Schlagwort-Archive: unsterbliches Bewusstsein

Wie Hunde menschliche Emotionen verstehen

KognitionsforscherInnen der Vetmeduni Vienna wiesen erstmals nach, dass Hunde zwischen fröhlichen und zornigen Menschengesichtern unterscheiden können. Voraussetzung dafür: Die Hunde müssen diese Emotionen zuvor beim Menschen gelernt haben. Diese Fähigkeit könnte das Resultat der engen Mensch-Tier-Beziehung sein, in der Hunde gelernt haben, Aspekte der nonverbalen Kommunikation der Menschen zu verstehen. Die Ergebnisse wurden in der renommierten Fachzeitschrift Current Biology veröffentlicht.

Hunde können die Gesichter verschiedener Menschen auf Bildern unterscheiden. Diese Fähigkeit haben die Forschenden des Messerli Forschungsinstitutes bereits 2013 nachgewiesen. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807667/) Ob Hunde auch Emotionen in Gesichtern von Artfremden wahrnehmen können, wurde bisher noch nicht zweifelsfrei nachgewiesen.

Hunde unterscheiden menschliche Emotionen via Touch-Screen

Corsin Müller und Ludwig Huber vom Messerli Forschungsinstitut haben diese Fähigkeit gemeinsam mit Kolleginnen im Clever Dog Lab an der Vetmeduni Vienna erforscht. Sie präsentierten 20 Hunden jeweils ein fröhliches und ein zorniges Frauengesicht nebeneinander auf einem Touch-Screen.

Hunde der einen Testgruppe wurden in der Übungsphase darauf trainiert, nur fröhliche Gesichter anzustupsen. Eine andere Gruppe sollte nur zornige Gesichter auszuwählen.
Um auszuschließen, dass sich die Tiere lediglich an auffälligen Bildunterschieden wie den hervorscheinenden Zähnen oder den Zornesfalten zwischen den Augen orientieren, zerteilten die Forschenden die Bilder horizontal. Die Hunde bekamen währen der Trainingsphasen also entweder nur die Augen- oder die Mundpartie zu sehen.

Und tatsächlich waren die Treffer nicht zufällig. Die meisten Hunde lernten zwischen fröhlichen und zornigen Gesichtshälften zu unterscheiden und schafften anschließend die korrekte Zuordnung auch spontan für komplett neue Gesichter, ebenso wie für die Gesichtshälften, die sie in der Übungsphase nicht zu sehen bekommen hatten.

Hunde erlernen das Erkennen von fröhlichen Gesichtern schneller

Hunde, die auf fröhliche Menschengesichter trainiert waren, erlernten ihre Aufgabe wesentlich schneller, als jene, die nur die zornigen Gesichter anzeigen sollten. „Es sieht so aus, als würden die Hunde Hemmungen haben, zornige Gesichter anzustupsen“, erklärt der Studienleiter Ludwig Huber.

„Wir gehen davon aus, dass die Hunde bei dieser Übung aus ihrer Erinnerung schöpfen. Sie erkennen einen Gesichtsausdruck, den sie bereits abgespeichert haben“, erklärt der Erstautor Corsin Müller. „Wir vermuten, dass Hunde, die keine Erfahrungen mit Menschen haben, schlechter abschneiden würden oder die Aufgabe gar nicht lösen könnten.“

Hunde sind unterschätzte Tiere

Hunde verfügen zwar über einen höher entwickelten Geruch- und Gehörsinn als der Mensch, der Sehsinn der Vierbeiner ist jedoch etwa sieben Mal schlechter entwickelt. „Dass Hunde die menschliche Gefühlswelt auf diese Art wahrnehmen können, war bisher noch nicht bekannt. Um die Entwicklung dieser Fähigkeiten noch besser zu verstehen, wollen wir diese Tests am Touch-Screen in Zukunft auch mit Wölfen am Wolf Science Center durchführen“, so Huber.

Seit drei Jahren forscht das Team um Ludwig Huber im WWTF-Projekt „Like me“ daran, ob sich Hunde in die Gefühlswelt von Artgenossen oder Menschen einfühlen können. Projektpartner an der MedUni Wien und der Universität Wien erforschen entsprechend die empathischen Fähigkeiten der Menschen. (Quelle: idw).

Buchtipps:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit
Quantenbewusstsein: Natürliche Grundlagen einer Theorie des evolutiven Quantenbewusstseins

Merken

Elektronen auf frischer Tat beim Tunneln ertappt

Was sich wie ein Delikt anhört, nämlich das »Tunneln« ist ein ganz normaler quantenphysikalischer Vorgang. Erstmals ist es nun gelungen Elektronen live zu beobachten, wie sie die Atome verließen, von denen sie gefangen gehalten wurden (Heraustunneln).

Der Tunneleffekt erklärt unter anderem, wie es zur Kernfusion in der Sonne kommt oder auch die Funktionsweise des Raster-Tunnelmikroskops, mit dem man bis zu 100-Millionenfach vergrößern kann. Der Fernsehprofessor der Physik, Harald Lesch, demonstriert in der Bildungssendung Alpha Centauri eindrucksvoll, was es mit diesem Phänomen »Tunneleffekt« auf sich hat. Zu Beginn schwebt er durch die Tafelwand der Fernsehkulisse, so wie ein Geist, den keine Barriere von einem Spuk abhalten kann. Gleich darauf nimmt er wieder eine feste Gestalt an und erklärt, dass der Zuschauer seine Vorführung mit Vorsicht genießen soll. Mit dieser Warnung hat er wohl recht. Denn wenn ein Zuschauer es ihm gleich tun wollte, würde er nur Beulen und blaue Flecke davontragen. Die Wahrscheinlichkeit, dass Menschen durch Wände gehen können, ist verschwindend gering. Nur mikroskopischen Quantenobjekten wie Elektronen oder Protonen gelingt dieses Kunststück mit deutlich höherer Wahrscheinlichkeit.

Man kann den Effekt am Beispiel einer Kugel erklären, die ein Mensch mit Schwung einen Hügel hochrollen lässt. Wenn die Energie, welche der Kugel mitgegeben wird, nicht genügt, rollt die Kugel immer wieder zurück, anstatt die Kuppe zu überwinden und ins nächste Tal zu gelangen. In der Quantenphysik besteht dagegen für Quantenobjekte die Möglichkeit den Potentialwall, wie der Hügel genannt wird, zu durchtunneln. In einem Augenblick befindet sich das Quantenobjekt noch vor dem Potentialwall und im nächsten Augenblick schon dahinter im nächsten Tal. Es ist ein sprunghafter Übergang ohne Zwischenzustände.

Heraustunneln von Elektronen aus Atomen

Noch niemand konnte bisher das Quanten-Tunneln in Echtzeit beobachten. Dieses Kunststück ist nun Physikern des Max-Planck-Instituts für Quantenoptik gelungen. Sie haben das Heraustunneln von Elektronen aus einem Atom erstmals in live verfolgt. Die elektrischen Kräfte innerhalb eines Atoms halten normalerweise jene Elektronen fest, die sich in seinem Inneren aufhalten. Die Kräfte bilden den Potentialwall, den es zu überwinden gilt, wenn sich ein Elektron aus dem Atom herauslösen soll.

Der Trick der Max-Planck-Physiker bestand darin, mit Hilfe von Attosekunden-Laserblitzen die Elektronen näher an den Rand ihres Atomgefängnisses zu bringen. Eine Attosekunde ist milliardster Teil einer milliardstel Sekunde und damit unvorstellbar kurz. Der Laserblitz vergrößert die Wahrscheinlichkeit, dass die Elektronen aus ihrem Atomgefängnis entkommen können. Und tatsächlich, nach einem zweiten Laserblitz, der die Breite des Potentialwalls ein wenig verringerte, nutzen die Elektronen die Gelegenheit, um herauszutunneln.

Atome, denen ein Elektron fehlt, sind positiv geladen. Als die Physiker im Anschluss an das Experiment die positiv geladenen Atome zählten, waren sie nicht schlecht überrascht, dass zahlreiche Elektronen entkommen waren. Noch interessanter ist aber die Feststellung, dass der Zeitbedarf für das Heraustunneln praktisch kaum messbar ist, sodass die Physiker annehmen, der Tunnelprozess benötige überhaupt keine Zeit. Die Erkenntnisse sollen helfen, bessere Röntgenlaser für die medizinische Therapie zu entwickeln.

Tunneleffekt und Hirnforschung

In der Hirnforschung kann das quantenmechanische Tunneln möglicherweise eine Erklärung für die Geschwindigkeit von bewussten Denkprozessen liefern. Die einzelnen Neuronen des Gehirns werden durch Schnittstellen verbunden, die Synapsen heißen. Diese besitzen einen winzigen Spalt, der überwunden werden muss, wenn ein Signal von Neuron zu Neuron übertragen werden soll. Die herkömmliche Theorie besagt nun, dass zur Übertragung von Signalen an den Synapsen, das ursprünglich elektrische Signal in ein chemisches umgewandelt werden muss. Die Theorie kann aber nicht die Geschwindigkeit von bewussten Denkprozessen erklären. Wie jeder weiß, der schon mal einen Akku am Stromnetz geladen hat, benötigt die Umwandlung von elektrischer Energie in chemische erhebliche Zeit. Würde die herkömmliche Theorie stimmen, müsste Denken schneckengleich langsam sein. Weil das der Erfahrung widerspricht, nehmen einige Hirnforscher an, dass der extrem schnelle quantenmechanische Tunneleffekt zur Überwindung des synaptischen Spalts eine Rolle spielt. Sollte man das experimentell bestätigen können, hätte man gleichzeitig eine Verbindung von Bewusstsein zur Welt der Quanten mit all ihren seltsamen Phänomenen gefunden. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs mit dem Titel »Unsterbliches Bewusstsein, Raumzeit-Phänomene, Beweise und Visionen« in dem aufgrund quantenphysikalischer Phänomene die Existenz von Bewusstsein auch außerhalb des Gehirns nachgewiesen wird.

Elektronen an zwei Orten gleichzeitig

Video: Die Quantenphysik

In einer Art molekularem Doppelspaltexperiment haben Wissenschaftler des Fritz-Haber-Instituts (FHI) der Max-Planck Gesellschaft in Zusammenarbeit mit Forschern vom California Institute of Technology in Pasadena/USA erstmals an Elektronen nachgewiesen, dass diese gleichzeitig Eigenschaften von Welle und Teilchen besitzen und quasi per Knopfdruck zwischen beiden Zuständen hin- und hergeschaltet.

Vor hundert Jahren begann man den in der Naturphilosophie postulierten dualen Charakter der Natur auch auf der Ebene elementarer physikalischer Vorgänge schrittweise zu erkennen. Albert Einstein war der erste, der 1905 diese Konsequenz aus Plancks Quantenhypothese zog. Er ordnete dem eindeutig als elektromagnetische Welle bekannten Photon Teilchencharakter zu. Dies ist die Quintessenz seiner Arbeit zum Photoeffekt. Später war es vor allem deBroglie, der 1926 erkannte, dass alle uns als Teilchen bekannten Bausteine der Natur – Elektronen, Protonen etc. – sich unter bestimmten Bedingungen wie Wellen verhalten.
Die Natur in ihrer Gesamtheit ist also dual; kein einziger ihrer Bestandteile ist nur Teilchen oder Welle. Niels Bohr führte zum Verständnis dieser Tatsache 1923 das Korrespondenz-Prinzip ein, das vereinfacht besagt: Jeder Bestandteil der Natur hat sowohl Teilchen- als auch Wellencharakter und es hängt nur vom Beobachter ab, welchen Charakter er gerade sieht. Anders gesagt: Es hängt vom Experiment ab, welche Eigenschaft – Teilchen oder Welle – man gerade misst. Dieses Prinzip ist als Komplementaritätsprinzip in die Geschichte der Physik eingegangen.

Albert Einstein war diese Abhängigkeit der Natureigenschaften vom Beobachter Zeit seines Lebens suspekt. Er glaubte, es müsse eine vom Beobachter unabhängige Realität geben. Doch die Quantenphysik hat die Tatsache, dass es keine unabhängige Realität zu geben scheint, im Laufe der Jahre einfach als gegeben akzeptiert, ohne sie weiter zu hinterfragen, da alle Experimente sie immer wieder und mit wachsender Genauigkeit bestätigt haben.

Bestes Beispiel ist das Young’sche Doppelspaltexperiment. Bei diesem Doppelspaltexperiment lässt man kohärentes Licht auf eine Blende mit zwei Schlitzen fallen. Auf einem Beobachtungsschirm hinter der Blende zeigt sich dann ein Interferenzmuster aus hellen und dunklen Streifen. Das Experiment kann aber nicht nur mit Licht, sondern auch mit Teilchen wie z. B. Elektronen durchgeführt werden. Schickt man einzelne Elektronen nacheinander durch den offenen Young’schen Doppelspalt, erscheint auf der dahinterstehenden Photoplatte ein streifenförmiges Interferenzmuster, das keinerlei Information über den Weg, den das Elektron genommen hat, enthält. Schließt man jedoch einen der beiden Spalte, so erscheint auf der Photoplatte ein verwaschenes Abbild des jeweils offenen Spaltes, aus dem man den Weg des Elektrons direkt ablesen kann. Eine Kombination aus Streifenmuster und Lagebild ist in diesem Doppelspaltexperiment jedoch nicht möglich, dazu bedarf es eines molekularen Doppelspaltexperiments.

Obwohl jedes Elektron einzeln durch einen der beiden Spalte zu laufen scheint, baut sich am Ende ein wellenartiges Interferenzmuster auf, als ob sich das Elektron beim Durchgang durch den Doppelspalt geteilt hätte, um sich danach wieder zu vereinen. Hält man aber einen Spalt zu oder beobachtet man, durch welchen Spalt das Elektron geht, verhält es sich wie ein ganz normales Teilchen, das sich zu einer bestimmten Zeit nur an einem bestimmten Ort aufhält, nicht aber an beiden gleichzeitig. Je nachdem also, wie man das Experiment ausführt, befindet sich das Elektron entweder an Ort A oder an Ort B oder an beiden gleichzeitig.
Das diese Doppeldeutigkeit erklärende Bohrsche Komplementaritäts-Prinzip fordert aber zumindest, dass man nur eine der beiden Erscheinungsformen zu einer gegebenen Zeit in einem gegebenen Experiment beobachten kann – entweder Welle oder Teilchen, aber nicht beides zugleich. Entweder ist ein System in einem Zustand des wellenartigen “Sowohl-als-auch” oder aber des teilchenartigen “Entweder-oder” in Bezug auf seine Lokalisierung.

In jüngster Zeit hat eine Klasse von Experimenten ergeben, dass diese verschiedenen Erscheinungsformen der Materie ineinander überführbar sind, das heißt, man kann von einer Form in die andere schalten und unter bestimmten Bedingungen wieder zurück. Diese Klasse von Experimenten nennt man Quantenmarker und Quantenradierer. Sie haben in den letzten Jahren an Atomen und Photonen und seit jüngstem auch an Elektronen gezeigt, das es ein Nebeneinander von “Sowohl-als-auch” und “Entweder-oder” für alle Formen der Materie gibt, also eine Grauzone der Komplementarität. Es gibt demzufolge experimentell nachweisbare Situationen, in denen die Materie sowohl als Welle aber auch als Teilchen gleichzeitig in Erscheinung tritt.

Beispiele dafür sind die Atom-Interferometrie, wo dieses Verhalten 1997 erstmalig bei Atomen, d.h. zusammengesetzten Teilchen, gefunden wurde. In der Ausgabe [nature, 29. September 2005] berichten die Berliner Max-Planck-Forscher gemeinsam mit Forschern vom California Institute of Technology in Pasadena/USA nun von molekularen Doppelspaltexperimenten. Diese beruhen darauf, dass sich Moleküle mit identischen und damit spiegelsymmetrischen Atomen wie ein von der Natur aufgebauter mikroskopisch kleiner Doppelspalt verhalten. Dazu gehört Stickstoff, wo sich jedes Elektron – auch die hochlokalisierten inneren Elektronen – an beiden Atomen gleichzeitig aufhält. Ionisiert man nun ein solches Molekül etwa mit weicher Röntgenstrahlung, führt diese Eigenschaft zu einer wellenartig streng gekoppelten Emission eines Elektrons von beiden atomaren Seiten, genauso wie im Doppelspaltexperiment mit Einzelelektronen.

Die Experimente wurden von Mitarbeitern der Arbeitsgruppe “Atomphysik” des FHI an den Synchrotronstrahlungslaboren BESSY in Berlin und HASYLAB bei DESY in Hamburg durchgeführt. Die Messungen mittels einer Multi-Detektoranordnung für kombinierten Elektronen- und Ionen-Nachweis fanden hinter so genannten Undulator-Strahlrohren statt, die weiche Röntgenstrahlung mit hoher Intensität und spektraler Auflösung liefern. Quelle: idw

Wenn sich jedes Elektron an zwei Orten gleichzeitig aufhalten kann, wie im vorletzten Absatz angeführt, dann hat das Folgen für unser Weltbild. Welche Folgen das sind, ist im Sachbuch mit dem Titel  Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen näher beschrieben.

Künstliche Lebewesen aus der Retorte

Die synthetische Biologie ist ein junger Forschungszweig, der sich anschickt, in einer Art zweiter Schöpfung nach vier Milliarden Jahren ein künstliches Lebewesen aus der Retorte zu erschaffen. Forscher wie Tom Knight, Drew Endy und Randy Rettberg (MIT Cambridge, USA) entwerfen nach dem Legoprinzip zunächst modulare biologische Bausteine die sogenannten »BioBricks«. Diese Biobricks erfüllen definierte biologische Aufgaben, analog den elektronischen Schaltkreisen, wie sie in Mikroprozessoren (Computer) zu finden sind.

Biobricks befinden sich in der experimentellen Phase und werden bereits in die »Baupläne des Lebens« von Bakterien eingebaut. In ersten Erfolgen hat die kalifornische Firma LS9 das Darmbakterium Escherichia coli reprogrammiert. Nun erzeugt das Bakterium Biosprit aus Mais-Sirup und Zuckerrohr.

Als Bauplan des Lebens oder DNA bezeichnet man ein in allen Lebewesen vorkommendes Biomolekül, welches die komplette Erbinformation (Genom) trägt. DNA besteht aus zwei parallelen Strängen, die einander schraubenartig umlaufen (Doppelhelix). Die Stränge sind durch Sprossen miteinander verbunden. So eine Sprosse wird als Basenpaar bezeichnet, weil sie aus zwei sich ergänzenden Basen und einer Wasserstoffbrücke gebildet wird. Chemisch gesehen handelt es sich bei der Base um ein Nukleotid, welches zu den vier Gruppen der Biomoleküle gehört. Ein Basenpaar stellt die unterste Informationseinheit der DNA dar und entspricht zwei Bit herkömmlicher Information. Die Abschnitte der DNA, welche die Information über die einzelnen Erbanlagen enthalten, werden Gene genannt. Bei Katzen kann beispielsweise ein Gen das Merkmal kurzer oder langer Schwanz bedeuten, ein anderes Gen braunes oder weißes Haar. Menschen besitzen ca. 25.000 Gene mit 3 Billionen Basenpaaren, ein Bakterium 500 bis 7000 Gene mit 1 – 10 Millionen Basenpaaren.

Video: Craig Venter (in englisch)

Schöpfung oder bekanntes Verfahren?

Einer, dem es kürzlich gelungen ist, das komplette Erbgut eines Bakteriums im Labor synthetisch herzustellen und zusammenzusetzen, ist der US-amerikanische Biochemiker Craig Venter. Venter hatte sich bereits früher einen Namen gemacht, als er im Jahr 2000 das menschliche Genom entschlüsselte. Auch wenn die Synthese von DNA unter den Forschern als allseits bekanntes Verfahren gilt, ist das von Venter erzeugte synthetische Genom mit rund 500.000 Basenpaaren nach seinen Angaben zwanzig Mal größer als alles, was man bisher zusammenhängend produziert hat.

Im nächsten Schritt will Venter das synthetische Genom in eine lebende Bakterienzelle einschleusen. In dieser soll es anstelle des natürlichen Genoms die Kontrolle übernehmen. Dadurch würde er nach seiner Ansicht einen neuen künstlich hergestellten Organismus schaffen. Das wäre ein Durchbruch gegenüber der herkömmlichen Gentechnologie, die nur einzelne Gene verändern kann, aber nicht ganze Gen-Systeme.

Komplette biologische Systeme nach Maß

Noch einen Schritt weiter geht das Zusammenstellen kompletter biologischer Systeme aus Biobricks nach Maß. Die Forscher am Massachusetts Institute for Technology (MIT) haben, um das Ziel zu erreichen, schon mehr als zweitausend Biobricks in einer Datenbank gesammelt. Wie Elektroingenieure ein Schaltbild aus elektronischen Komponenten am Reißbrett zeichnen, wollen die MIT-Zellingenieure nun aus den Genabschnitten der Biobricks komplette Gen-Systeme zusammenstellen. Das so entworfene Genom wird nach Plan produziert und anschließend sollen leere Zellhüllen mit dem künstlichen Erbgut bestückt werden. Das auf diese Weise künstlich geschaffene »Lebewesen« soll dann die geplanten Substanzen produzieren, beispielsweise Biokraftstoffe, Medikamente oder Biokunststoffe.

Kritiker wie Professor André Rosenthal sind allerdings der Ansicht, dass man von der Schaffung künstlichen Lebens noch Jahrhunderte entfernt ist. Rosenthal ist Leiter der Signature Diagnostics AG in Potsdam, die Gen-Tests zur Krebs-Früherkennung erstellt. Auch wenn das Genom synthetisiert werden kann, ist doch die Hülle der Zelle nicht künstlich hergestellt und das ist für ihn entscheidend. Nach seiner Meinung wäre Craig Venters Arbeit nur interessant, wenn er eine künstliche Zelle mit den entsprechenden Zellorganellen im Reagenzglas erzeugen könnte. Wie die Zeitschrift »Bild der Wissenschaft« in ihrer Ausgabe 3/2009 berichtet, gibt es aber bereits Ansätze zur Erschaffung einer kompletten funktionstüchtigen Zelle einschließlich Hülle, wenn auch noch ein langer Weg vor den Forschern liegt. – Klaus-Dieter Sedlacek

Der Autor ist Verfasser des Buchs »Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen«. In dem Buch wird unter anderem der Zusammenhang zwischen den fundamentalen Bausteinen der Welt und Bewusstsein aufgedeckt.

Wissenschaftliches Rätsel: Phänomenale Gedächtnisleistungen von Inselbegabten

Video: Gedaechtnis Giganten

»Solange wir das Savant-Syndrom nicht erklären können, können wir uns selbst nicht erklären«, meint Professor Darold Treffert, Chef der psychiatrischen Abteilung am St. Agnes Hospital in Fond du Lac (Wisconsin). Er ist seit mehr als 40 Jahren damit beschäftigt, inselbegabte Menschen, wie die Savants auch genannt werden, zu untersuchen. Inselbegabte sind oft behindert und hilfsbedürftig, verblüffen aber mit einem unglaublichen Gedächtnis, phänomenalen Rechenleistungen oder genialen künstlerischen Werken. Erklärungsversuche für Inselbegabung und Bewusstsein gibt es, aber können sie auch überzeugen?

Einer der alle anderen Inselbegabten übertrifft, ist Kim Peek. Schätzungsweise zwei Millionen Menschen haben ihn bei seinen öffentlichen Auftritten an Universitäten bestaunt. Kim hat sich den Inhalt von 7600 Sachbüchern Wort für Wort gemerkt. Dazu kennt er Detailinformationen ganzer Regionen: alle Städte, alle Straßen, alle Fahrpläne, dazu jeden Namen mit Adresse und Telefonnummer aus allen Telefonbüchern, die ihm jemals in die Hände gekommen sind. Nur mit Romanen fängt er nichts an. Dagegen ist für ihn die Wiedergabe der Baseball-Ergebnisse der letzten 40 Jahre und der Daten der meisten klassischen Musikstücke, wie Erstaufführung, Komponist oder Geburtsort des Komponisten eine leichte Übung. Aber wenn Kim sich selbst anziehen soll oder die Schuhe zubinden, dann scheitert er.

Kims Kopf ist von Geburt um ein Drittel größer, als der normaler Menschen. Eine enzephalografische Untersuchung zeigt aber in der Mitte seines Gehirns eine gähnende Leere. Ihm fehlt die Verbindung beider Hirnhälften und sein Kleinhirn ist verkümmert. Dagegen ist seine Leistung beim »Scannen« von Büchern, wie er es nennt, mehr als olympiareif. Er zieht beispielsweise die Telefonbücher ganz nah an seinen Augen vorbei. Die linke Seite am linken, die rechte am rechten Auge. So schafft er es, acht Seiten in 53 Sekunden zu scannen. Das sind weniger als 7 Sekunden pro Seite und ist damit schneller als der Scanner am heimischen PC. Wenn man glaubt, so schnell kann sich kein Mensch den Seiteninhalt merken, täuscht man sich. Kim kann es und er vergisst fast nichts.

»Kein Modell über Gehirnfunktionen ist komplett, bevor es nicht Kim mit einbezieht«, sagt Professor Treffert. Aber wie kann man die Leistungen der Inselbegabten erklären? Der Prozess der Signalübertragung im Gehirn funktioniert mithilfe von Nervenzellen. Diese nutzen eine Kombination aus elektrischen und chemischen Signalen, um miteinander zu kommunizieren. Wenn eine Zelle ihre elektrische Spannung ändert, führt das zur Freisetzung chemischer Botenstoffe. Diese wirken auf die nachfolgende Zelle ein. Daraufhin reagiert die nachfolgende Zelle ebenfalls mit einer Spannungsänderung und Freisetzung von Botenstoffen. Durch die Nutzung der chemischen Botenstoffe ist das ein schneckengleicher Prozess und nicht zu vergleichen mit der Hochgeschwindigkeit der Prozessoren heutiger Heimcomputer.

Den meisten Inselbegabten scheint eine gewisse Schädigung der linken Gehirnhälfte gemeinsam zu sein. Möglicherweise gibt es deshalb eine Überkompensation durch die rechte Gehirnhälfte, die für künstlerische, visuelle Fähigkeiten und konkrete Fakten zuständig ist. Was eine Überkompensation aber nicht zu erklären vermag, ist die hohe Geschwindigkeit der Gedächtnisleistungen eines Kim Peek. Und wenn man schon eine vollständige Erklärung für die Gehirnfunktion haben will, dann kann man das Bewusstsein nicht außen vor lassen. Denn eines scheint sicher: Ohne Bewusstsein wäre keine der Geistesleistungen der Inselbegabten möglich.

Als interdisziplinäre Arbeitsrichtung von Biologie und der Physik gehört es zum Aufgabenbereich der Quantenbiologie, geeignete quantenmechanische Erklärungsmodelle für die Gehirnfunktionen und Bewusstsein zu finden. Zu den bisherigen Erfolgen der Quantenbiologie zählt die Erklärung des Sehprozesses. Danach ist Sehen ein rein quantenmechanischer Prozess. Die Lichtteilchen (Photonen), die ins Auge fallen, werden von den zahlreichen Elektronen innerhalb der Netzhaut absorbiert. Das löst eine biochemische Kettenreaktion aus, die am Ende zu einem elektrischen Signal führt, welches im Gehirn weiterverarbeitet wird.

Was für die Erklärung des Sehprozesses vollbracht wurde, ist für die Beschreibung der Gehirnfunktion erst ansatzweise in Sicht. Zu sehr haben sich klassische Erklärungsmodelle ohne Quantenmechanik in den Köpfen der Forscher festgesetzt, als dass von heute auf morgen eine Änderung möglich wäre. Lieber werden unerklärliche Messwerte als sogenannte Messfehler in Kauf genommen, als dass vom klassischen Modell abgewichen wird. Ein Beispiel für eine klassische, aber falsche Erklärung ist das, was in dtv-Lexikon der Physik aus dem Jahre 1970 über die Elektrolyse (z. B. Wasserspaltung) steht: » […] Die Stromleitung innerhalb des Elektrolyten besteht in der Wanderung der positiven und negativen Ionen, die unter dem Einfluss des elektrischen Feldes zu den Elektroden gelangen […]«

Wenn alle Ionen, d. h. also elektrisch geladene Atome oder Moleküle sich tatsächlich einen Weg durch den flüssigen Elektrolyten bahnen müssten, wäre die hohe Effizienz des Vorgangs nicht zu erklären. Zumindest bei der Wasserspaltung stimmt die klassische Erklärung nicht, wie Jan Sperling in seiner Dissertation 1999 an der Freien Universität Berlin nachwies: »Es besteht keine Möglichkeit, die anomalen Abweichungen der Messwerte […] klassisch widerspruchslos zu erklären. Dagegen ist, unter Einbeziehung von Quantenkorrelation […] ein direkter Zusammenhang […] ableitbar.«

Ist aber die Quantenmechanik und Quantenbiologie einschließlich ihrer unerklärlichen ‘spukhaften Fernwirkung’, wie Albert Einstein die Quantenkorrelation bezeichnete, tatsächlich die letzte Erklärungsebene für Gehirnfunktionen und Bewusstsein, so wie im 19. Jahrhundert die angeblich unteilbaren Atome eine letzte Erklärungsebene für die physikalische Welt waren? Quantenmechanik ist in Wirklichkeit nur ein abstrakter mathematischer Formalismus, wenn auch dessen Vorhersagen beeindruckend gut bestätigt werden. Aber möchte man einem Formalismus tatsächlich den Status der letzten physikalischen Erklärungsebene zugestehen? Der Autor und Verfasser des Sachbuchs Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen beantwortet die Frage, indem er eine weitere Erklärungsebene hinzufügt. Für ihn sind es Bewusstseinseinheiten, welche die letzte physikalische Erklärungsebene darstellen: »Bewusstsein ist der fundamentale Baustein von allem was existiert«. Auf der Basis dieser Bewusstseinseinheiten beschreibt er das ‘wahre Gesicht der Wirklichkeit’. So kommt man zu dem Schluss, dass die Quantenbiologie zwar die richtige wissenschaftliche Disziplin ist, um ein komplettes Modell der Gehirnfunktionen und des Bewusstseins zu liefern, dass dieses Modell aber noch einer weiteren physikalischen Erklärungsebene bedarf, wenn man sich nicht mit einem rein mathematischen Formalismus als Erklärung zufriedengeben möchte.

Löst dunkle Energie das Rätsel der Zeit?

Video: Woher kommt die Welt?

In unserem Universum läuft die Zeit immer nur in eine Richtung – aber muss das überall so sein?
Wer ein Ei zerschlägt, erwartet nicht, dass es sich von selbst wieder zusammenfügt, und wer ins Schwimmbecken hechtet, wird nie erleben, dass das Wasser ihn zurück aufs Trampolin schnellt. Solche Vorgänge sind irreversibel, das heißt zeitlich nicht umkehrbar. Die Asymmetrie der Zeit erfahren wir als das Natürlichste von der Welt – doch den Physikern und Kosmologen bereitet sie gehöriges Kopfzerbrechen.
Alle fundamentalen Gesetze der Physik sind nämlich zeitsymmetrisch, von den Formeln der Himmelsmechanik bis zu den Grundgleichungen der Quantentheorie. Die Mechanik schreibt nicht vor, ob die Erde so oder anders herum um die Sonne läuft, und auch die Quantenmechanik kennt keinen Unterschied zwischen Zukunft und Vergangenheit. Warum weist dann der Zeitpfeil immer nur in eine Richtung?

Darauf antworten die Physiker: das kommt von der Entropie. Sie ist ein Maß für die Unordnung eines Systems, und da ein sich selbst überlassenes System von selbst immer unordentlicher wird, nimmt die Entropie mit der Zeit zu. Zwar ist es physikalisch nicht prinzipiell ausgeschlossen, dass ein zerschlagenes Ei sich wieder ordentlich zusammensetzt – aber es ist extrem unwahrscheinlich. Sehr glücklich sind die Kosmologen mit dieser Erklärung für den Zeitpfeil nicht, denn eine ständig wachsende Entropie bedeutet, dass sie früher einmal extrem klein gewesen sein muss: Der Urknall muss ein unwahrscheinlich ordentlicher Zustand gewesen sein. Man wüsste gern einen physikalischen Grund dafür.

Der amerikanische Kosmologe Sean Carroll schlägt nun einen radikalen Ausweg aus dieser Verlegenheit vor. Wie er in der August-Ausgabe [2008] von Spektrum der Wissenschaft argumentiert, muss unser Universum nicht mit einem Zustand abnorm niedriger Entropie begonnen haben, wenn wir es als Teil eines Multiversums betrachten. In diesem Über-Universum entstehen spontan Babyuniversen, wobei die Zeit in manchen so gerichtet ist wie bei uns, in anderen entgegengesetzt – und im Mittel ist das Multiversum zeitsymmetrisch. Freilich muss Carroll eine hochspekulative Hypothese aufstellen, um die Bildung solcher Babyuniversen plausibel zu machen. Damit sie dauerhaft aus Fluktuationen der Raumzeit entstehen, beruft Carroll sich auf die Dunkle Energie – eine rätselhafte Kraft, mit der die Kosmologen erklären, warum unser Universum beschleunigt expandiert. Erst wenn über das Wesen der Dunklen Energie mehr bekannt ist, lässt sich sagen, ob sie eine Antwort auf das Rätsel der Zeit zu liefern vermag.

Jedenfalls, so tröstet Carroll, betreiben wir schon heute jedes Mal, wenn wir ein Ei zerschlagen, beobachtende Kosmologie. (Quelle: Spektrum der Wissenschaft, August 2008)

Über die Illusion der Zeit und die Lösung scheinbar unerklärlicher Phänomene findet man mehr im Buch Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Dunkle Energie: größtem Rätsel der Astrophysik auf der Spur

Video: Dunkle Materie dunkle Energie

Ist die Dunkle Energie der fundamentale Baustein des Universums oder ist es Bewusstsein, wie im Buch “Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen” dargestellt? Oder hängt beides womöglich zusammen? Das astrophysikalische Institut in Potsdam (AIP) wird ab 2010 verstärkt nach der geheimnisvollen dunklen Energie fahnden und zur Lösung der Rätsel durch einen innovativen Multikanalspektrographen beitragen.

(idw), Am dunklen Nachthimmel über West-Texas beobachtet das 9.2m große Hobby-Eberly Teleskop (HET) des McDonald Observatoriums die Tiefen des Weltalls. Es ist einem der größten Rätsel der Astrophysik auf der Spur: der sogenannten “Dunklen Energie”, einem Phänomen das eng mit der Zukunft unseres Weltalls verknüpft ist. Die Wissenschaftler wollen nun durch die Vermessung von Millionen Galaxien erstmals Näheres über die Eigenschaften der mysteriösen Dunklen Energie in Erfahrung bringen . Ein speziell am Astrophysikalischen Institut Potsdam (AIP) entwickeltes Glasfaserbündel ermöglicht die gleichzeitige Erfassung und Spektroskopie von hunderten von Punkten eines Himmelsauschnitts für dieses ehrgeizige Projekt. Um die Entfernungen zu den Galaxien bestimmen zu können, müssen die Astronomen diese Objekte nicht nur finden, sondern ihr Licht auch spektroskopisch analysieren, d.h. in seine Anteile verschiedener Wellenlängen zerlegen. Dafür wird das Teleskop mittels des Faserbündels an einen leistungsfähigen Multikanalspektrographen (genannt VIRUS) angeschlossen. Ein Prototyp des VIRUS Faserbündels und des Spektrographen wurde nun erstmals erfolgreich am Teleskop eingesetzt. Ab 2010 soll eine großräumige Durchsuchung des Himmels beginnen.

“Wenn es gelingt, die statistische Verteilung von entfernten Galaxien in Raum und Zeit zu bestimmen, so lässt dies Rückschlüsse auf die Natur der Dunklen Energie zu”, erklärt Andreas Kelz, der als Wissenschaftler des AIP an der Entwicklung des Instruments beteiligt ist. Bis vor kurzen glaubten Astronomen, dass es für das Schicksal des Universums zwei mögliche Szenarien gibt: Entweder enthält das Universum so viel Materie, dass ihre Anziehungskraft die gegenwärtig zu beobachtende Ausdehnung bremst und das Universum letztendlich in sich kollabieren läßt, oder die Expansion geht, wenn auch verlangsamt, unendlich weiter.

Neuere Beobachtungen hingegen legen nahe, dass sich das Universum vielmehr beschleunigt ausdehnt, es also eine Art Anti-Schwerkraft gibt, welche das Universum auseinandertreibt. Diese ‘Dunkle Energie’ genannte Kraft ist noch völlig unverstanden, auch wenn angenommen wird, dass sie 70% der Gesamtenergie des Universums ausmacht.
“Die Idee einer Energie, welche der Schwerkraft entgegenwirkt ist nicht neu.”, berichtet Matthias Steinmetz, wiss. Vorstand des AIP und Co-Ermittler. “Bereits Einstein postulierte sie 1920, hatte seine kosmologische Konstante dann aber wieder als ‘größte Eselei’ seines Lebens verworfen. Durch die aktuellen Messungen bekommt sie aber wieder neue Brisanz.”

Die Entdeckung des Zufalls

Als Max Planck vor 100 Jahren mit einem Vortrag vor der Deutschen Physikalischen Gesellschaft in Berlin den Grundstein zur Quantentheorie legte, brachte er damit eine tiefgreifende Umwälzung des physikalischen Weltbilds in Gang. Hatten die Wissenschaftler bis dahin geglaubt, die Natur gleiche einem überdimensionalen Uhrwerk mit vorhersehbaren Abläufen, so wurden sie im Zuge der quantenmechanischen Revolution mit der Entdeckung des Zufalls konfrontiert.
Die Erkenntnis, dass es zum Beispiel für den Zeitpunkt des Zerfalls eines radioaktiven Atoms keinerlei Ursache gibt, war für die Physiker zu Beginn des 20. Jahrhunderts keineswegs erfreulich. Die sogenannte deterministische, klassische Physik hatte es ihnen ermöglicht, die Natur zu verstehen und Ereignisse wie Springfluten oder Mondfinsternisse vorherzusagen. Das gab ihnen über viele Jahrhunderte ein Gefühl von Sicherheit und Macht. Das Ende des Determinismus, der Vorhersagbarkeit, war daher nur schwer zu akzeptieren.
Dabei hatten statistische Theorien, die lediglich Aussagen über die Wahrscheinlichkeit eines Ereignisses machen, die Physiker in früheren Zeiten nicht beunruhigt. Man wusste, hochkomplexe Systeme wie Gase ließen sich nur über statistische Aussagen in den Griff bekommen. Denn es ist einfach unmöglich, die Orte und Geschwindigkeiten aller Teilchen eines Gases zu kennen. Würde aber ein „Superhirn” existieren, das über sämtliche nach dem Urknall entstandenen Teilchen Bescheid wüsste, dann müsste es den Lauf der Welt vorausberechnen können – so die damalige Meinung. Nun stellte sich heraus, dass dem Zufall in der Quantentheorie mit dieser Art von Allwissenheit nicht beizukommen war. Die sogenannte Unbestimmtheitsrelation machte es grundsätzlich unmöglich, Ort und Geschwindigkeit eines Gasatoms zur gleichen Zeit exakt zu messen.
Die Quantentheorie brachte aber nicht nur den Zufall ins Spiel. Es stellte sich heraus, dass quantenmechanische Dinge ein merkwürdig schemenhaftes Dasein führen, das erst durch eine Messung, also den Eingriff eines Beobachters, in einen eindeutigen Zustand überführt wird. Der Zustand eines Elektrons ist ohne eine Messung, die uns diesen Zustand offenbart, nicht nur nicht bekannt, sondern einfach nicht definiert. Hieraus ergab sich die Notwendigkeit, über erkenntnistheoretische Fragen nachzudenken. Denn nachdem sicher war, dass es keine vom Beobachter losgelöste Realität gibt, stellte sich die zentrale Frage, was wir dann überhaupt über die Natur wissen können. Was treibt ein Elektron, wenn ihm keiner zusieht? Auf diese Frage gibt es schlichtweg keine Antwort.
Die Quantenmechanik ist die am besten überprüfte und bestätigte Theorie überhaupt. Gleichzeitig sind ihre möglichen Konsequenzen wie Zeitreisen, „geisterhafte Fernwirkungen” oder die Quanten- Teleportation mit unserem an der Alltagswelt geschulten Verstand kaum zu erfassen. Die Quantentheorie bildet die Grundlage der gesamten modernen Physik, denn erst durch sie wurde ein tieferes Verständnis der Materie möglich. Mit ihrer Hilfe können wir beispielsweise erklären, warum Atome stabil sind, wie ein Laser funktioniert und warum Metalle den Strom besser leiten als die meisten Kunststoffe. Und nicht nur für die Elektronik, Optik oder Nanotechnologie ist die Quantenphysik entscheidend – auch die Vorgänge in der Chemie und Molekularbiologie sind letztlich auf Quanteneffekte zurückzuführen. „Bei der Interpretation der Quantentheorie mag es Schwierigkeiten geben”, schreibt der britische Elementarteilchenphysiker Robert Gilmore, „aber sie funktioniert zweifellos aufs beste.”
(Quelle: Themenheft »Entdeckung des Zufalls«, BMBF, Dezember 2000)

Buchtipp:
Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen

Wieso prasseln kosmische Partikel aus schwarzen Löchern auf die Welt?

Video: Wo entsteht die kosmische Strahlung?

Kosmische Strahlung auch Höhenstrahlung genannt ist schon länger bekannt. Während einer Ballonfahrt im Jahr 1912 entdeckte sie der österreichische Physiker Victor Franz Hess und veröffentlichte noch im gleichen Jahr seine Entdeckung. Kosmische Strahlung aus dem Weltall besteht überwiegend aus hochenergetischen Protonen oder Elektronen. Was aber auf das Pierre-Auger-Observatorium in der argentinischen Pampa vom Himmel niederprasselt, ist ganz anderer Art und dreißigmal energiereicher als alles, was jemals in der Quantenschleuder LHC in Genf erzeugt werden kann. Was steckt dahinter, dass unsere Welt mit solch energiereichen Partikeln bombardiert wird und woraus bestehen diese?

Nordöstlich vom Ort Malargüe sind 1600 Wasserdetektoren über ein Gebiet größer als das Saarland verteilt, um die kosmischen Partikel aufzuspüren. Jeder der Wasserdetektoren enthält zehn Kubikmeter hochreines Wasser. Wenn die an der Untersuchung beteiligten Wissenschaftler ein geheimnisvolles blaues Leuchten (Tscherenkowstrahlung) im Wasser der Detektoren entdecken, dann wissen sie, dass die Erde wieder mit Partikeln bombardiert wird. Und das geschieht etwa hundert Mal im Jahr. In mehr als zwanzig Kilometer Höhe stoßen die Ankömmlinge aus dem All mit Luftmolekülen zusammen und erzeugen Milliarden winziger Trümmerteile. »[Sie] werden so zu Quadratkilometer großen Teilchenschauern«, berichtet Johannes Blümer, der Sprecher des Zentrums für Elementarteilchen- und Astroteilchenphysik am Karlsruher Institute for Technology (KIT).

Blümer vermutet, es handele sich bei den hochenergetischen und extrem schnellen Partikeln um Eisenkerne. Doch Genaues wissen die Forscher noch nicht. Als Quelle kommen möglicherweise Schwarze Löcher in Frage, die nicht mehr als 330 Millionen Lichtjahre von uns entfernt, alles verschlingen, was in ihre Nähe gerät. Durch eine Art Schluckauf entstehen Schockwellen und starke Magnetfelder, welche die hochenergetischen Teilchen erzeugen, die dann unsere Erde bombardieren.

Die physikalischen Messungen in der Pampa helfen, den Geheimnissen der Partikel und des Universums auf die Schliche zu kommen. Aber auf die Frage, ob die Physik die Welt erklären kann, antwortete Professor Harald Lesch von der Universitätssternwarte München in der hundertsten Folge von Alpha Centauri sinngemäß, dass Physik nur erklären kann, wie etwas funktioniert, aber nicht wieso.

Für die Erklärung des ‘Wieso’ bedarf es deshalb der Metaphysik. Diese kann die Ergebnisse aller Einzelwissenschaften und nicht nur der Physik in einer Gesamtschau vereinen und daraus ein metaphysisches Weltbild entwerfen. Ein solches metaphysisches Weltbild findet sich in dem kürzlich erschienenen Sachbuch mit dem Titel: »Unsterbliches Bewusstsein«. Dort wird gezeigt, dass Raumzeit und Materie dem Bewusstsein untergeordnete Einheiten des Universums sind. Darüber hinaus werden Fragen nach dem Sinn und Zweck, also dem ‘Wieso’ beantwortet.
Manfred Sommerfeld

Mehr zum Thema:
1. »Teilchenjäger in der argentinischen Pampa« von Rainer Klüting, Stuttgarter Zeitung v. 14.11.2008.
2. »Unsterbliches Bewusstsein: Raumzeit-Phänomene, Beweise und Visionen«

Ist Gott nur ein neuronales Gewitter im Gehirn?

Video: Erforschung der Meditation

(idw). Existiert Gott? Ist es notwendig, dass er existiert? Oder reicht nicht der Glaube allein? Je genauer Naturwissenschaftler die Funktionsweise des menschlichen Gehirns entschlüsseln, umso mehr müssen sich Theologen mit der Frage nach der Beziehung zwischen Gott und Gehirn auseinandersetzen. Dr. Tobias Kläden vom Seminar für Pastoraltheologie der Universität Münster stellt sich dieser Herausforderung. Das neue Gebiet der so genannten Neurotheologie wird zumeist von Naturwissenschaftlern besetzt, Theologen haben bisher eher wenig Kenntnis davon genommen.

Die amerikanischen Neurowissenschaftler Andrew Newberg und Eugene d’Aquili haben untersucht, was passiert, wenn Menschen meditieren. “Sie konnten bei Buddhisten und Franziskanerinnen nachweisen, dass bei der Meditation ein Bereich im Scheitellappen, der dafür sorgt, dass ich mich von der Umwelt als verschieden empfinde, kaum noch aktiviert war”, erläutert Kläden. “Die Menschen fühlten sich eins mit Gott und dem Universum.” Und das unabhängig davon, ob sie an einen personalen Gott glaubten wie die Christinnen oder an ein namenloses Absolutes wie die Buddhisten.

Das, so die Schlussfolgerung von Newberg und d’Aquili, sei ein Beweis dafür, dass Glaube und religiöse Erfahrung keine Hirngespinste seien. Schließlich gebe es den physiologischen Nachweis, dass etwas im Gehirn im Augenblick der religiösen Erfahrung passiere. Umgekehrt ist es dem Kanadier Michael Persinger gelungen, mithilfe eines leichten Magnetfeldes Menschen die Präsenz des Göttlichen zu suggerieren, indem die Schläfenlappen im Gehirn stimuliert wurden. “Bereits in der Antike wusste man, dass Menschen mit Epilepsie etwas Besonderes sind, eine ‘heilige Krankheit’ haben”, erzählt Kläden. Epileptische Anfälle gingen häufig mit religiösen Empfindungen einher, Epilepsie wiederum könne beispielsweise durch Tumore im Schläfenlappen ausgelöst werden.

Die Interpretationen der empirischen Versuche seien häufig vollmundig, mal werde versucht, Gott als Funktion des Gehirns zu erklären, mal, die Funktion des Gehirns als Beweis für die Existenz Gottes heranzuziehen. “Das hängt immer von der religiösen Voreinstellung ab”, meint Kläden. Bei Doubleblind-Experimenten im Magnetfeld von Persinger habe sich gezeigt: Menschen können auch ein religiöses Gefühl spüren, obwohl faktisch nichts passiert ist. “Häufig liefern die Naturwissenschaftler zu ihren Experimenten Interpretationen, die nichts mehr mit Neurowissenschaften zu tun haben, sondern auf bestimmten philosophischen Vorannahmen beruhen”, so Kläden.

Und genau das ist für ihn der Grund, dass sich auch die Theologen einmischen müssen. Denn die Daten zu bezweifeln, das kommt ihm nicht in den Sinn. Aber bei der Interpretation der Ergebnisse und der Beantwortung der Frage, ob Gott nur ein neuronales Gewitter im Gehirn sei, da haben die Theologen auch etwas beizutragen. “Tiefe meditative Versenkungen sind nicht die Religion des Alltags. Haben solche religiösen Spitzenerfahrungen überhaupt Relevanz für den Alltag?” Aber noch gebe es auch bei den Theologen keine eindeutige Definition von Religiosität. “Da können die Neurowissenschaften einen wichtigen Beitrag leisten.”

“Kommt Religion wirklich nur im Gehirn vor? Gibt es denn keine Wirklichkeit außerhalb des Gehirns? Natürlich müssen religiöse Erfahrungen im Gehirn verankert sein, denn dort haben alle Erfahrungen und Gefühle ihre Basis”, sagt Kläden. Er ist sich aber sicher: Gott ist kein Gegenstand der empirisch erfassbaren Welt, daher könne er auch nicht mit naturwissenschaftlichen Mitteln erforscht werden.

Kommentar:
Was sich aber mit naturwissenschaftlichen Methoden erforschen läßt, ist nach Meinung des Autors Klaus-Dieter Sedlacek das Jenseits oder das unsterbliche Bewusstsein.
Im seinem neu erschienenen Sachbuch “Unsterbliches Bewusstsein – Raumzeit-Phänomene, Beweise und Visionen” ISBN: 978-3-837-04351-8 tritt er dafür den Beweis an.