Schlagwort-Archive: Urknall

Geheimnisvolle Signale aus einer fernen quantenkosmologischen Vergangenheit

Was passierte bei der Geburt des Weltalls? Wie konnten sich Sterne, Planeten und ganze Galaxien überhaupt bilden? Das sind die Fragen, die Viatcheslav Mukhanov mit seinen Berechnungen zu beantworten versucht. Mukhanov ist Physik-Ordinarius an der LMU und Experte für Theoretische Quantenkosmologie. Und es ist seine Idee der Quantenfluktuationen, die ein entscheidendes Moment in der Startphase des Universums beschreibt: Ohne die Dichteschwankungen, die aus den minimalen Fluktuationen entstehen, lässt sich die spätere Verteilung der Materie und die Bildung von Sternen, Planeten und Galaxien schwerlich erklären.

Jetzt hat das Planck-Konsortium neue Auswertungen von Messergebnissen veröffentlicht. Das Weltraumteleskop hat die kosmische Hintergrundstrahlung vermessen und damit ein Abbild des frühen Universums geliefert. Diese neuen Planck-Daten decken sich exakt mit den Berechnungen des LMU-Kosmologen, etwa für die entscheidende Größe des sogenannten Spektralindexes. „Die Planck-Daten haben die grundlegende Voraussage bestätigt, dass Quantenfluktuationen am Anfang aller Strukturen im Universum stehen“, bekräftigt Jean-Loup Puget, der leitende Wissenschaftler des HFI-Instruments der Planck-Mission. „Besser könnte meine Theorie nicht bestätigt werden“, sagt Mukhanov. Schon 1981 hatte der Wissenschaftler, seit 1997 an der LMU, seinen Ansatz erstmals publiziert.

Spuren aus ferner Vergangenheit

Dass auch die Quanten im frühen Universum gewissen Fluktuationen unterlegen haben müssen, ergibt sich für Mukhanov aus der Heisenbergschen Unschärferelation. Sie besagt, dass sich Ort und Impuls eines Teilchens nicht exakt angeben lassen. Aus den submikroskopisch winzigen Fluktuationen entstanden makroskopische Dichteschwankungen. Ohne diesen Mechanismus, dessen genaue Ausprägung und Größenordnung Mukhanov berechnet, ließe sich die Verteilung von Materie im heutigen Universum nicht vorhersagen.

Die neuen Planck-Datensätze sind noch detaillierter und aussagekräftiger als die ersten Auswertungen, die vor knapp zwei Jahren veröffentlicht wurden. Mit niemals zuvor erreichter Präzision zeigen sie die Muster, mit denen sich die Fluktuationen in die Strahlung des jungen Universums eingebrannt haben. Als eine Botschaft aus ferner Vergangenheit können Teleskope wie Planck sie heute – 13,8 Milliarden Jahre später – als Mikrowellenstrahlung einfangen. So geben die Planck-Messungen Aufschluss über die Geburt des Weltalls.

Gravitationswellen nicht beglaubigt

Die Existenz von sogenannten primordialen Gravitationswellen konnten die Planck-Daten indes nicht zeigen. Diese weiteren lange gesuchten Signale des fernen Urknalls meinte das BICEP2-Team aus seinen Daten herauslesen zu können, das Teleskop vermisst von der Antarktis aus die kosmische Hintergrundstrahlung. Im März 2014 meldete das Team seine sensationelle Entdeckung – vorschnell, wie sich bald herausstellte. Und soeben veröffentlichten Planck- und BICEP2-Forscher gemeinsam einen Abgleich ihrer Daten, der keinen Nachweis der Gravitationswellen erbrachte. LMU-Forscher Mukhanov hatte schon im Frühjahr 2014 erklärt, dass die Ergebnisse von BICEP2 und Planck nicht gleichzeitig stimmen können. „Gravitationswellen mag es trotzdem geben“, sagt der LMU-Wissenschaftler. „Aber unsere Messgeräte sind offenbar noch nicht genau genug.“ Doch unabhängig davon, ob ein tatsächlicher Nachweis der Gravitationswellen gelingt: Ohne den Mechanismus der Quantenfluktuation, ergänzt Mukhanov, kommt kein Modell aus, das erklären soll, was unmittelbar nach dem Urknall geschah. (Quelle: idw)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Die Rätsel des Universums

München (ots) – Unser Wissen über das Universum ist enorm – doch viele Fragen sind noch unbeantwortet. Wie groß ist das Universum, woher kommen die Kometen und was hält die Galaxien zusammen – diesen und weiteren Rätseln des Universums geht das Weltraum-Magazin SPACE  nach.

Wie groß unser Universum ist – diese Frage ist nur teilweise gelöst. Seit dem Urknall konnte es sich “nur” 13,8 Milliarden Jahre lang ausdehnen. Das von weiter weg gelegenen Objekten abgestrahlte Licht hat uns einfach noch nicht erreicht. Das heißt also, das für uns von der Erde aus beobachtbare Universum ist eine kugelförmige Blase mit einem Radius von 13,8 Milliarden Lichtjahren. Wie weit es sich darüber hinaus ausdehnt, ist heiß umstritten.

Ebenfalls nur teilweise geklärt ist die Herkunft der Kometen. Ihren Ursprung erklären sich die Wissenschaftler mit Hilfe der sog. Oortschen Wolke, einer riesigen, das Sonnensystem in einer Entfernung von 20.000 Astronomischen Einheiten (1 AE entspricht etwa 149,6 Mio. km) umgebenden Wolke. Diese bildete sich wahrscheinlich, als die gerade entstandenen Planeten sonnennahe Kometen weiter “hinausbeförderten”. Und obwohl sie für uns (noch) nicht sichtbar ist, gilt diese Oortsche Wolke als Ursprung aller unserem Sonnensystem zugehörigen Kometen.

Ungelöst ist nach wie vor die Frage, was Galaxien zusammenhält. An die Gesetze der Physik halten sich manche von ihnen nicht, denn sie rotieren so schnell, dass die Gravitationswirkung ihrer sichtbaren Bestandteile nicht ausreicht, sie zusammenzuhalten. Sie müssten zerreißen, tun es aber nicht. Hier vermuten Wissenschaftler, dass eine mit modernen Instrumenten nicht messbare Materie für den Zusammenhalt der Galaxien verantwortlich sein muss – die sog. “Dunkle Materie”. Diese interagiert nicht mit der elektromagnetischen Wechselwirkung, das erschwert es, sie aufzuspüren. Die Lösung dieses Rätsels wäre eine der größten wissenschaftlichen Entdeckungen.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Woher wissen wir etwas über den Beginn des Universums?

Hat das Universum als heißer Urknall begonnen oder taut es aus einem extrem kalten und fast statischen Zustand langsam auf? Prof. Dr. Christof Wetterich, Physiker an der Universität Heidelberg, hat einen theoretischen Ansatz entwickelt, der das seit fast 100 Jahren gängige Standardmodell der kosmischen Expansion durch ein alternatives Bild ergänzt. Die Urexplosion hat danach nicht vor 13,8 Milliarden Jahren stattgefunden – der „Beginn des Universums“ dehnt sich vielmehr über einen unendlich langen Zeitraum in der Vergangenheit aus. Dabei nimmt die Masse aller Teilchen stetig zu. Statt zu expandieren, schrumpft das Universum über ausgedehnte Zeitabschnitte, wie der Heidelberger Wissenschaftler erläutert.

Den „Beginn des Universums“ beschreiben Kosmologen zumeist als Urknall. Je näher man zeitlich an den Urknall heranrückt, desto stärker krümmt sich die Geometrie von Raum und Zeit. Physiker nennen dies eine Singularität – der Begriff bezeichnet Gegebenheiten, deren physikalische Gesetze nicht definiert sind. Im Fall des Urknalls wird die Krümmung der Raumzeit unendlich groß. Kurz nach dem Urknall war das Universum extrem heiß und dicht. Aber auch ein anderes „Bild“ ist nach den Worten von Prof. Wetterich möglich: Wenn die Massen aller Elementarteilchen mit der Zeit wachsen und die Gravitationskraft schwächer wird, so könnte das Universum auch extrem kalt und langsam begonnen haben. Danach hat das Universum immer schon bestanden, und der früheste Zustand war fast statisch. Die Urexplosion dehnt sich über einen unendlich langen Zeitraum in der Vergangenheit aus. Der Wissenschaftler vom Institut für Theoretische Physik geht davon aus, dass sich die ersten heute indirekt beobachtbaren „Ereignisse“ vor 50 Billionen Jahren zugetragen haben – und nicht im Milliardstel eines Milliardstels einer Milliardstel Sekunde nach dem Urknall. „Eine Singularität gibt es in diesem neuen Bild des Kosmos nicht mehr“, so Prof. Wetterich.

Die Hypothese von Prof. Wetterich beruht auf einem Modell, das die Dunkle Energie und das frühe „inflationäre Universum“ durch ein einziges zeitlich veränderliches Skalarfeld erklärt. Danach wachsen alle Massen mit dem Wert dieses Feldes. „Dies erinnert an das kürzlich in Genf entdeckte Higgs-Boson. Dieses Elementarteilchen hat die Physiker in der Vorstellung bestätigt, dass Teilchenmassen von Feldwerten abhängen und damit veränderlich sind“, erläutert der Heidelberger Wissenschaftler. In Wetterichs Ansatz sind alle Massen proportional zum Wert des sogenannten Kosmonfelds, der im Laufe der kosmologischen Evolution zunimmt. „Natürliche Konsequenz dieses Modells ist das Bild eines Universums, das sich sehr langsam aus einem extrem kalten Zustand entwickelt und dabei über lange Zeitabschnitte schrumpft anstatt zu expandieren“, so Prof. Wetterich.

Das bisherige Bild des Urknalls wird damit allerdings nicht „ungültig“, wie Prof. Wetterich sagt. „Physiker sind es gewohnt, beobachtete Tatsachen in verschiedenen Bildern zu beschreiben.“ So kann Licht sowohl durch Teilchen als auch als Welle dargestellt werden. Wie der Heidelberger Wissenschaftler erläutert, lässt sich sein Modell äquivalent im Bild des Urknalls beschreiben. „Dies ist sehr nützlich für viele praktische Vorhersagen zu den Konsequenzen, die sich aus diesem neuen theoretischen Ansatz ergeben. Stellt man allerdings die Frage nach dem ,Beginn‘ des Universums, so scheint die Beschreibung ohne Singularität eine Reihe von Vorteilen zu bieten“, betont Prof. Wetterich. „Und für das oft geäußerte Unbehagen, dass es doch auch vor dem Urknall etwas gegeben haben muss, gibt es in der neuen Beschreibung keine Grundlage mehr.“

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Wie ein expandierendes Universum erzeugt werden kann

Wenn man Raum und Zeit erhitzt, kann ein expandierendes Universum entstehen – ganz ohne Urknall. Diesen Phasenübergang zwischen einem leeren Raum und einem expandierenden Universum, das Masse enthält, konnte ein Forschungsteam nun berechnen. Dahinter liegt ein bemerkenswerter Zusammenhang zwischen Quantenfeldtheorie und Einsteins Relativitätstheorie.

Kochen mit Raum und Zeit

Aus dem Alltag kennen wir Phasenübergänge nur von Stoffen, die zwischen festem, flüssigem und gasförmigem Zustand wechseln. Allerdings können auch Raum und Zeit selbst solche Übergänge durchmachen, wie die Physiker Steven Hawking und Don Page schon 1983 zeigten. Sie berechneten, dass aus leerem Raum bei einer bestimmten Temperatur plötzlich ein Schwarzes Loch werden kann.

Lässt sich bei einem ähnlichen Prozess aber auch ein ganzes Universum erzeugen, das sich kontinuierlich ausdehnt, so wie unseres? Diese Frage stellte sich Daniel Grumiller vom Institut für Theoretische Physik der TU Wien gemeinsam mit Kollegen aus Harvard, dem Massachusetts Institute of Technology (MIT) und der Universität Edinburgh. Das Ergebnis: Tatsächlich scheint es eine kritische Temperatur zu geben, bei der aus einem völlig leeren, flachen Raum ein expandierendes Universum mit Masse wird. „Die leere Raumzeit beginnt gewissermaßen zu kochen, es bilden sich Blasen, eine von ihnen expandiert und nimmt schließlich die gesamte Raumzeit ein“, erklärt Daniel Grumiller.

 Daniel Grumiller erhitzt die Raumzeit - zumindest am Papier. Foto: TU Wien
Daniel Grumiller erhitzt die Raumzeit – zumindest am Papier. Foto: TU Wien

Das Universum muss dabei rotieren – das Kochrezept für ein expandierendes Universum lautet also: Erhitzen und umrühren. Diese Rotation kann allerdings beliebig gering sein. Bei den Berechnungen wurden vorerst nur zwei Raumdimensionen berücksichtigt. „Es gibt aber nichts, was dagegen spricht, dass es in drei Raumdimensionen genauso ist“, meint Grumiller.

Das Phasenübergangs-Modell ist nicht als Konkurrenz zur Urknalltheorie gedacht. „In der Kosmologie weiß man heute sehr viel über das frühe Universum – das zweifeln wir nicht an”, sagt Grumiller. “Aber für uns ist die Frage entscheidend, welche Phasenübergänge in Raum und Zeit möglich sind und wie die mathematische Struktur der Raumzeit beschrieben werden kann“.

Auf der Suche nach der Struktur des Universums

Die Theorie ist die logische Fortsetzung  einer 1997 aufgestellten Vermutung, der sogenannten „AdS-CFT-Korrespondenz“, die seither die Forschung an den fundamentalen Fragen der Physik stark beeinflusst hat: Sie beschreibt einen merkwürdigen Zusammenhang zwischen Gravitationstheorien und Quantenfeldthorien – zwei Bereiche, die auf den ersten Blick gar nichts miteinander zu tun haben. In bestimmten Grenzfällen lassen sich Aussagen der Quantenfeldtheorie in Aussagen von Gravitationstheorien überführen und umgekehrt.  Zwei ganz unterschiedliche physikalische Gebiete werden so in Verbindung gebracht, aber es mangelte bisher an konkreten Modellen, die diesen Zusammenhang belegten.

Letztes Jahr wurde von Daniel Grumiller und Kollegen erstmals so ein Modell aufgestellt (der Einfachheit halber in bloß zwei Raumdimensionen). Das führte schließlich zur aktuellen Fragestellung: Dass es in den Quantenfeldtheorien einen Phasenübergang gibt, wusste man. Doch das bedeutete, dass es aus Konsistenzgründen auch auf der Gravitatations-Seite einen Phasenübergang geben muss.

„Das war zunächst ein Rätsel für uns“, sagt Daniel Grumiller. „Das würde einen Phasenübergang zwischen einer leeren Raumzeit und einem expandierenden Universum bedeuten, und das erschien uns zunächst äußerst unwahrscheinlich.“ Die Rechenergebnisse zeigten dann aber, dass genau diesen Übergang tatsächlich gibt. “Wir beginnen erst, diese Zusammenhänge zu verstehen“, meint Daniel Grumiller. Welche Erkenntnisse über unser eigenes Universum wir dadurch ableiten können, ist heute noch gar nicht absehbar. (Quelle: idw)

Buchtipps:

 

Bedrohung aus dem All: Komet ISON kommt uns nahe

München (ots) – Einst bombardierten Kometen unser Sonnensystem, brachten vermutlich Wasser und Leben auf die Erde und hinterließen bis heute sichtbare Krater. Würde heute ein Komet der Größe von Shoemaker-Levy 9, der 1994 auf Jupiter einschlug, auf die Erde treffen, gäbe es sie nicht mehr. Das schreibt das Weltraum-Magazin SPACE in seiner Ausgabe 1/2014.

Großes Bombardement – so nennt die Wissenschaft den Kometensturm, der vor vier Milliarden Jahren die Planeten und Monde unseres Sonnensystems traf und bis heute sichtbare Krater hinterließ. Wie viele Kometen am Rande unseres Sonnensystems – im Kuipergürtel und in der sogenannten Oortschen Wolke – herumfliegen und jederzeit der Erde gefährlich werden können, lässt sich nicht sagen. Gelegentlich verlässt ein Komet diesen Bereich und fliegt durch das Sonnensystem; das kann man von der Erde aus beobachten. Wenn die Theorie von der Oortschen Wolke stimmt, besteht durchaus Gefahr: “Wenn da 100 Millionen Kometen in der hypothetischen Ooortschen Wolke in einem Lichtjahr Entfernung herumkreisen und es dort zu einer Störung kommt, dann könnte es wirklich zu einem erneuten Großen Bombardement kommen”, meint Astronomie-Experte Nick Howes.

Die Folgen eines solchen Kometensturms auf unser Sonnensystem wären verheerend. Glücklicherweise lenken die Großplaneten wie Jupiter viele der anfliegenden Objekte auf sich, etwa den Kometen Shoemaker-Levy 9, der im Juli 1994 in Trümmer von bis zu zwei Kilometern Durchmesser zerbarst und auf dem Jupiter aufschlug. Würde ein ähnliches Ereignis die Erde treffen, wären die Folgen apokalyptisch. “Solch ein Komet könnte in 100 Millionen Jahren kommen oder nächste Woche. Wir wissen es nicht”, so Nick Howes.

Aktuell ist Komet Ison in Sichtweite gerückt: Seit Ende November 2013 ist er der Sonne besonders nah. Wissenschaftler vermuten, dass er unterwegs in Fragmente zerbersten könnte. Viele gehen davon aus, dass sein Schweif bis Januar hell leuchten und für auch für Hobby-Astronomen am Nachthimmel sichtbar sein wird.

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Vorstoß zum Planeten Vesta geglückt.

Heidelberg. Die US-Raumsonde Dawn zeigte, dass Vesta ein Protoplanet aus der Frühzeit unseres Sonnensystems ist und auch wertvolle Informationen über die Entwicklung unseres Planeten enthält. Zudem wissen wir nun, dass einige seltene auf der Erde gefundene Meteoriten von Vesta stammen.

Für rund ein Jahr umkreiste die US-Raumsonde Dawn den Kleinplaneten Vesta im Asteroidengürtel zwischen den Bahnen von Mars und Jupiter. In dieser Zeit funkte die Sonde tausende von Bildern und einen Strom von Messdaten über den rund 530 Kilometer großen Himmelskörper zur Erde. Sie zeigten, dass Vesta eine eigene geologische Entwicklung durchlief und einer Miniaturausgabe eines erdähnlichen Planeten gleicht. Darüber berichten in der Juni-Ausgabe von “Sterne und Weltraum” Ralf Jaumann, Wissenschaftler am Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin-Adlershof, und Thorsten Dambeck, Wissenschaftsautor aus Weinheim. Ralf Jaumann ist am DLR an der Auswertung der Bilddaten von Dawn direkt beteiligt.

Mit Dawn trat im Juli 2011 erstmals eine Raumsonde in eine Umlaufbahn um ein Mitglied des Asteroidengürtels ein. Sie bewies, dass Vesta zu den so genannten differenzierten Asteroiden gehört. Vesta gliedert sich also wie die Erde in eine Kruste und einen Mantel aus silikatischen Gesteinen und einen metallischen Kern aus Eisen und Nickel. Kurz nach ihrer Entstehung vor rund 4,5 Milliarden Jahren war Vesta so heiß, dass sie völlig aufschmolz und ein glühender Ball war. Unter dem Einfluss der Schwerkraft des Kleinplaneten trennten sich die schwereren Metalle von den weniger dichten Silikatmineralen. Auf die Spur dieses von außen nicht erkennbaren inneren Aufbaus kamen die Wissenschaftler, indem sie das Schwerefeld des Himmelskörpers im Zuge vieler Umläufe von Dawn vermaßen.

Eine der wichtigsten Erkenntnisse der Dawn-Mission ist jedoch, dass wir bereits Bruchstücke von Vesta hier auf der Erde in unseren Händen halten können. Es ließ sich beweisen, dass einige seltene Meteoritentypen von Vesta stammen: die so genannten HED-Meteoriten. Sie ähneln in Aussehen und Zusammensetzung vulkanischen und Erdmantelgesteinen. Dawn zeigte, dass die spektralen Eigenschaften der Vesta-Oberfläche denjenigen der HED-Meteoriten bis auf das Haar gleichen. Somit wurden Bodenproben von Vesta in irdischen Laboren bereits untersucht und können nun der durch Dawn ermittelten geologischen Geschichte des Kleinplaneten zugeordnet werden.

Wie die HED-Meteoriten zur Erde gelangen konnten, offenbaren die Bilder, die mit den in Deutschland entwickelten und gebauten Bordkameras zur Erde gefunkt wurden. Auf ihnen lässt sich an Vestas Südpol ein riesiger, rund 500 Kilometer großer Einschlagkrater erkennen. Vor rund einer Milliarde Jahren schlug hier ein kleinerer Himmelskörper mit großer Wucht ein und hätte Vesta beinahe völlig zertrümmert. Der Einschlag beschleunigte viele Trümmerstücke auf derart hohe Geschwindigkeiten, dass sie das Schwerefeld von Vesta verlassen konnten. Sie treiben seitdem im All und umrunden die Sonne auf individuellen Bahnen. Hin und wieder gelangen kleine Trümmer durch Störungen im Asteroidengürtel auf Kurs ins innere Sonnensystem, und einige von ihnen schlagen schließlich als Meteoriten auf der Erde auf.

Dawns Reise zu Vesta war ein Besuch bei einem Protoplaneten. Die Sonde konnte somit einen Zeugen aus der Frühzeit des Sonnensystems unter die Lupe nehmen. Himmelskörper wie Vesta waren das Material, aus dem sich vor rund 4,5 Milliarden Jahren die Erde und ihre Schwesterwelten bildeten. Dawn erlaubte uns dadurch auch eine Zeitreise in die Jugend unseres eigenen Planeten. Vesta wurde bereits im Jahr 1807 vom deutschen Astronomen Heinrich Wilhelm Olbers entdeckt und ist das drittgrößte Objekt im Asteroidengürtel. Zu manchen Gelegenheiten wird er so hell, dass er sich als einziger Kleinplanet sogar mit dem bloßen Auge sichten lässt. Dawn hat nun dem seit rund 200 Jahren nur als Lichtpunkt bekannten Objekt ganz andere Erkenntnisse hinzugefügt. (Quelle: Sterne und Weltraum, Juni 2013)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Der Anfang allen Seins

Die moderne Kosmologie geht davon aus, dass unser Universum aus dem Nichts entstanden ist. Wenn man so eine Aussage liest oder hört, drängt sich sofort die Frage auf, wie denn aus nichts etwas entstehen kann. Nicht nur das physikalische Prinzip, dass es zu jedem physischen Ereignis eine physische Ursache geben muss, sondern auch der »gesunde Menschenverstand« lässt die Aussage eher als eine philosophische Idee erscheinen und weniger als eine wissenschaftlich fundierte Theorie. Eine wissenschaftliche Theorie muss empirisch überprüfbar sein. Wie kann aber der Anfang allen Seins durch ein Experiment überprüft werden? Welche Fakten sprechen für den Beginn von Raum, Zeit und Materie aus dem Nichts?
Trotz der Zweifel gibt es gute und rational nachvollziehbare Gründe, von einem Beginn des Universums aus dem Nichts auszugehen. Den Beginn, kurz Urknall, darf man sich nicht als eine riesige Explosion im Weltall vorstellen. Der Urknall ist ganz unspektakulär ein nicht näher bekannter physikalischer Zustand, bei dem Raum und Zeit sowie die beteiligten Energien in einem winzigen Bereich extrem hoher Dichte zusammenfallen (Singularität). Wenn die Theorie richtig ist, dann existierte das Weltall vor der Singularität genauso wenig, wie es davor Materie gab. Auch Zeit hätte ihren Ursprung erst im Urknall.
Der englische Astronom Fred Hoyle, der Anhänger eines ewigen, statischen Universums war, wollte durch die unwissenschaftliche Bezeichnung Urknall (engl. »Big Bang«) die Theorie der Urknall-Verfechter unglaubwürdig erscheinen zu lassen. Zu diesen Verfechtern gehörte sein belgischer Kollege, der Theologe und Astrophysiker, Georges Lemaître. Hoyle sprach sich dafür aus, dass sich das Universum in einem Zustand der Gleichförmigkeit (Steady-State-Theorie) ohne Anfang und ohne Ende befinde.
Wie begründete Lemaître die Idee vom Anfang allen Seins aus dem Nichts? Handelte es sich um seine theologische Vorstellung oder gab es harte Fakten?

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

 

Was passiert wenn Makro- und Quantenwelt zusammentreffen?

Heidelberg. Was passiert mit den manchmal geheimnisvollen Phänomenen der Quantenphysik, wenn man immer größere und schwerere Objekte betrachtet? Darüber stritten einst schon Erwin Schrödinger und Albert Einstein. Neue Experimente mit Systemen großer Masse sollen jetzt Hinweise zur Klärung dieses fundamentalen Rätsels liefern.

Wie die Quantenphysiker Markus Aspelmeyer und Markus Arndt von der Universität Wien in der Oktoberausgabe von “Spektrum der Wissenschaft” berichten, könnten sie darüber hinaus in Laborexperimenten sogar bestimmte Vorhersagen der Quantengravitation auf der sonst unerreichbaren Planck-Skala überprüfen – jener Dimension, bei der Raum und Zeit an ihre klassischen Grenzen stoßen.

Diese Art der Forschung hat ihren Ursprung im Jahre 1935. Damals entwarf der Theoretiker Erwin Schrödinger ein scheinbar paradoxes Gedankenexperiment, das seitdem Quantenphysiker und Philosophen beschäftigt. Es geht um die fundamentale Frage, ob auch ein makroskopisches Objekt in unbeobachtetem Zustand mehrere sich eigentlich ausschließende Eigenschaften annehmen kann – ob etwa eine Katze zugleich lebendig und tot zu sein. Dahinter steht das Problem des Messprozesses in der Quantenphysik.

Bei der Beobachtung etwa in einem Laborversuch reduziert sich der vorher nach der Quantentheorie mehrdeutige Zustand verschiedener Möglichkeiten auf genau eine Wirklichkeit, also genau einen bestimmten Messwert. Die Physiker sprechen dann auch vom “Kollaps der Wellenfunktion”. Lange Zeit waren solche Versuche jedoch nur auf die allerkleinsten Objekte der Nature – Atome und kleine Moleküle – beschränkt. Seit einigen Jahren verbuchen Physiker nun aber große Fortschritte bei quantenphysikalischen Experimenten mit makroskopischen Objekten. Diese enthalten beispielsweise Millionen oder Milliarden von Atomen, etwa in kleinen schwingenden Hebeln oder Membranen. Die Antworten beeinflussen unser grundlegendes Verständnis von Wirklichkeit und Kausalität.

Wenn also Makro- und Quantenwelt im Labor zusammentreffen – was werden wir aus diesen Experimenten lernen? Eines ist sicher: Vorläufig wird Raum für verschiedene Deutungen der Resultate bleiben. Sollten alle Experimente bei hoher Masse und Komplexität lediglich die Vorhersagen der etablierten Quantenphysik bestätigen, bliebe der philosophische Erkenntnisstand aus Sicht des Quantenphysikers unverändert. Gleichwohl würden dann etliche alternative Vorstellungen über die Welt ausgeschlossen werden – etwa jene, die den Kollapsmodellen zu Grunde liegen.

Nicht weniger spannend ist eine andere Variante. Nehmen wir an, die Forscher würden im Labor auf reproduzierbare Abweichungen von den etablierten Vorhersagen der gängigen Quantentheorie stoßen. Dann wäre es eine Herausforderung, zu entscheiden, ob diese mit “neuer Physik” oder doch im Rahmen der gängigen Quantentheorie ablaufen. (Quelle: Spektrum der Wissenschaft, Oktober 2012)

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Gehört Spiritualität zu den zentralen Elementen der Modernität?

Spätestens als zur Sommersonnenwende sich mehrere tausend Menschen gemeinsam auf dem Times Square zum Sonnengruß streckten, wurde allgemein sinnfällig, wie sehr Yoga zu einer westlichen Massenbewegung geworden ist. Spiritualität ist nicht mehr das, was sie mal war – soviel steht für den Anthropologen Peter van der Veer fest. Peter van der Veer bezweifelt, ob solche Veranstaltungen tatsächlich noch etwas mit den ursprünglichen Vorstellungen von Spiritualität zu tun haben: “Es fehlen die kritischen Elemente, wie sie noch in den spirituellen Ideen zu Beginn des 20. Jahrhunderts steckten.“

Für van der Veer gehört die Spiritualität zusammen mit anderen säkularen Ideen von Nationen, Gleichheit, Bürgertum, Demokratie und Rechten zu den zentralen Elementen in der Geschichte der Modernität, die sich gegen die althergebrachten Gesellschaftsordnungen und Wertvorstellungen richteten. “Das Spirituelle und das Säkulare sind im 19. Jahrhundert gleichzeitig als zwei miteinander verbundene Alternativen zur institutionalisierten Religion in der Euro-Amerikanischen Moderne entstanden”, so lautet eine der Kernthesen des gebürtigen Niederländers. Damit verweist er ganz nebenbei auch die verbreitete Ansicht, dass die Wiege der Spiritualität in Indien liegt, ins Reich der modernen Mythen. “Es gibt nicht einmal ein Wort für Spiritualität in Sanskrit”, sagt van der Veer. Gehört Spiritualität zu den zentralen Elementen der Modernität? weiterlesen

Was nützt uns die Kosmologie?

Haben wir nicht schon genügend Probleme auf Erden? Aktuell bangen wir im Zusammenhang mit der Eurokrise, der Krise in der arabischen Welt und dem Konkurs einer großen Handelskette. Müssen wir uns dann noch um die Vorgänge am Himmel kümmern?
Nein, wir müssen nicht. Aber dennoch gibt es eine große Zahl an Menschen, die nach einer Antwort auf Fragen suchen, warum wir hier auf unserer Erde überhaupt existieren, wie alles anfing und ob sich in der Unendlichkeit des Alls ein Schöpfer manifestiert.
Was sind eigentlich die Motive der Menschen sich mit Fragen der Kosmologie zu befassen. Ist es ganz einfach Neugier, wollen sie sich um mit einem Bibelwort zu reden die Erde untertan machen, ist es die Gier nach Sensationen oder irgendein anderes verstecktes Motiv?
Der Autor Gerhard Josten, den die Unendlichkeit seit seiner Jugend fasziniert, hat sich die Aufgabe gestellt, die Beweggründe der Menschen zu erforschen und die Vielfalt ihrer Meinungen über den Kosmos in dem Buch mit dem Titel »Ein All ohne Knall« zu präsentieren. Eigentlich hätte man dem Buch noch einen Untertitel, etwa »Die Beweggründe von Menschen, sich mit der Kosmologie zu beschäftigen« geben müssen. Der Haupttitel mag sonst dazu verleiten, zu glauben der Urknall würde im Mittelpunkt des Werks stehen. Dem ist aber nicht so, vielmehr steht der Mensch mit seiner ungeheuren Vielfalt an Vorstellungen und seinen Motiven im Zentrum. Wie hat der Autor dieses mehr psychologische Thema angepackt?
Das Buch ist in drei Teile gegliedert. Im ersten Teil werden einige Auszüge aus dem Stand der Weltraumforschung gegeben. Dabei wird die Rotverschiebung als wichtigstes Argument für den Beginn des Universums in einer Singularität (Urknall) näher beleuchtet. Weiter werden die Folgen beschrieben, die auf dem dualen Charakter des Lichts basieren. Bekanntlich hat Licht je nach Art der Messung entweder Wellencharakter oder Teilchencharakter. Diese Eigenschaft ist für den Nichtphysiker äußerst verwirrend und führt deshalb häufig zu Missverständnissen. Ein drittes und letztes Thema im ersten Teil ist die Suche nach einem erdähnlichen Planeten irgendwo in den Fernen des Weltalls, die Unmengen an Forschungsmittel verschlingt.
Im zweiten Teil des Buchs sind Beiträge von Journalisten, Fachleuten und Wissenschaftlern veröffentlicht. Dabei handelt es sich entweder um fundierte Fachbeiträge oder um Meinungen und Bekenntnisse, die teilweise kontrovers gegenüber den angezweifelten Erkenntnissen der Mainstreamwissenschaft sind. Insbesondere wird angezweifelt, ob die Rotverschiebung des Lichts aus fernen Galaxien tatsächlich ein Argument für die permanente Ausdehnung des Universums ist.
Im dritten und letzten Teil hat sich der Autor mit dem Psychlogen Prof. Dr. Erich Kasten und dem Philosophen Dietmar Odilo Paul zu einer Gesprächsrunde getroffen, um das Thema anzugehen, das ihm besonders am Herzen liegt, nämlich die Beweggründe der Menschen aufzudecken, sich mit dem Kosmos und dem Beginn von allem zu beschäftigen. Zu welchen Ergebnissen die Runde kommt, sei hier nicht verraten.
Um ein Resumee zu ziehen, kann ich sagen, dass dieses Werk zunächst einmal der Meinungsvielfalt über das Urknall-Thema ein Forum bietet. Abweichende Meinungen werden nicht ausgegrenzt, sondern genauso dargestellt, wie die Meinungen, die mit der Mainstreamwissenschaft konformgehen. Schließlich wird auch Licht in die verborgenen Beweggründe gebracht, warum sich Menschen überhaupt mit Dingen beschäftigen, die sie nicht beeinflussen können.
Für alle, die an solchen Fragestellungen interessiert sind, ist Jostens »Ein All ohne Knall« eine Perle gegenüber den Büchern, die abweichende Meinungen ausgrenzen und mehr Fragen aufwerfen als beantworten. Hier bekommt man wenigstens Antworten auf die Beweggründe der Menschen.

Buchtipps: