinen Relativitätstheorie

Eine der wichtigsten Vorhersagen von Einsteins allgemeiner Relativitätstheorie ist die Deformierung der Zeit. Die Theorie sagt voraus, dass Uhren in der Nähe eines massiven Objekts langsamer laufen, und dass sie schneller laufen, je weiter sie von der Masse entfernt sind. Dieser Effekt resultiert im sogenannten “Zwillingsparadoxon”: Wenn einer von zwei identischen Zwillingen auf einer höher gelegenen Ebene lebt, so altert er schneller als der andere Zwilling. Dieser Effekt wurde in klassischen Experimenten bestätigt, jedoch nicht im Zusammenhang mit Quanteneffekten, welches das Ziel des neuartigen Experimentes sein soll.

Quanteninterferenz und Komplementarität Experiment zur Vereinigung von Quantenmechanik und Relativitätstheorie weiterlesen

Schneller als Einstein erlaubt

Bild: Massen (etwa Sterne und Planeten) krümmen die Raumzeit. Florian Aigner, TU Wien

Einstein hat unser Verständnis des Universums revolutioniert – doch bis heute sind zentrale Fragen der Gravitationsphysik unbeantwortet geblieben. Die Bewegungsgeschwindigkeit von Sternen rund um das Galaxienzentrum lässt sich bis heute nicht zufriedenstellend erklären. Die Existenz von unsichtbarer „dunkler Materie“ wurde angenommen, um solche Phänomene beschreiben zu können.

Am Institut für Theoretische Physik der TU Wien beschäftigt sich Daniel Grumiller mit der Theorie der Gravitation. Seine Berechnungen zeigen, dass eine Erweiterung der Relativitätstheorie bisher offene Fragen beantworten könnte. Könnte die Schwerkraft bei grossen Distanzen zusätzliche Anteile haben, die bisher unberücksichtigt geblieben sind? Auf der Suche danach ging Daniel Grumiller zurück zu den Grundlagen der Gravitationstheorie. Als Ausgangspunkt stellte er die Frage: „Welche Art von Formeln, mit denen man die Gravitation beschreiben könnte, ist mathematisch überhaupt erlaubt?“ Nur ganz bestimmte mathematische Ausdrücke lassen sich in die Physik der Gravitation einbauen, ohne Symmetrien zu verletzen, die wir im Universum vorfinden, oder unseren täglichen physikalischen Beobachtungen eindeutig zu widersprechen.

Die unbekannte Zusatz-Kraft

Daniel Grumiller vereinfachte die Gravitationstheorie, indem er zunächst kugelsymmetrische Fälle betrachtet – so lässt sich etwa das Gravitationsfeld eines Planeten, eines Sternes oder einer annähernd sphärischen Galaxie beschreiben. „Man kann dann mathematisch zeigen, aus welchen Beiträgen sich die Gravitationskraft zusammensetzen muss“, erklärt Grumiller. Manche Beiträge sind wohlbekannt: Die klassische Newtonsche Schwerkraft und eine Erweiterung dazu, die aus der Relativitätstheorie kommt – beides nimmt mit der Entfernung ab. Auch Einsteins „Kosmologische Konstante“, die bei extrem großen Distanzen eine Rolle spielt, taucht in Grumillers Gleichungen ganz automatisch auf. Zusätzlich aber findet man auch noch einen weiteren Beitrag zur Gravitation: Eine konstante Kraft, die zwischen zwei Objekten unabhängig von ihrer Entfernung wirkt – Grumiller nennt sie „Rindler-Kraft“, nach dem in Wien geborenen Gravitationsphysiker Wolfgang Rindler. Diese Kraft ist freilich so klein, dass man sie im täglichen Leben nicht beobachten kann. „Sie steht nicht im Widerspruch zur Relativitätstheorie, sondern ist eine Erweiterung, die sich in das Gebäude der Relativitätstheorie nahtlos einfügt“, meint Grumiller.

Schneller als Einstein erlaubt

In einem ersten Versuch, die Größe dieser Zusatz-Kraft abzuschätzen, berechnete Grumiller die Rotationsgeschwindigkeit von Sternen rund um das Galaxiezentrum – denn bei galaktisch großen Entfernungen, bei denen die klassische Schwerkraft winzig klein wird, spielt die neugefundene Rindler-Kraft eine entscheidende Rolle. Und tatsächlich zeigte sich, dass Grumillers Formeln die erstaunlich großen Rotationsgeschwindigkeiten, die man beobachten kann, qualitativ viel besser beschreiben als bisherige Berechnungen. „Das ist ein Hinweis darauf, dass die Rindler-Kraft nicht nur mathematisch erlaubt ist, sondern tatsächlich in der Natur auftritt“, meint Daniel Grumiller.

Das Rätsel um die Pioneer-Sonde

Mit derselben Methode untersuchte Grumiller ein weiteres Rätsel der Gravitationsphysik: Die Pioneer-Anomalie. Schon seit Jahren beobachtet man, dass sich Raumsonden wie Pioneer 10 und Pioneer 11, die sich weit von Erde und Sonne entfernen, nicht exakt auf den Bahnen bewegen, die von der Relativitätstheorie vorausgesagt werden. „Auch diese Bahnen kann man beschreiben, wenn man eine kleine, konstante Zusatzkraft annimmt, die Richtung Sonne wirkt – wie die Rindler-Kraft“, erklärt Grumiller.

Trotz dieser bemerkenswerten Erfolge gibt es in diesem Forschungsprojekt freilich noch viel zu tun: „Es wird spannend sein, dieses vereinfachte Modell in voller Allgemeinheit in die vierdimensionale Relativitätstheorie einzubauen“, meint Grumiller, und erhofft sich davon ein besseres Verständnis dafür, was die Stärke der Rindler-Kraft bestimmt, und einen Einblick in die Frage, wie sie mit der „dunklen Materie“ zusammenhängt. Denn wie Grumiller betont bleibt sein Modell derzeit noch agnostisch in Bezug auf die Frage ob es „dunklen Materie“ gibt. (Quelle: Idw – Informationsdienst Wissenschaft; Bild: Massen (etwa Sterne und Planeten) krümmen die Raumzeit. Florian Aigner, TU Wien)

Verletzt expandierendes Universum den Energieerhaltungssatz?


Der expandierende Kosmos scheint ein Grundgesetz der Physik zu verletzen.

Energie kann weder erzeugt noch zerstört werden. Dieser Erhaltungssatz gilt Physikern als sakrosankt. Er beherrscht jeden Lebensbereich – das Aufwärmen einer Tasse Kaffee, die chemischen Reaktionen, mit denen Blätter Sauerstoff erzeugen, die Bahn der Erde um die Sonne und die Nahrung, die wir brauchen, damit unser Herz schlägt. Ohne Essen können wir nicht leben, das Auto fährt nicht ohne Kraftstoff, und Perpetuum mobiles sind pure Fiktion. Darum schöpfen wir mit Recht sofort Verdacht, wenn etwas den Energieerhaltungssatz zu verletzen scheint. Kommt so etwas überhaupt vor?

Scheinbar doch. Kehren wir einmal kurz der Erde den Rücken und wenden uns dem Weltall zu, schlägt die australische Astrophysikerin Tamara Davis vor. Fast alle Informationen über den fernen Weltraum gewinnen wir in Form von Licht, das auf seinem langen Weg von fernen Galaxien durch das expandierende Universum eine Rotverschiebung erfährt; die elektromagnetischen Wellen werden gemäß Einsteins allgemeiner Relativitätstheorie gestreckt. Doch wir wissen: Je größer die Wellenlänge, desto kleiner die Energie. Das wirft die Frage auf, wohin die Energie verschwindet, wenn das Licht durch die kosmische Expansion röter wird. Geht sie verloren – und verletzt damit das Erhaltungsprinzip?

Letztlich nein, beruhigt uns Tamara Davis in der November-Ausgabe von Spektrum der Wissenschaft. Auch hier auf der Erde finden ständig solche Verschiebungen statt. Angenommen, Sie fahren an einer Radarfalle vorbei, mit der die Polizei gern Temposünder überführt. Während Ihr Auto sich dem Gerät nähert, würden Ihnen die elektromagnetischen Radarwellen – wenn Sie sie sehen könnten – ein wenig gestaucht erscheinen; nachdem Sie das Gerät passiert haben, sähen die Wellen etwas gestreckt aus. Das ist der Dopplereffekt – das elektromagnetische Pendant zu dem bekannten akustischen Phänomen, dass sich die Tonhöhe einer Hupe beim Vorbeifahren zu ändern scheint. Das Polizeiradargerät ermittelt aus der Dopplerverschiebung der reflektierten Radarstrahlen Ihre Geschwindigkeit.

Dopplerverschiebung entsteht durch die Relativbewegung von Sender und Empfänger. Dabei verlieren oder gewinnen die Photonen keine Energie; sie sehen nur für den Empfänger anders aus als für den Sender. Doch die kosmologische Rotverschiebung hat nach gängiger Auffassung einen anderen Grund. Den Lehrbüchern zufolge wird sie dadurch verursacht, dass der Raum, durch den das Licht wandert, sich selbst ausdehnt wie ein aufgeblasener Luftballon.

Aber, hält Tamara Davis dagegen, in Einsteins allgemeiner Relativitätstheorie ist der Raum relativ; was wirklich zählt ist die Geschichte einer Galaxie – die Bahn, die sie in der Raumzeit beschreibt. Darum sollten wir, wenn wir die Relativgeschwindigkeit der fernen Galaxie in Bezug auf uns berechnen, deren Trajektorie in der Raumzeit und unsere vergleichen. Der Betrag der Rotverschiebung, den der irdische Beobachter an der Galaxie feststellt, erweist sich so gesehen nicht anders als die Dopplerverschiebung, die er an einem Auto sähe, das sich mit derselben Relativgeschwindigkeit entfernt.

Und genau wie im Fall der vorbeibewegten Hupe – wo uns nicht einfiele, dass der Schall Energie gewinnt oder verliert – bewirkt auch hier die Relativbewegung von Sender und Beobachter bloß, dass die Beiden die Photonen aus unterschiedlicher Perspektive sehen, und nicht, dass die Photonen unterwegs Energie verloren haben.

Letzten Endes umgibt kein Rätsel den Energieverlust der Photonen: Die Energien werden von Galaxien aus gemessen, die sich voneinander entfernen, und die Energieabnahme ist nur eine Frage des Standpunkts und der Relativbewegung.

Die Physiker können also beruhigt sein, das Universum hat kein Leck. Wenn sie zu klären versuchen, ob die Energie des ganzen Universums erhalten bleibt, stoßen sie vielmehr an eine fundamentale Grenze, denn sie können der Energie des Universums keinen eindeutigen Wert zuweisen. Darum verletzt das Universum den Energieerhaltungssatz nicht; vielmehr liegt es jenseits von dessen Geltungsbereich.
Quelle: Spektrum der Wissenschaft, November 2010

Mehr dazu:
1. Äquivalenz von Information und Energie: Auf der Suche nach den Grundbausteinen der Welt
2. Supervereinigung: Wie aus nichts alles entsteht. Ansatz einer großen einheitlichen Feldtheorie

Sind Raum und Zeit aus Information entstanden?

Video: Die Entstehung des Kosmos.

Das Reich der Physik ist immer gut für Überraschungen. Und manche der Überraschungen beginnen mit Vermutungen namhafter Physiker. Eine in letzter Zeit häufiger geäußerte Vermutung ist die, dass Information ein Grundbaustein der Welt sei.

»Es stellt sich letztendlich heraus, dass Information ein wesentlicher Grundbaustein der Welt ist«, äußerte sich der durch ein medienwirksames Experiment der Quantenteleportation bekanntgewordene Prof. Dr. Anton Zeilinger in einem Interview. Vermutungen, die nicht weiter begründet sind, haben allerdings wenig Durchsetzungskraft. Sie werden zwar gelesen oder angehört, doch sie gehören praktisch zum Smalltalk der Wissenschaft.

Wenn eine Vermutung zu einer Hypothese oder sogar einer Theorie werden soll, dann braucht der Physiker Formeln. Er braucht das mathematische Werkzeug, damit er auf bequeme Weise Vorhersagen machen kann, die sich durch empirische Daten widerlegen oder bestätigen lassen. Allerdings sind Formeln nicht alles in der Physik. Das zeigt uns die Quantenmechanik. Die Vorhersagen der Quantenmechanik wurden zwar noch niemals widerlegt, aber Formeln können das Phänomen nicht plausibler machen, das als Welle-Teilchen-Dualität bekannt ist, und können schon gar nicht die nichtlokale Wechselwirkung von verschränkten Photonen erklären. Die Physiker haben sich an die Kuriositäten der Quantenmechanik gewöhnt und trösten sich mit exakten mathematischen Vorhersagen.

Ist Information eine Substanz?

Erst eine gute modellhafte Beschreibung der Wirklichkeit und der beobachteten Phänomene erlaubt es, Neuland zu entdecken. Alle, die sich vom allgemeinwissenschaftlichen und philosophischen Standpunkt aus für die Grundbausteine der Welt interessieren, finden Neuland in dem Fach-Büchlein mit dem Titel »Äquivalenz von Information und Energie«. Es beginnt mit einem physikalischen Modell für das Phänomen der Information, bevor in einem weiteren Kapitel der bei Physikern so beliebte mathematische Werkzeugkasten skizziert wird, ohne dabei den mathematischen Apparat der theoretischen Physik vorauszusetzen. Diese Vorgehensweise zeitigt ein überraschendes Ergebnis: Information ist keineswegs nur eine Angelegenheit der geistigen Ebene.

Eine der physikalisch relevanten Informationsarten ist eine Substanz, aus der sogar Elementarteilchen gebildet werden können. Die Anwendung der neu gewonnenen Erkenntnisse auf Einsteins allgemeine Relativitätstheorie führt zu der Folgerung, dass selbst Raum und Zeit aus Information entstanden sein können. Im Augenblick der Singularität des Urknalls als Energie vorhanden war, aber noch kein Raum und keine Zeit, konnte Energie nicht in Form von Massen, Feldern oder Strahlung vorliegen, sondern nur in Form von äquivalenter Information. Überraschender kann das Ergebnis kaum sein.

Mehr dazu in Äquivalenz von Information und Energie: Auf der Suche nach den Grundbausteinen der Welt. Von Klaus-Dieter Sedlacek.

Die Standardtheorie der Kosmologie gerät ins Wanken

Video: Isaac Newton und die Gravitation

(idw). Muss Newtons Gravitationstheorie abgeändert werden, weil sie zur Erklärung mancher Beobachtungen nicht taugt? Inzwischen mehren sich die Stimmen, die diese ketzerische These unterstützen. Zwei neue Studien zu den so genannten Satellitengalaxien in der Peripherie der Milchstraße dürften ihr nun weiteren Auftrieb geben. Durchgeführt wurden sie von Physikern der Universität Bonn zusammen mit Kollegen aus Österreich und Australien. Ihre Ergebnisse könnten das Theorie-Gebäude der Standardphysik ins Wanken bringen.

Kosmologen erklären sich heute viele ansonsten unerklärliche Beobachtungen mit Hilfe der ominösen dunklen Materie. In den letzten zwei Jahrzehnten wurde sehr viel Aufwand in diesem Forschungsgebiet betrieben. Dennoch wurde bislang nicht direkt nachgewiesen, dass es diese rätselhafte Substanz überhaupt gibt. Und selbst wenn es sie gäbe, würde das längst nicht alle Abweichungen oder Widersprüche zwischen den Messungen und den theoretischen Vorhersagen beseitigen. Seit einiger Zeit mehrt sich daher die Zahl derer unter den Physikern, die die Existenz dunkler Materie anzweifeln. Es wurden auch schon konkurrierende Gravitationstheorien entwickelt, die ohne dieses Konstrukt auskommen. Ihr Problem ist lediglich, dass sie in Konflikt mit der Newtonschen Gravitationstheorie stehen. “Möglicherweise lag Newton aber tatsächlich falsch”, erklärt Professor Dr. Pavel Kroupa vom Argelander-Institut für Astronomie (AIfA) der Universität Bonn. “Seine Theorie beschreibt zwar die Alltagseffekte der Schwerkraft auf der Erde, die wir sehen und messen können. Die tatsächliche Physik hinter der Gravitation kennen wir aber vielleicht noch gar nicht.” Die Standardtheorie der Kosmologie gerät ins Wanken weiterlesen

Vereinigung von Relativitätstheorie und Quantenphysik gelungen?

Video: Stimmt die Relativitätstheorie?

QUANTENGRAVITATION – Ein neues Quantenmodell von Raum und Zeit

Im Großen wird das Universum von der Gravitation beherrscht, aber im Kleinen zerfällt es in Quanten – wie passt das zusammen? Wie sind Raum und Zeit entstanden? Wie haben sie die glatte vierdimensionale Leere gebildet, die unserer physikalischen Welt als Bühne dient? Wie sehen sie im allerkleinsten Maßstab aus? Solche Fragen streifen die äußersten Grenzen der modernen Wissenschaft und treiben die Suche nach einer Theorie der Quantengravitation voran; sie wäre die lang ersehnte Vereinigung von Einsteins allgemeiner Relativitätstheorie mit der Quantenphysik.

Die Relativitätstheorie beschreibt, wie die Raumzeit im Großen unzählige verschiedene Formen anzunehmen vermag und das hervorruft, was wir als Schwerkraft wahrnehmen. Hingegen beschreibt die Quantentheorie die physikalischen Gesetze im atomaren und subatomaren Maßstab, wobei sie Gravitationseffekte völlig ignoriert. Eine Theorie der Quantengravitation soll das Wesen der Raumzeit in den kleinsten Größenordnungen durch Quantengesetze beschreiben und womöglich durch gewisse fundamentale Bausteine erklären.

Seit einigen Jahren entwickeln drei Kosmologen – der Däne Jan Ambjørn, der Pole Jerzy Jurkiewicz und die Deutsche Renate Loll – ein viel versprechendes Modell des Quantenuniversums. In der Februarausgabe von Spektrum der Wissenschaft beschreiben sie ihr „fast peinlich simples“ Rezept: Man nehme ein paar einfache Zutaten, füge sie nach wohlbekannten Quantenregeln zusammen, rühre gut um, lasse den Teig rasten, und fertig ist die Quantenraumzeit. Der Prozess ist so unkompliziert, dass er sich auf einem Laptop simulieren lässt.

Um die Raumzeit zu modellieren, lassen sich die drei Forscher von einem Verfahren inspirieren, das in der Computergrafik gang und gäbe ist: Man legt dort über gekrümmte Flächen, etwa Körper oder Gesichter, ein Gitter aus kleinen Dreiecken. Im Fall der Raumzeit braucht man dafür allerdings nicht flache Dreiecke, sondern vierdimensionale Tetraeder. Aus diesem Mosaik entsteht, wenn man die einzelnen Bausteine gewissen Regeln unterwirft, fast von selbst ein Modell der gequantelten Raumzeit.

Die wichtigste Bauanleitung betrifft die Kausalität. In benachbarten Bausteinen müssen Ursache und Wirkung zeitlich in gleicher Richtung aufeinander folgen. Mit anderen Worten: Nachbarn haben den gleichen Zeitpfeil. Diese simple Vorschrift reicht aus, damit die Raumzeit sich im Großen von selbst zu einer vierdimensionalen Gesamtheit ordnet. Die Forscher vergleichen diese Selbstorganisation mit dem Verhalten eines Vogelschwarms, in dem die einzelnen Vögel nur den nächsten Nachbarn folgen – und doch verhält sich der Schwarm wie ein kompaktes Ganzes.

Interessanterweise ist dieses Modell zwar im Großen vierdimensional, wie es sich für die Raumzeit gehört, aber im Kleinen entpuppt sich die Anzahl der Dimensionen als variable, gebrochene Größe – als Fraktal. Solche selbstähnlichen Strukturen lassen offen, ob es kleinste „Atome“ der Raumzeit gibt oder ob die fraktalen Muster sich bis ins unendlich Kleine fortsetzen. Die Forscher hoffen, dies zu klären, wenn sie ihr fraktales Modell der leeren Raumzeit mit Materie füllen. (Quelle: Spektrum der Wissenschaft, Februar 2009)

Ein völlig anderes Modell zur Erklärung des Zusammenhangs von Relativitätstheorie und Quantenphysik findet sich im Buch Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen. Dort wird aufgrund naturwissenschaftlicher Methoden und bisher unerklärlicher Quantenphänomene gefolgert, dass Bewusstsein der fundamentale Baustein von allem ist, was existiert. Desweiteren wird gezeigt wie sich die Einsteinsche Raumzeit als eine Folge von Bewusstsein darstellt.