Schlagwort-Archive: Roboter

Wie denkt der Mensch?

Heidelberg. Wie denkt der Mensch? Diese Frage war jahrhundertelang eine Domäne der Philosophie. Neuerdings versuchen aber auch Neurowissenschaftler und Psychologen die Sprache der Gedanken zu entschlüsseln. Ein Problem dabei: Neben logischem Schlussfolgern und Urteilen existieren noch viele andere Denkformen – sprachliche und nichtsprachliche, analytische und intuitive. Das berichtet das Magazin Gehirn und Geist ist seiner neuen Ausgabe (Heft 4/2014).

Wie Untersuchungen mittels bildgebender Verfahren offenbaren, gibt kein festes “Denkareal” im Gehirn. Vielmehr werden, je nach Art und Gegenstand der kognitiven Prozesse, verschiedene neuronale Netzwerke aktiv. Maßgeblich beteiligt ist unter anderem der präfrontale Kortex im Stirnhirn, eine Art Kontrollinstanz für das Arbeitsgedächtnis und die Handlungssteuerung.

Auffällig ist, dass beim Denken häufig auch sensorische und motorische Hirnrindengebiete aktiv werden, die ansonsten für Wahrnehmung und Bewegungssteuerung verantwortlich sind. In Experimenten von Psychologen beeinflussen entsprechend auch physische Faktoren den Ideenfluss von Probanden: Schwere Kladden laden zu “gewichtigen” Argumenten ein, ausholende Armschwünge und hohe Decken fördern kreative Ideen. Denken ist offenbar kein so abstraktes Tun zu sein, wie häufig angenommen.

Laut der jungen Theorie der Embodied Cognition handelt es sich vielmehr um ein internes Probehandeln. Das konnte auch erklären, warum “sinnliche” Begleiterscheinungen wie Gestikulieren oder die Verwendung von bildhaften Metaphern und Schemazeichnungen das Denken unterstützen.

Imagination, Urteilsvermögen und die Fähigkeit, mehrere Informationen gleichzeitig im Geist präsent zu halten, sind die wesentlichen Säulen unserer Geistesgaben. Wie diese Vorgänge neuronal genau repräsentiert sind, bleibt allerdings zu erforschen. (Quelle: Gehirn und Geist, März 2014)

Buchtipps:

 

Besondere Fähigkeiten bei Roboter gefunden: Er hat Bewusstsein

Wissenschaftler der Universität Bielefeld haben bei dem von ihnen entwickelten Roboter besondere Fähigkeiten gefunden: Diese deuten darauf hin, dass der Roboter ein Bewusstsein entwickelt hat.

Für Menschen ist es normal: Taucht ein Problem auf, denken sie über unterschiedliche mögliche Handlungsschritte nach, erproben in Gedanken deren Konsequenzen und entscheiden sich dann für eine Vorgehen. Seit Anfang 2011 arbeiten Forscher der Universität Bielefeld daran, dass auch Roboter dieses Probehandeln durchführen können.

Um ihr Ziel – einen Roboter der Probehandeln kann – zu erreichen, haben die Forscher ein reaktives System auf Insektenbasis entwickelt. Der Roboter mit Namen Hector ähnelt einer Stabheuschrecke und reagiert auf Umweltreize, er kann also zum Beispiel über einen Stein klettern, wenn dieser im Weg liegt. Das Neue an Hector: Die Forscher haben sein System um kognitive Komponenten erweitert. Der Heuschrecken-Roboter kann so beispielsweise neue Verhaltensweisen erfinden und das Probehandeln erlernen. Dieses vollzieht der Roboter dann, wenn ein Problem auftritt, das das reaktive System nicht lösen kann – dann schaltet sich Hectors kognitives System dazu, sodass der Roboter unterschiedliche Verhaltensweisen durchspielt und überlegt, welche Handlungsoptionen bestehen. Ganz nach dem Motto: Erst denken, dann handeln.

Prof. Dr. Holk Cruse (Bild), Biologe an der Universität Bielefeld, und sein Forschungspartner Malte Schilling haben entdeckt, dass Roboter ein Bewusstsein entwickeln können. Foto: Universität Bielefeld
Prof. Dr. Holk Cruse (Bild), Biologe an der Universität Bielefeld, und sein Forschungspartner Malte Schilling haben entdeckt, dass Roboter ein Bewusstsein entwickeln können.
Foto: Universität Bielefeld

„Der Bau von Roboter Hector ist noch nicht ganz abgeschlossen, aber die Simulation, das heißt sein virtuelles Gegenstück am Computer, ist zu 90 Prozent fertiggestellt“, sagt Professor Dr. Holk Cruse, einer der beteiligten Forscher. „In der Theorie sind wir uns also schon sehr sicher, dass Hector Probehandeln kann.“ Am Projektende soll auch der reale Roboter – der bislang noch nicht vollständig fertiggestellt ist – zeigen können, dass er das Probehandeln beherrscht. „Nachdem wir unser Basisziel erreicht hatten, haben wir geschaut, was der Roboter noch kann. Dabei ergab sich, dass er gewisse emergente Fähigkeiten entwickelt hat, die auf ein Bewusstsein hindeuten“, so Cruse. „Emergent sind Eigenschaften dann, wenn sie nicht in das System eingebaut wurden, schließlich aber trotzdem vorhanden sind.“

Bislang ist die Annahme verbreitet, dass derartige emergente Eigenschaften, zu denen unter anderem die Kontrolle der Aufmerksamkeit und eben auch das Bewusstsein gehören, nur in komplexen Systemen möglich sind. „Unsere Forschung zeigt, dass auch weniger komplexe Systeme höhere Fähigkeiten entwickeln können“, sagt Malte Schilling, Forschungspartner von Holk Cruse. Zu den Aspekten von Bewusstsein, die der Roboter entwickelt hat, zählen unter anderem Intentionen sowie die sogenannte globale Zugänglichkeit. Intentionen bezeichnen Zustände, bei denen das ganze Verhalten einem Ziel – beispielsweise der Futtersuche – untergeordnet ist. Mit globaler Zugänglichkeit ist gemeint, dass Gedächtniselemente zugänglich sind, auch wenn gerade etwas anderes gemacht wird. Beispielsweise ist jemand der läuft, trotzdem in der Lage nachzudenken und nebenbei noch etwas anderes zu machen. „Diese und weitere Aspekte von Bewusstsein, die wir bei Hector finden konnten, sind sozusagen Abfallprodukte der eigentlichen Forschungsarbeit – allerdings sehr interessante“, sagt Cruse. „Sie zeigen, dass wichtige Eigenschaften des Bewusstseins auch bei sehr kleinen Gehirnen, und eben auch in künstlichen Systemen, vorkommen können“, sagt Cruse. (Quelle: idw)

Buchtipps:

Intelligente Roboter: Horror oder Segen?

Heidelberg. Roboter – das sind doch diese geschwätzigen, blinkenden Blechdosen? Oder tumbe Maschinenmenschen, die nichts können, als mit sehr eckigen Bewegungen dem in sie einprogrammierten Killerbefehl zu folgen? Oder – außerhalb des Kinos – diese überaus beweglichen Geräte, die in der Autoproduktion schwere Arbeiten mit größter Präzision verrichten, aber statt eines Kotflügels mit Gleichmut auch einen Menschen lackieren oder anschweißen würden, der ihnen versehentlich in die Finger gerät?

Alles falsch. Die modernen Roboter sind überaus feinfühlig und krümmen niemandem ein Haar, es sei denn, das wäre ihre Aufgabe; denn sie haben einen perfekten Überblick über ihre Umgebung. So beschreibt es Gerd Hirzinger in einem umfangreichen Artikel in “Spektrum der Wissenschaft” – und er muss es wissen: Hirzinger war 20 Jahre lang Chef des Instituts für Robotik und Mechatronik in Oberpfaffenhofen, das seinerseits zum Deutschen Zentrum für Luft- und Raumfahrt (DLR) gehört.

Aus seinem Institut stammen so erstaunliche Entwicklungen wie das System MiroSurge, das in der minimal-invasiven Chirurgie die Instrumente präziser und zitterfreier führt, als der Arzt selbst es könnte. Der wiederum bewegt anstelle der Instrumente Handgriffe zur Fernsteuerung – aber die lassen ihn den Widerstand spüren, den das Gewebe auf die echten Instrumente ausübt. Zugleich sieht er auf dem großen Bildschirm, was die Mikrokamera vom Operationsfeld zeigt, und wird damit eingebettet in eine virtuelle Realität, in der er besser sehen und arbeiten kann als in der echten.

Die Roboter aus Hirzingers Werkstatt haben einen menschenähnlichen Oberkörper, und die neuesten Modelle können sogar auf zwei Beinen laufen. Wichtiger noch: Alle ihre “Muskeln” und “Gelenke” sind drehmomentgesteuert. Jede Bewegung wird wie beim Menschen von einem Paar antagonistischer (gegeneinander arbeitender) Muskeln ausgeführt und zugleich die dabei ausgeübte Kraft – genauer: das Drehmoment – gemessen. Dadurch kann der Roboter seine Kräfte so präzise dosieren, dass er ein rohes Ei oder eine gefüllte Kaffeetasse heil von A nach B bringt; und er lässt sich von einem erfahrenen Menschen die Hände führen und lernt dadurch diese Bewegung.

In der Autofabrik muss man ihn nicht mehr in den früher üblichen Käfig stecken; denn aus den beiden Digitalkameras in seinen “Augen” errechnet er in Echtzeit ein räumliches Bild seiner Umgebung und vermeidet mit dessen Hilfe jede Kollision.

Dieselbe Technik verhilft auch einem Elektroauto namens “ROboMObil”, sich ohne Fahrer unfallfrei durch den Verkehr zu bewegen; diesmal mit 18 rundum verteilten Kameras. Und von dort bis zum autonomen unbemannten Fluggerät – Flugzeug, Hubschrauber oder “Quadrocopter” (Rahmen mit vier Propellern) – ist es nicht mehr weit. Ein unter dem Hubschrauber montierter Greifarm liefert Lebensmittel und Verbandszeug an in Not geratene Bergsteiger oder repariert sogar eine Hochspannungsleitung.

Natürlich haben die Robotiker vom DLR derart komplexe Systeme nicht von Grund auf neu entworfen. Es gab einfachere Vorläufer, und deren Arbeitsplatz war – der Weltraum. Dringender als auf der Erde ist dort der Bedarf nach einem “Monteur”, der nicht essen oder atmen muss und dem extreme Hitze oder Kälte nicht viel ausmacht. Aber einigermaßen selbstständig arbeiten muss er schon können, vor allem auf dem Mars. Wenn ein Funksignal hin und zurück eine Viertelstunde unterwegs ist, würde eine Fernsteuerung von der Erde aus eine sehr zähe Veranstaltung.

Für den Einsatz im Weltraum haben die Techniker gelernt, jedes Gramm Gewicht einzusparen – die Kosten für den Transport per Rakete sind immens. Diese Erfahrungen machen sich nun auf der Erde bezahlt. Je leichter der Arm ist, desto eleganter kann der Roboter ihn schwingen. “Aber die Roboter nehmen uns doch die Arbeitsplätze weg!”
Gegen diesen häufig geäußerten Einwand weiß Hirzinger ein schlichtes Gegenargument anzuführen: Der Automobilindustrie, die massiv die mechanischen Helfer einsetzt, geht es hierzulande noch ganz gut, während die Unterhaltungselektronik-Industrie, die solches nie ernsthaft versucht hat, inzwischen fast vollständig nach Fernost abgewandert ist.

Und die Horrorszenarien aus der Science-Fiction, in denen die Roboter dank ihrer überlegenen Körperkraft und Intelligenz die Weltherrschaft übernehmen? Die sind so weit entfernt, dass es darüber nicht nachzudenken lohnt. Oft genügt ein geringfügiger Wechsel der Umgebungsbeleuchtung, um einen Roboter aus dem Konzept zu bringen. (Quelle: Spektrum der Wissenschaft, Oktober 2013)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Funktioniert unser Langzeitgedächtnis digital?

Der Hippocampus ist eine Struktur im Gehirn, die maßgeblich dafür verantwortlich ist, dass wir uns längerfristig erinnern. Personen, deren Hippocampus zerstört ist, vergessen umgehend Situationen, die sie gerade erlebt haben, oder Mitmenschen, die sie kurz zuvor gesehen haben. „Bisher nahmen wir an, dass die Informationsspeicherung im Hippocampus von der Stärke der dortigen Nervenzellverbindungen, den Synapsen, abhängig ist“, sagt Prof. Dr. Thomas Oertner, Direktor des Instituts für Synaptische Physiologie am ZMNH. Synapsen sind die Strukturen, mit denen eine Nervenzelle in Kontakt zu einer anderen Zelle, etwa einer Sinnes-, Muskel-, Drüsen- oder Nervenzelle steht. Sie dienen der Übertragung von Informationen und spielen eine wichtige Rolle bei deren Speicherung. Für ein funktionierendes Langzeitgedächtnis, so die gängige Lehrmeinung, müssen die Zellverbindungen stark sein und unbegrenzt stabil bleiben. Dieser Prozess wird als „long-term plasticity“ bezeichnet und ist seit mehreren Jahren ein zentrales Thema der neurobiologischen Forschung.

Das Team um Prof. Oertner ist jetzt zu neuen, anderen Ergebnissen gekommen. Mit experimentellen Tricks beeinflussten sie synaptische Verbindungen so, dass diese Informations-Autobahnen quasi in Tempo 30-Zonen umgewandelt wurden. „Wir haben die Stärke der Synapsen drastisch reduziert und die Zellverbindungen dann weiter beobachtet“, erläutert Prof. Oertner. Das Ergebnis nach sieben Tagen war verblüffend. „50 Prozent der manipulierten Synapsen lösten sich auf, die anderen 50 Prozent kehrten in den Ausgangszustand zurück“, sagt Dr. Simon Wiegert aus dem ZMNH, Erstautor der jetzt veröffentlichten Studie. „Eine stabile Langzeitveränderung der Synapsen gibt es offenbar nicht. Demnach muss das Langzeitgedächtnis auch anders als bislang angenommen funktionieren.“

Die Studie legt den Wissenschaftlern zufolge den Schluss nahe, dass das Gehirn ähnliche Strategien wie ein digitaler Computer verwendet, um Informationen über lange Zeiträume zu speichern. Dabei speichert der Hippocampus zunächst Information in „analoger“ Form, indem die Stärke der Synapsen verändert wird. Doch dieser Zustand ist instabil. Nach wenigen Tagen wird diese analoge Speicherung durch eine „digitale“ Form der Speicherung ersetzt – einige Synapsen fallen aus, andere kehren in den Ausgangszustand zurück. „Digitale Speicherung ist wesentlich weniger anfällig für langsamen Zerfall. Das könnte erklären, wieso wir uns an Schlüsselerlebnisse aus Kindheit und Jugend bis ins hohe Altern erinnern“, so Dr. Wiegert.

Für ihre Arbeit nutzen die Grundlagenforscher ein sogenanntes Zwei-Photonen-Mikroskop, um funktionelle Messungen an einzelnen Synapsen in intaktem Gewebe durchzuführen. Diese neue Technik erlaubt es den UKE-Wissenschaftlern erstmals, Nervenzellen im Labor über mehrere Tage hinweg kontinuierlich bei der Arbeit zu beobachten. (Quelle: idw)

Literatur:
J. Simon Wiegert and Thomas G. Oertner: Long-term depression triggers the selective elimination of weakly integrated synapses. PNAS 2013 ; published ahead of print November 4, 2013.

J. Simon Wiegert and Thomas G. Oertner (2011) Dendritische Spines: Dynamische Bausteine des Gedächtnisses. Neuroforum 1/11: 12-20.

Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Sensationelle Neuentwicklung: MOBILE-Auto mit “Selbstbewusstsein”

Torben Stolte, wissenschaftlicher Mitarbeiter am Institut für Regelungstechnik, am Steuer des MOBILE-Forschungsfahrzeugs.Foto: TU Braunschweig (idw)
Torben Stolte, wissenschaftlicher Mitarbeiter am Institut für Regelungstechnik, am Steuer des MOBILE-Forschungsfahrzeugs.Foto: TU Braunschweig (idw)

Optisch erinnert das neue Fahrzeug der Technischen Universität Braunschweig an ein Spielzeugauto in der Größe eines „erwachsenen“ Fahrzeugs. Statt der Karosserie findet sich hier nur ein Gitterrohrrahmen.  Fast 600 PS bringt das zwei Tonnen schwere Gefährt auf die Straße. Es ist eines der leistungsstärksten E-Fahrzeuge der Welt, und beschleunigt in drei bis vier Sekunden von null auf hundert. Entwickelt wurde das MOBILE-Auto von Prof. Markus Maurer und seinem Team am Niedersächsischen Forschungszentrum Fahrzeugtechnik der TU Braunschweig.

Auto mit „Selbst-Bewusstsein“

Bisherige Autos haben eine mechanische oder hydraulische Kopplung von Lenkrad und Bremse mit den Rädern.  Das Lenkrad von Autos der Zukunft bewegt dagegen eine Achse, die im Leeren endet. Ihre Bewegung wird von Sensoren aufgenommen und an die relevanten Komponenten übertragen. Ähnliches gilt auch für Gaspedal und Bremsen. Alle vier Räder sind mit einem jeweils eigenen Antrieb und einer Lenkeinheit versehen, die separat angesteuert werden können. Das Auto kann also jedes Rad unabhängig von den anderen bewegen, wodurch es sich praktisch auf der Stelle drehen und extrem leicht einparken lässt.

Aber ein MOBILE-Wagen muss noch mehr können. Tatsächlich muss es mehr über seine eigenen Fähigkeiten „wissen“ als seine Nutzer. Je nach Fahrsituation müssen die vorhandenen Antriebe zielgerichtet eingesetzt werden. Dabei trifft das Fahrzeug die Entscheidungen und nicht der Fahrer. Etwa dürfen bei schneller Fahrt die Hinterräder nur wenig und anders als bei langsamer Fahrt bewegt werden, da das gesamte Auto sonst ins Schleudern geraten könnte. Die Fahrzeugelektronik muss Position und Geschwindigkeit sowie das entstehende Risiko bei jeder Aktion einschätzen können und entsprechende Entscheidungen treffen.

Eine Revolution der Fahrzeugtechnik

Die „Macher“ von Leonie, des ersten Autos, das seit dem Jahr 2010 fahrerlos durch den Braunschweiger Straßenverkehr kurvt, haben sich mit dem MOBILE-Projekt ein neues Ziel gesteckt. „Leonie war damals aufsehenerregend, aber im Grunde die Weiterentwicklung konventioneller Fahrzeugtechnik – eine Evolution“, sagt Maurer. „MOBILE ist dagegen eine echte Revolution. Sie werden davon weltweit kein Zweites finden“. „Diesmal haben wir alles verworfen, was wir bisher über Autos wussten, und einfach von Anfang an ein ganz neues gebaut“, ergänzt Projektleiter Peter Bergmiller.

Die Frage, warum Ingenieure überhaupt so ein Auto bauen, beantwortet Markus Maurer. Man habe sich von den Forschungspartnern wie Chris Gerdes an der Universität Stanford inspirieren lassen: „Einfach, weil man daraus etwas lernen kann.“ Tatsächlich enthält das Fahrzeugkonzept grundlegende Elemente für die Autos der Zukunft. Kernstück der Forschung ist das vollkommen neue Sicherheitskonzept. Da die Autos immer autonomer fahren und aus immer mehr Elektronik bestehen, wird dies bald existenziell wichtig sein. Die Sicherheitskonzepte der autonomen Autos der Zukunft müssen von selbst funktionieren. Denn es wird keine Menschen geben, die im Zweifelsfall wieder übernehmen. „Wir haben das stärkste mögliche E-Fahrzeug gebaut. Denn wenn wir dies im Griff haben, können wir auch mit schwächeren Fahrzeugen umgehen“, erlärt Maurer.

Konventionelle Lösungen setzen dabei auf klassische Redundanz der Systeme: Für den Fall, dass in einem E-Fahrzeug während der Fahrt ein Lenkmotor ausfällt, gibt es beispielsweise einen zweiten Lenkantrieb, der die Aufgaben übernimmt. Das MOBILE-Projekt dagegen nutzt die Tatsache, dass insgesamt vier Antriebe und Lenkmotoren für die Räder vorhanden sind, und verbindet diese mit einem intelligenten Konzept. Fällt ein Antrieb aus, würde dadurch normalerweise ein Rad an beliebiger Stelle stehen bleiben. Indem die verbleibenden Antriebe sich die Aufgabe teilen, kann das Auto zumindest zur nächsten Werkstatt oder in die heimische Garage gefahren werden.

Während unser Forschungsfahrzeug Leonie Straße und Umgebung, Verkehrsregeln und -signale, sowie Verkehrsteilnehmer berechnen konnte, um autonom im Straßenverkehr zu agieren, zielt das MOBILE-Projekt auf Autonomie nach innen, erläutert Maurer. Es „verstehe“ das Zusammenspiel der elektronischen und mechanischen Komponenten, Kraft und Risiko sowie die im Umgang mit der komplexen Elektronik relativ eingeschränkten Möglichkeiten des Nutzers. (Quelle: idw)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Gehirn und Geist: Ist Denken ein mechanischer Vorgang?


Heidelberg. Denken gilt den meisten Menschen als abstrakte, vom Körper losgelöste Fähigkeit. Unser Geist habe mit dem mechanisch funktionierenden Organismus wenig zu tun. Diese Vorstellung zweifeln immer mehr Forscher heute jedoch an, berichtet das Magazin “Gehirn und Geist” in seiner neuen Ausgabe (Heft 1-2/2013). Wie Experimente von Psychologen und Neurowissenschaftlern zeigen, beeinflussen Bewegungen und andere körperliche Vorgänge das Denken viel stärker als bisher angenommen.

So verändert zum Beispiel schon die Art und Weise, wie wir einen Stift übers Papier bewegen, unsere Kreativität. Michael Slepian von der Tufts University in Medford (USA) und Nalini Ambady von der Stanford University ließen Probanden entweder geschwungene oder kantige Formen auf einem Blatt nachzeichnen. Im anschließenden Kreativitätstest schnitten jene, die die eckigen Figuren kopieren sollten, im Schnitt schlechter ab!

Wie kommt es zu solchen Effekten? Der Blick ins Gehirn liefert eine mögliche Erklärung: Wenn wir uns erinnern, nachdenken oder rechnen, sind dieselben Areale des Gehirns aktiv, die Bewegungen steuern oder Formen und Farben wahrnehmen. Betrachten wir zum Beispiel einen Hammer, dann wird ein Netzwerk unterschiedlicher Hirnareale aktiv, zu dem auch der prämotorische Kortex (PMC) gehört – jene Region, die Bewegungen vorbereitet. Offenbar spult unser Denkorgan unmittelbar eine Art “motorische Gebrauchsanweisung” ab. Das Wissen um die Handhabung von Objekten lässt sich also nicht von unserem konzeptionellen Wissen (“Das ist ein Hammer.”) trennen, resümierte der Psychologe Alex Martin von der University of Maryland in Bethesda.

Zum Hintergrund: Wahrnehmen, nachdenken, handeln – diese Funktionen sind im Gehirn nicht klar voneinander abzugrenzen. Wenn unser Körper nicht nur unsere Urteile und Emotionen beeinflusst, können wir ihn dann auch als Hilfsmittel zum Denken und Lernen nutzen? Diese Frage untersucht der Kognitionsforscher derzeit. Fast alle Kinder der Welt gebrauchen beim Rechnenlernen die Finger. Und das scheint für die Entwicklung ihrer Zahlenkompetenz von großer Bedeutung zu sein: Laut Studien können Erstklässler, die ein ausgeprägtes Körpergefühl in den Fingern haben, ein Jahr später auch besser mit Zahlen umgehen als Gleichaltrige mit weniger sensiblen Fingern.

Die Tübinger Psychologen Ulrike Cress und Hans-Christoph Nürk untersuchten 2012, ob gezielte körperliche Erfahrungen Kindern beim Mathelernen helfen. Verbessert sich beispielsweise ihr Gefühl für den Wert von Zahlen, wenn sie den Zahlenstrahl mit körperlichem Einsatz üben? “Mathe mit der Matte” heißt ein Projekt, bei dem Kinder auf einer digitalen Tanzmatte stehen, Zahlen vergleichen und je nachdem, ob eine Zahl größer oder kleiner ist, nach rechts oder nach links springen. Mit Zweitklässlern übten die Forscher einen Zahlenstrahl am Boden entlangzugehen und vorgegebene Zahl an der richtigen Stelle eintragen. Ergebnis der Studie: Die Kinder kennen anschließend nicht nur den Zahlenstrahl besser, sondern profitieren auch in anderen Bereichen der Mathematik. Die Kleineren können besser zählen, die Größeren leichter Additionsaufgaben lösen. (Quelle: Gehirn und Geist, 1 – 2 / 2013)

Buchtipps:

 

WM-Sieg des deutschen Robo-Fußballteams

Im Finale spielt das Bonner Team NimbRo gegen KMUTT aus Thailand. (c) Foto: Uni Bonn

Beim RoboCup 2011, der am Sonntag in Istanbul zu Ende ging, konnten die Fußballroboter vom Team NimbRo der Universität Bonn ihren Weltmeistertitel in der TeenSize-Klasse der Humanoid-Liga verteidigen. Auch die Serviceroboter gewannen in der @Home-Liga mit klarem Vorsprung.

Nachdem die deutschen Fußballfrauen bei der FIFA-WM gegen Japan ausgeschieden sind, war es nun an humanoiden Fußballrobotern, ihren Weltmeistertitel zu verteidigen. Die Roboter Dynaped und Bodo des Bonner Teams NimbRo trafen am Sonntag im Finale des RoboCup 2011 in Istanbul auf das Team KMUTT aus Thailand. Die Bonner Roboter waren dem Gegner klar überlegen. Obwohl der thailändische Torwart viele Schüsse halten konnte, erzielte der Bonner Feldspieler Dynaped Tor um Tor. Nach einem Halbzeitstand von 6 : 0 endete das Finale vorzeitig beim Stand von 10 : 0 für NimbRo.

Auch die Bonner Haushaltsroboter konnten sich in der @Home-Liga gegen eine starke Konkurrenz durchsetzen. Die Roboter Dynamaid und Cosero gingen schon beim ersten Test in Führung. NimbRo punktete in fast allen Tests der Vor- und Zwischenrunde und ging so mit einem komfortablen Vorsprung ins Finale. Dort stellte Cosero unter Beweis, dass er sogar einen Tisch mit einem Menschen tragen kann. Der Benutzer gab dabei die Richtung vor und führte den Roboter intiutiv durch Drücken und Ziehen am anderen Ende des Tisches. Dass er ein prima Helfer im Haushalt sein kann zeigte Cosero, indem er ein Omelett in einer Pfanne zubereitete. Dynamaid holte ein Getränk aus dem Kühlschrank. Dies überzeugte die internationale Experten-Jury. NimbRo gewann mit Abstand vor dem chinesischen Team WrightEagle.

Cosero making OmletIn der @Home-Liga mussten die Roboter zeigen, dass sie im Haushalt wichtige Aufgaben erfüllen können, etwa Personen und Objekte zu erkennen sowie Gesten richtig zu interpretieren. 19 Teams aus 14 Ländern traten in Istanbul in dieser Disziplin an. Bei den Fußballwettbewerben in der Humanoid-Liga des RoboCup geht es dagegen darum, mit Hilfe von Kameras die Spielsituation zu erfassen und im Team darauf zu reagieren. Herausforderung sind etwa auch die zügige Fortbewegung auf zwei Beinen und die Balance beim Schuss.

„Besonders freut mich der erstmalige Gewinn der @Home-Liga“, sagt Professor Dr. Sven Behnke, dessen Arbeitsgruppe Autonome Intelligente Systeme am Institut für Informatik VI die menschenähnlichen Fußballroboter und Serviceroboter entwickelt. In dieser Liga werden Technologien ersonnen, die in Zukunft dazu beitragen können, dass ältere oder hilfsbedürftige Menschen länger selbstbestimmt in der eigenen Wohnung leben können.

Die internationalen Wettbewerbe, die jährlich von der RoboCup-Federation veranstaltet werden, bringen tausende Forscher aus den Gebieten Künstliche Intelligenz und Robotik zusammen. Insgesamt nahmen in Istanbul über 400 Teams mit mehr als 2 800 Personen aus aller Welt in unterschiedlichen Ligen teil. Der Wettbewerb erlaubt den Wissenschaftlern den direkten Vergleich unterschiedlicher Ansätze in der Roboterkonstruktion, in der Umgebungswahrnehumg und der Verhaltenskontrolle. Im Anschluss findet ein wissenschaftliches Symposium statt, das den Austausch der besten Ideen fördert. (Quelle: idw, Foto oben: Im Finale spielt das Bonner Team NimbRo gegen KMUTT aus Thailand. (c) Uni Bonn ; Foto mitte: Service-Roboter Cosero von der Universität Bonn backt in einer Pfanne ein Omelett. (c) Uni Bonn)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Werden Roboter den Wissenschaftler aus Fleisch und Blut ersetzen?

Jem Rowland, Aberystwyth University Ist es möglich, einen Roboterwissenschaftler zu bauen, der neue Erkenntnisse gewinnt? Ein solcher lernfähiger, mit Künstlicher Intelligenz gefütterter Automat muss den gesamten Forschungsprozess beherrschen: Er bildet Hypothesen, testet sie durch eigenständig entworfene und durchgeführte Experimente, interpretiert die Resultate und wiederholt diesen Zyklus, bis er auf neues Wissen stößt. In der Märzausgabe von Spektrum der Wissenschaft präsentiert der Informatiker Ross D. King von der Aberystwyth University in Wales einen Apparat, der all das kann.

Der Roboter heißt Adam, sieht aber einem Menschen gar nicht ähnlich: Adam ist ein automatisches Labor von der Größe eines kleinen Bürozimmers. Die Ausrüstung umfasst unter anderem einen Kühlschrank, Vorrichtungen zum Manipulieren von Flüssigkeiten, Roboterarme, Inkubatoren und eine Zentrifuge – alles automatisiert. Natürlich besitzt Adam auch ein leistungsstarkes Computergehirn, das Schlüsse zieht und die Einzelrechner für die Hardwaresteuerung kontrolliert.

Der Forschungsroboter untersucht, wie einzellige Kleinstlebewesen wachsen, indem er bestimmte Mikrobenstämme und Nährstoffe auswählt und dann mehrere Tage lang beobachtet, wie die Kulturen gedeihen. Der Roboter kann pro Tag rund tausend solche Versuche in Gang setzen. Auf diese Weise erforscht Adam ein wichtiges und gut automatisierbares Gebiet der Biologie, die funktionelle Genomik. Sie untersucht den Zusammenhang zwischen Genen und ihrer Funktion.

Tatsächlich fand Adam einen zuvor unbekannten Zusammenhang zwischen drei Genen der Backhefe und einem bestimmten Enzym. Doch darf man Adam deshalb gleich als Wissenschaftler bezeichnen? Die Maschine ist ein Prototyp, und immer wieder muss ein Techniker eingreifen, um Fehler in der Hardware und Software zu beheben. Auch arbeiten die Softwaremodule ohne menschliche Hilfestellung noch nicht problemlos zusammen. Trotzdem: Adams Vorgehensweise, Hypothesen zu bilden und neues Wissen experimentell zu bestätigen, benötigt keine intellektuelle oder körperliche Anstrengung seitens des Menschen. In diesem Sinne arbeitet er autonom.

Unterdessen hat Kings Team einen zweiten Roboter gebaut: Eva wendet dieselben automatisierten Forschungszyklen wie Adam an, aber diesmal auf das Entwickeln und Testen von Medikamenten. Evas Forschungen konzentrieren sich auf Tropenkrankheiten wie Malaria und Schlafkrankheit. Adams automatische Kollegin hat bereits einige interessante Verbindungen gefunden, die gegen Malaria zu wirken scheinen. King ist überzeugt, dass mit fortschreitender Computertechnik und Künstlicher Intelligenz immer gewieftere Roboterwissenschaftler entstehen werden.

Ob sie jemals zu umwälzenden Erkenntnissen oder immer nur zur Routineforschung fähig sein werden, ist eine Grundfrage über die Zukunft der Naturwissenschaft. Einige Forscher meinen, durch Automatisierung sei keine wissenschaftliche Revolution zu erreichen. Andere behaupten, in hundert Jahren würde der beste Physiker eine Maschine sein. Die Zukunft wird zeigen, wer Recht behält. (Quelle: Spektrum der Wissenschaft, März 2011, Foto: Jem Rowland, Aberystwyth University )

Roboter Rhoni soll als Pflegekraft eingesetzt werden

Roboter Rhoni lernt an der Hochschule Niederrhein das Laufen. Foto: Lammertz

Rhoni (sprich Ruuni) ist ein amerikanischer Vorname, der sowohl für Jungen wie für Mädchen gewählt werden kann. Im konkreten Fall gehört er dem ersten humanoiden Roboter der Hochschule Niederrhein, der jetzt im Fachbereich Wirtschaftsingenieurwesen und Gesundheitswesen angeliefert wurde. Gebaut hat ihn die Firma H&S-Robots im Thüringischen. Studenten des Wirtschaftsingenieurwesens sollen ihm programmiererisch jetzt das Laufen beibringen, damit er in der Alten- und Krankenpflege eingesetzt werden kann.

Der oder die 1,80 Meter große Rhoni glotzt mit seinen/ihren Sensoraugen derzeit noch ziemlich verständnislos in die Welt. Dabei kann der Prototyp werksseitig schon eine ganze Menge, nur eben noch nicht laufen. Es fehlen noch die Beine, und die Fortbewegung ist der schwierigste Part, so Ben Schaefer, der Vater von Rhoni. Wie für ein menschliches Baby hat er für seinen Spross aber einen Lauflernrahmen entwickelt. Dieser Lauftrainer ermöglicht dem Roboter Bewegungsabläufe, ohne die Balance zu verlieren. Denn wer laufen will, muss gehen lernen, und unabhängig von den Bodenverhältnissen die Waage halten. Das sei eine riesige Herausforderung für Ingenieure, Techniker und Programmierer, so Schaefer, der damit zugleich große Hoffnungen auf die Entwicklerkunst der Krefelder Studierenden setzt. Sie werden von den Professoren Hans-Jürgen Buxbaum (Automatisierung und Robotik), Markus Kleutges (Technische Systeme) und Ulrich Hemmert (Organisation und Datenverarbeitung) betreut.

Irgendwann ist dann einmal der große Moment gekommen und das Lauflerngerät wird abgenommen. Dann muss Rhoni, beobachtet von seinen studentischen Vätern und Müttern, die ersten eigenen Schritte machen. “Nicht für schwache Nerven”, so Monika Schaefer, die Mutter des Erfinders. Bis es so weit ist, wird das Roboterkind auf eine rollende Antriebsplattform gesetzt, mit der es auch ohne Beine mobil sein kann. So kann es während der Testreihen mühelos von Rechner zu Rechner oder Meßgerät zu Messgerät gerollt werden. Der humanoide Roboter soll, so Professor Kleutges, für die Übernahme von Aufgaben im Pflegebereich entwickelt werden, wobei eng mit den Lehrenden und Studierenden des Gesundheitswesens im gleichen Haus zusammengearbeitet wird. Beim Aufstehen und Anziehen helfen, das Essen bringen, die Bewohner von Station zu Station fahren – in vielen Bereichen können Pflegekräfte physisch starke Hilfe gebrauchen. Auch Rhonis Äußeres wird einem Menschen angeglichen, ganz so, wie man es im Kassenschlager “I Robot” bereits sehen konnte. Ob der Roboter später eine Schürze mit Häubchen oder Hosen und einen Kittel tragen wird, bleibt abzuwarten. (Quelle: idw)

Baukastenprinzip: Uralter Welterfolg bedeutet die Zukunft für Roboter-Modelle!

Weinheim (ptx) – „ Patent-Anspruch: Die Herstellung von Modellbauten aus Leisten verschiedener Länge, welche in einer gleichmäßigen Längeneintheilung vielfach gelocht und mittelst gerader oder gekrümmter V-förmiger Splintnadeln und dazu gehöriger Keile verbunden werden, während die Flächenfüllung durch Einschieben von Platten in die an Leisten angebrachten Nuthen bewirkt wird.“ Mit diesen schlichten Worten aus einer Patentschrift des Kaiserlichen Patentamts beginnt am 8. April 1888 vor genau 120 Jahren ein beispielloser Welterfolg: der Konstruktionsbaukasten.

In einem Jahr in dem Heinrich Rudolf Hertz die Grundlagen der drahtlosen Telegrafie entdeckt, George Eastman den Rollfilm-Fotoapparat erfindet, Dunlop den Luft gefüllten Reifen einführt und der Amerikaner Burroughs sich die Additionsmaschine patentieren lässt, kommt das interessanteste technische Spielzeug vieler Generationen gerade zur rechten Zeit. Die Industrialisierung und der gewaltige technische Fortschritt in der zweiten Hälfte des 19. Jahrhunderts lassen ein Verständnis-Vakuum bei der Bevölkerung entstehen, das ausgefüllt werden muss. Besonders die in dieser Umbruchzeit heranwachsenden Kinder sind auf die technischen Neuerungen in ihrem Umfeld neugierig. So ist es auch nicht verwunderlich, dass die Patentbeschreibung des 1. Konstruktions-baukastens mit dem Satz beginnt: „Die Erfindung bezweckt, durch ein leicht zusammenfügbares und wieder auseinander nehmbares Material Bauten der verschiedensten Art herzustellen, welche sowohl als Modelle, als auch zu lehrreichem Spielzeug dienen können.“ Auch heute im Zeitalter der Elektronik ist der Konstruktionsbaukasten als Spielzeug nicht wegzudenken.

Als Erfinder ist Otto Lilienthal genannt. Das ist im ersten Moment eine Überraschung. Aber beim genauen Hinsehen entpuppen sich die Gebrüder Otto und Gustav Lilienthal nicht nur als Flugpioniere, sondern sind auch der Pädagogik und künstlerischen Erziehung zugetan. Besonders Gustav Lilienthal arbeitet in einem reformerischen Arbeitskreis mit, der Schriften wie „Die Schulen der weiblichen Handarbeit“ oder „Jugendspiel und Arbeit“ herausgibt. Zudem entsteht in Zusammenhang mit diesen Tätigkeiten 1880 der Steinbaukasten, der später unter dem Namen „Richters Anker-Steinbaukasten“ weltberühmt wird. Der Architekt und Kinderfreund Gustav Lilienthal dürfte deshalb auch –wie es aus Briefwechseln hervorgeht- der wirkliche Erfinder des 1. Konstruktonsbaukastens gewesen sein, nur kann er nicht in Erscheinung treten, da er zu diesem Zeitpunkt ohne Vermögen und somit nicht kreditwürdig ist. Bruder Otto, der Ingenieur, muss also herhalten.

Auf der Leipziger Messe 1888 zeigen die Lilienthals neben verschiedenen architektonischen Modellen auch eine Windmühle. Die Beweglichkeit über die drehende Achse ist der erste konkrete Hinweis auf entsprechende weitere Modelle, die die technische Wirklichkeit darstellen können. Doch wahrscheinlich bricht in der Folgezeit der engagierte Architekt in Gustav durch, denn seine wichtigsten Vorzeige-Modelle beschränken sich auf den Eiffelturm, die damals kühnen Konstruktionen aus Glas und Stahl und auf pompös gestaltete Bahnhöfe.

Richtig Bewegung und somit Technik bringen dann andere Hersteller wie Matador, Walthers Stabilbaukasten und Meccano Anfang des 20. Jahrhunderts ins Spiel. Heute würde man allerdings von Me-Too-Produkten sprechen, denn das übernommene Basisprinzip eines Konstruktionsbaukastens mit gelochten Leisten in gleichmäßigen Abständen und passenden Verbindungselementen haben die Lilienthals erfunden. Normalerweise wird derjenige vom Leben bestraft, der zu spät kommt. Im Fall Lilienthal ist es genau umgekehrt: Sie sind zu früh und wohl auch mit zu wenig Kapital ausgestattet. Das erfinderische und vertriebliche Know-How nutzen schließlich andere und ernten die Früchte der Lilienthals.

Neben dem Stabilbaukasten von Walther macht besonders der Metallbaukasten von Meccano Furore. 1901 in England von Frank Hornby entwickelt, wird er auch bald in Deutschland zum Kassenschlager. Allerdings dauert der Siegeszug nur bis zum 1. Weltkrieg. Dann kassiert der deutsche Staat die in Berlin angemeldeten Meccano-Patente und verkauft sie an Märklin weiter. Die Zoll-Maße bei den Lochabständen weisen noch heute auf den Ursprung hin.

Der Metallbaukasten ist jahrzehntelang der Traum aller Jungen. Da wird getüftelt, geschraubt und konstruiert. Das ist nach 1945 schnell vorbei, denn neue Werkstoffe verändern auch die Welt der Spielzeuge. Mit Kunststoffen werden die Spielzeuge unempfindlicher und zudem ist die Verformung einfacher und die Einsatzmöglichkeiten sind vielseitiger. Die Spielwaren-Industrie erkennt diesen Trend schnell und folgt ihm. Vieles, was bisher aus Holz oder Metall gefertigt war, entsteht nun aus Kunststoff. Als erstes kommt Lego auf den Markt, allerdings lediglich als „Klötzchenspiel“, denn es sind fast nur architektonische Modelle ohne Bewegung möglich. Die Technik findet dort erst richtig im Laufe der 70er Jahre statt.

Fast 80 Jahre hält das Lilienthal’sche Konstruktionsbaukasten-Prinzip aus gelochten Leisten. Erst 1964/65 kommt mit dem fischertechnik-System von Artur Fischer im wahrsten Sinn des Wortes Bewegung in die Baukastenwelt Und das natürlich gleich aus Kunststoff. Statt gelochter Leisten oder Bleche, die mit Schrauben und Muttern verbunden werden, setzt er das Prinzip der Schwalbenschwanzbefestigung ein, bei dem Zapfen in Nuten geschoben werden. So erreicht er einen hohen Grad an Modellfestigkeit und Vielseitigkeit der einzelnen Bauteile. Die sichere Befestigung ist für Fischer kein unbekanntes Gebiet, denn als einer der weltgrößten Dübelhersteller hat er schon immer mit diesem Thema zu tun gehabt. Im übrigen ist auch die Entwicklung des fischertechnik-Systems eng mit dem Dübel verbunden: Nämlich immer wenn es weihnachtet, ärgert sich Fischer über die langweiligen und einfallslosen Weihnachtsgeschenke, die er von seinen Lieferanten bekommt, und die er letztlich auch seinen Kunden überreicht. So entsteht die Idee, ein Befestigungsmittel für Kinder zu entwickeln, das gleichzeitig ein Spielzeug sein soll. An eine kommerzielle Auswertung ist zunächst gar nicht gedacht. Das Ergebnis der Tüftelei ist ein Baustein, der an allen sechs Seiten mit dem nächsten Stein zu verbinden ist. Bereits nach zwölf Monaten ist aus diesem Stein ein ganzer Bau-kasten mit unterschiedlichen Elementen geworden.

Nach über 40 Jahren auf dem Markt hat fischertechnik nicht nur bei Kindern und Jugendlichen technisches Wissen vermittelt, sondern auch ganze Generationen von Technikern in ihrer Berufswahl beeinflusst und geformt. Bei Wettbewerben wie „Jugend forscht“ spielt es immer wieder eine Rolle und in vielen Schulen sorgt das Material im Technik- oder Werkunterricht für den technischen Durchblick. Maschinenbaubetriebe setzen aus fischertechnik gebaute Nachbildungen ihrer Großanlagen zur gefahrlosen Erprobung der notwendigen elektronischen Steuerung ein. Selbst die Nachwuchsförderung in der IT-Branche erfolgt unter Einsatz von fischertechnik-Modellen. So arbeitet der Software-Konzern Microsoft mit dem Forschungszentrum Informatik an der Universität Karlsruhe zusammen und lehrt Studenten, wie Roboter-Modelle aus dem Konstruktionsbaukasten mit passgenauen Programmen zum Laufen zu bringen sind.

Die Gebrüder Lilienthal gelten als die Luftfahrtpioniere. Dass sie den Konstruktionsbaukasten erfunden haben, ist weitgehend unbekannt oder wird in der Bedeutung vernachlässigt. Doch beide Erfindungen bzw. Pioniertaten können in der Weiterentwicklung als gleichbedeutend betrachtet werden, denn viele der heute bedeutenden Konstrukteure und Ingenieure haben ihre ersten Schritte in das Reich der Technik mit einem Konstruktionsbaukasten begonnen.
Dieter Tschorn