Schlagwort-Archive: Teilchenphysik

Warum das Standardmodell der Teilchenphysik nur eine Zwischenlösung ist

Das Problem mit der Feinjustierung

Das Standardmodell ist wohl die umfassendste Theorie, die es jemals gab. Dennoch sehen Teilchenphysiker damit das Ende der Physik noch längst nicht erreicht und suchen eifrig nach neuen Theorien. Dabei motivieren sie nicht etwa irgendwelche inneren Widersprüchen des Modells oder experimentelle Zwänge, sondern allein die Ästhetik.

Ein Physikprofessor soll Max Planck am Ende des 19. Jahrhunderts dazu geraten haben, nicht Physik zu studieren. Schließlich sei dort, abgesehen von wenigen Lücken, bereits alles erforscht. Heute hätte wohl kein Hochschullehrer mehr solche Bedenken. Dieses vorherrschende Gefühl lässt sich allerdings nur teilweise fachlich begründen. Es ist vor allem mit Problemen der Wissenschafts- und Erkenntnistheorie verbunden.

Viele Galaxien vor schwarzem Hintergrund. In der Mitte befindet sich ein hantelfömiger, rosa Klumpen, an dessen beiden Seiten ein blauer Klumpen angrenzt.
Indirekter Nachweis von Dunkler Materie

Obwohl das Standardmodell der Teilchenphysik gegenwärtig wohl die umfassendste Theorie darstellt, kann es einige Phänomene vom Prinzip her nicht beschreiben. Allem voran steht hier die Gravitation. Zudem gibt das Standardmodell keine Antwort auf die Frage nach Dunkler Materie oder Dunkler Energie, auf die astrophysikalische und kosmische Beobachtungen hinweisen. Deshalb sehen die meisten Teilchenphysiker das Standardmodell nur als eine Stufe auf dem Weg zu einer noch umfassenderen und in gewissem Sinne „einfacheren“ oder „schöneren“ Theorie – Begriffe und Ziele, die mehr philosophisch motiviert sind, als aus immanenten Problemen der Wissenschaft zu folgen.

Das Standardmodell wird demnach oft nur als sogenannte effektive Theorie verstanden, die im Bereich niedriger Energien als Grenzfall einer weitreichenderen Theorie fungiert. Dieses Verhalten kennt man bereits aus anderen Teilgebieten der Physik, wie beispielsweise der klassischen Mechanik: Alle physikalischen Phänomene bei Geschwindigkeiten und Abständen des Alltagslebens – also deutlich langsamer als Licht und deutlich größer als ein Atom – werden durch diese Theorie völlig adäquat beschrieben. Heute versteht man die klassische Mechanik aber als Grenzfall der Relativitätstheorie beziehungsweise der Quantenmechanik.

Vom Standardmodell wissen wir nur, dass es bei Abständen von mindestens einem Milliardstel des Atomdurchmessers gilt. Genauer können die heutigen Beschleuniger nicht auflösen. Für Elementarteilchen wird die Gravitation aber erst bei Abständen relevant, die noch etwa eine billiardemal kleiner sind. Die Sensitivität von Teilchenbeschleunigern wird wohl nie auch nur in die Nähe dieser sogenannten Plancklänge vordringen. Alerdings legt die Struktur des Standardmodells nahe, dass man bereits bei deutlich größeren Abständen Hinweise auf eine übergeordnete Theorie finden sollte.

Keine einfache Theorie

Zwar beruht das Standardmodell im Wesentlichen auf wenigen Prinzipien – vor allem der Eichsymmetrie –, aber dennoch sind 27 Parameter notwendig, die nicht a priori durch die Theorie festgelegte Werte besitzen und durch Messungen bestimmt werden müssen. Diese Zahl erscheint einerseits zu groß, um von einer „schönen“ und „einfachen“ Theorie zu sprechen. Andererseits zeigen einige der Parameter gewisse Regelmäßigkeiten oder Hierarchien, die alles andere als zufällig wirken, deren Ursachen man aber derzeit nicht kennt.

Ein Beispiel: Es existieren zwölf Materieteilchen, die sich in drei fast identische Familien einordnen lassen. Warum existieren diese Wiederholungen? Hauptsächlich unterscheiden sich die Familien durch die Massen der zugehörigen Teilchen. Das Topquark ist beispielsweise mehr als eine Trillion Mal schwerer als das leichteste Neutrino. Welche Ursache hat dieses gewaltige Massenspektrum? Der Higgs-Mechanismus „erzeugt“ zwar Massen, leistet für diese Strukturen aber keinerlei Erklärungen.

Für jedes Elementarteilchen gibt es ein Schildchen, auf dem dessen Masse sowie Nachweisjahr notiert sind. Angeordnet sind die Schildchen in einem Diagramm, in dem Masse und Nachweisjahr gegeneinander aufgetragen sind.
Massenspektrum der Elementarteilchen

Diese und noch andere Eigenschaften des Standardmodells weisen darauf hin, dass es eine neue, umfassendere Theorie geben sollte. Die Suche nach dieser neuen Theorie beruht weitgehend auf Prinzipien wie Einfachheit, Schönheit oder Natürlichkeit. Einer der wichtigsten Ansatzpunkte ist hier natürlich der Higgs-Mechanismus. Von vielen Physikern wird dieser nur als Hilfskonstruktion gesehen, der unter Umständen auf einen tiefer liegenden Mechanismus hindeutet. Denn auch hier finden sich noch einige Schönheitsfehler.

Laut der Theorie wäre das Higgs-Boson das einzige fundamentale Teilchen ohne Eigendrehimpuls. Was erst einmal wie eine kleine Randnotiz aussieht, erweist sich als gravierendes theoretisches Problem. Aus der Wechselwirkung mit den allgegenwärtigen quantenmechanischen Fluktuationen des Vakuums – hier entstehen und verschwinden laufend kurzlebige Teilchen-Antiteilchen-Paare – erhält jedes Teilchen einen Beitrag zu seiner Masse. Die Differenz zwischen dieser „Strahlungsmasse“ und der im Experiment beobachteten physikalischen Masse des Teilchens ergibt die „nackte Masse“. Letztere beschreibt also die Masse, die das Teilchen hypothetisch hätte, wenn es keine Vakuumfluktuationen gäbe.

Unter bestimmten Annahmen lässt sich die Strahlungsmasse für jedes Teilchen berechnen. Bei Teilchen mit einem Spin größer als Null, wie etwa Elektronen und Quarks, fällt die Strahlungsmasse klein aus. Die nackte Masse entspricht damit ungefähr der physikalischen Masse. Anders beim Higgs-Teilchen: Hier hängt die Strahlungsmasse vom Quadrat der höchsten Energie ab, an der das Standardmodell noch Gültigkeit besitzt. Sollte das Standardmodell tatsächlich bis zu Abständen von der Größenordnung der Plancklänge gelten, wäre die Strahlungsmasse hundert Billionen Mal größer als die physikalische Masse des neu entdeckten Teilchens von etwa 125 Gigaelektronenvolt. Es sieht also so aus, als ob die nackte Masse und die Strahlungsmasse fast exakt entgegengesetzt gleich groß wären und sich über viele Größenordnungen kompensieren.

Von neuen Symmetrien und Unteilchen

Formal stellt dies zwar kein Problem dar, aber eine solche enorme Feinjustierung schreit förmlich nach einer Erklärung. Schließlich handelt es sich bei nackter und Strahlungsmasse um zwei völlig verschiedene Dinge. Warum sollten sie also über dreißig Größenordnungen denselben Zahlenwert aufweisen? Eine Lösung dieses Feinjustierungsproblems könnte sein, dass das Standardmodell bereits bei relativ niedrigen Energien – beziehungsweise großen Abständen – durch eine übergeordnete Theorie ersetzt wird. In den meisten Fällen resultieren solche Theorien in neuen Teilchen, die dann am LHC entdeckt werden könnten.

Abgebildet ist eine alte Waage mit zwei Waagschalen. Die nackte Masse als Kugel auf der einen, die Strahlungsmasse als Tetraeder auf der anderen Seite. Der Zeiger der Waage steht genau auf 125 Gigaelektronenvolt.
Nackte Masse und Strahlungsmasse

Die neuen Theorien sind also weder durch irgendwelche inneren Widersprüche des Standardmodells noch durch experimentelle Zwänge motiviert, sondern allein durch Ästhetik. Das Feinjustierungsproblem war in den vergangenen Jahrzehnten wohl die wichtigste Triebfeder beim sogenannten Model Building – der Suche nach Modellen jenseits des Standardmodells. Oft entstehen dabei geniale, revolutionäre, mitunter vielleicht sogar abstruse Ideen, die neue Symmetrien, zusätzliche Raumdimensionen oder völlig neuartige Objekte wie beispielsweise „Unteilchen“ postulieren, und natürlich alle möglichen Kombinationen davon. Die Entdeckung des neuen Teilchens am LHC und das gleichzeitige Fehlen von Signalen anderer neuer Teilchen bedeutet für viele dieser Ideen allerdings das abrupte und definitive Ende.

Physiker und Philosophen stellen sich gleichermaßen die Frage, ob das schwer quantifizierbare Problem der Feinjustierung (Wie viel Feinjustierung ist erlaubt?) wirklich das Kriterium für neuartige Theorien sein kann, oder ob es sich dabei nur scheinbar um ein Problem handelt. Auch diese Frage verschärft sich vor dem Hintergrund der bisherigen Ergebnisse des LHC.

Bislang gibt es keinen Hinweis darauf, dass eine der vorgeschlagenen neuen Theorien verwirklicht ist. Viele Theorien, die das Feinjustierungsproblem lösen oder umgehen wollen, führen zu Ergebnissen, die im Widerspruch zu Messungen stehen. Dies bewirkt eine hohen Dynamik bei der Entwicklung von Modellen, die oft auf sehr eleganten Ideen beruhen, dann aber sehr unattraktiven Modifikationen unterworfen werden müssen, um im Einklang mit den Messungen zu bleiben. Theorien werden zwar selten verworfen, aber oft irgendwann nur noch von einigen hartgesottenen Anhängern verfolgt.

Sollte das Feinjustierungsproblem allerdings real sein, dürfte es in einem Energiebereich gelöst werden, in den der LHC in den nächsten fünf bis sechs Jahren vordringen soll. Dann lassen sich auch Teilchen aufspüren, die bis zu zehnmal schwerer sind als das im Juni 2012 entdeckte Boson. (Quelle: Welt der Physik, Lizenz: CC by-nc-nd)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Überraschendes Experiment: Neutrinos schneller als das Licht?



Unter der Leitung des Berner Teilchenphysikers Antonio Ereditato hat eine internationale Forschungskollaboration im OPERA-Experiment am CERN Erstaunliches entdeckt: Neutrinos sind schneller unterwegs als das Licht, welches bisher die höchste existierende Geschwindigkeit war.

«Dieses Resultat ist eine komplette Überraschung», sagt Antonio Ereditato, Professor für Hochenergiephysik an der Universität Bern und Leiter des OPERA-Projekts: Die Teilchenphysiker haben im sogenannten OPERA-Experiment herausgefunden, dass Neutrinos, die unterirdisch vom CERN in Genf losgeschickt werden und nach einer 730 Kilometer langen Reise durch die Erde schliesslich ein Untergrund-Labor in den Bergen bei Rom erreichen, schneller unterwegs sind als das Licht. Dies teilt das CERN, das Europäische Laboratorium für Teilchenphysik, heute Freitag, 23. September 2011, mit. «Die Neutrinos sind signifikante 60 Nanosekunden schneller am Ziel, als man dies mit Lichtgeschwindigkeit erwarten würde», so der OPERA-Leiter. Eine Publikation der Daten folgt, und Antonio Ereditato stellt klar: «Dieses Ergebnis kann grosse Auswirkungen auf die geltende Physik haben – so gross, dass zurzeit eine Interpretation schwierig ist. Weitere Experimente für die Bestätigung dieser Daten müssen unbedingt folgen.»

Die Besonderheiten der Neutrinos

Neutrinos sind winzige Elementarteilchen, die Materie praktisch widerstandslos durchdringen. Ihre Spuren sind schwierig aufzuspüren, da sie nicht geladen sind und kaum mit ihrer Umgebung interagieren. Neutrinos kommen in drei verschiedenen Typen vor: Elektron-, Müon- und Tau-Neutrinos. Sie können sich auf einer langen Flugstrecke von einem Typ in einen anderen verwandeln. In der Elementarteilchenphysik wird diese Umwandlung «Neutrino-Oszillation» genannt.

Das OPERA-Projekt wurde 2006 gestartet, um die Umwandlung von verschiedenen Neutrino-Typen ineinander zu beweisen – was den Forschenden aus der Kollaboration von 13 Ländern auch gelang; letztes Jahr wurde die Verwandlung von Müon-Neutrinos in Tau-Neutrinos nachgewiesen.

Mit Atomuhren auf Nanosekunden genau

Die Daten, die im OPERA-Experiment in den letzten drei Jahren gesammelt wurden, weisen neben der Neutrino-Oszillation nun auch die Abweichung bei der erwarteten Geschwindigkeit der Kleinstteilchen nach: Eine aufwändige und hochpräzise Analyse von über 15’000 Neutrinos weist «die winzige, aber signifikante Differenz zur Lichtgeschwindigkeit nach», wie das CERN mitteilt. Die 60 Nanosekunden Zeitunterschied auf der Strecke CERN-Rom hat die OPERA-Kollaboration mit Expertinnen und Experten vom CERN sowie unter anderem mit Hilfe des nationalen Metrologieinstituts METAS in einer Hochpräzisions-Mess-Serie überprüft: Mit Hilfe von GPS und Atomuhren wurde die Flugdistanz auf 10 Zentimeter genau bestimmt und die Flugzeit auf 10 Milliardstel einer Sekunde – also auf Nanosekunden – genau gemessen. (Quelle: idw)

Buchtipp:
Supervereinigung: Wie aus nichts alles entsteht. Ansatz einer großen einheitlichen Feldtheorie

Weltformel: Was wird uns CERN und der mächtigste Tempel der modernen Physik bringen?

Im Mai 2008 wird mit dem Large Hadron Collider (LHC) am Europäischen Zentrum für Teilchenphysik CERN in Genf der beeindruckendste Tempel der modernen Physik in Betrieb genommen. Es ist der mächtigste Teilchenbeschleuniger der Welt. Was bisher technisch unmöglich schien, soll im LHC umgesetzt werden: In der 27 km langen ringförmigen Riesenmaschine prallen Protonen mit nahezu Lichtgeschwindigkeit aufeinander. Dafür wird ein Magnetfeld erzeugt, das 180.000 mal so stark ist wie das der Erde. Dieses kann nur bei einer Temperatur nahe dem absoluten Kältepunkt bestehen – minus 271,3 Grad Celsius. Beeindruckender noch als die zahlreichen technischen Rekorde sind die Erwartungen: Der LHC könnte unser Bild vom Universum revolutionieren.

Der Large Hadron Collider LHC am Europäischen Zentrum für Teilchenphysik CERN in Genf, der Teilchenkollisionen bei höchsten Energien liefern wird, steht nach mehr als zehn Jahren Planungs- und Bauzeit kurz vor der Inbetriebnahme. Die gigantische Beschleunigeranlage, unterirdisch in einem Ringtunnel von 27 Kilometer Umfang untergebracht, und ihre nicht weniger eindrücklichen Detektoren, so gross wie mehrstöckige Häuser und vollgepackt mit Elektronik, werden es ermöglichen, fundamentale Physikphänomene zu studieren, wie sie ganz kurz nach dem Urknall vorgekommen sind. Die entsprechenden Experimente werden seit 15 Jahren in weltweiten Kollaborationen vorbereitet.

Die beiden Schlüsselexperimente ATLAS und CMS sollen viele der wichtigsten offenen Fragen der Physik beantworten: Warum haben Teilchen eine Masse, was ist die unsichtbare ‘Dunkle Materie’ im Universum, gibt es zusätzliche Raumdimensionen, lassen sich die heute bekannten kleinsten Bausteine (Quarks und Leptonen) der Materie noch weiter teilen? Die Hoffnungen auf neue Entdeckungen sind gross, seit Jahrzehnten wurde kein so kühner Schritt ins Neuland der Physik gewagt.
(Unter Verwendung einer Mitteilung vom Informationsdienst Wissenschaft)

Ob uns das LHC Erkenntnisse über die Weltformel bringen wird ist offen, insbesondere da einer der Magier der modernen Physik und Nobelpreisträger von 1998, Robert B. Laughlin, behauptet, man müsste die Physik neu erfinden. Die Suche nach der Weltformel würde dagegen mittelalterlichem Denken ähneln. Allerdings deutet Laughlin nur vage an, wie die Neuerfindung der Physik aussehen müsste.

Einfacher hat es der Protagonist Professor Allman im Sciece-Fiction Roman “Professor Allman – Auf der Suche nach der Weltformel”. Er hat eine Zeitmaschine, den Timeponder erfunden und macht sich mit deren Hilfe auf die Suche nach der Weltformel, indem er sich durch Raum und Zeit in parallele Universen transponiert. Das ist spannende Unterhaltung pur, die “Wunder der Wissenschaft” als Fantasy erscheinen lässt.

Video über den LHC in CERN:

[]