Schlagwort-Archive: Verhalten

Primäres Bewusstsein bei Mikroben entdeckt

Prokaryoten umfassen die Bakterien und Archaeen, also die einfachsten und frühesten Lebewesen, die wir kennen. Es sind Mikroben ohne Zellkern, die aber ein Chromosom besitzen, mit dessen Hilfe sie sich fortpflanzen. Im Rahmen der Bewusstseinsforschung stellt sich die Frage, ab welcher Stufe der Evolution sich ein rudimentäres Bewusstsein zeigt. Durch raffinierte Tests hat man vor einigen Jahren herausgefunden, dass Schimpansen, Elefanten oder Raben Bewusstsein zeigen. Nun kann man aber auch primäres Bewusstsein bei Prokaryoten nachweisen.

Primäres Bewusstsein ist eine einfache Bewusstseinsform, die etwa mit den Funktionen eines Unterbewusstseins vergleichbar ist. Es beinhaltet nicht das Selbst- oder Ich-Bewusstsein, das wir von uns Menschen kennen. Bewusstsein ist ein informationsverarbeitender Prozess und dient einem Lebewesen dazu, sich auf neue Anforderungen oder geänderte äußere Umstände einzustellen. Wenn das Lebewesen zwischen möglichen Handlungsalternativen auf nicht determinierte Weise entscheidet und die Entscheidung zur Befriedigung seiner Bedürfnisse dient, dann kann man zumindest von primärem Bewusstsein ausgehen (zur Definition von Bewusstsein siehe: Klaus-Dieter Sedlacek, „Der Widerhall des Urknalls“, Norderstedt 2012, S. 148). Andererseits kann man nicht von primärem Bewusstsein ausgehen, wenn Handlungen ausschließlich eine automatische Reaktion auf Umweltreize sind und keinerlei Entscheidungen zwischen Alternativen erkennen lassen.

Prokaryoten haben Geißeln, um sich schwimmend fortbewegen zu können. Die Beweglichkeit kann ihnen nur nützen, wenn sie erkennen, wohin sie schwimmen sollen. Aus ihrer Orientierungsreaktion (Taxis), das heißt, ihrer Ausrichtung nach einem Reiz oder einem Umweltfaktor lassen sich Rückschlüsse auf jenen informationsverarbeitenden Prozess ziehen, der eine Voraussetzung für Bewusstsein ist. Man unterscheidet zum Reiz gerichtete Reaktionen und vom Reiz weggerichtete Meide- oder Schreckreaktionen (negative Taxis).

Bei einer Chemotaxis erfolgt beispielsweise die Ausrichtung nach der Konzentration eines Stoffes. Aerotaxis ist die Orientierung zum Sauerstoff. Es handelt sich um eine besondere Form von Chemotaxis oder Energietaxis. Phototaxis ist die Orientierung an der Helligkeit und Farbe des Lichts und Galvanotaxis die Orientierung an elektrischen Feldern um nur ein paar Taxisarten zu nennen. Im Internet findet sich ein kleines Video über das Pantoffeltierchen (Paramecium), wie es sich an einem elektrischen Feld ausrichtet (https://youtu.be/-U9G0Xhp3Iw).

Viele Bakterien können gleichzeitig die Konzentration von Futtersubstanzen, Sauerstoff oder Licht erkennen und sich danach ausrichten. Solange sie z.B. keine Futtersubstanz erkennen, schwimmen sie eine Zeit lang in eine zufällige Richtung und wechseln anschließend die Richtung, um wieder eine Zeit lang in eine andere Richtung weiterzuschwimmen. Bei geringer werdender Konzentration wechseln sie häufig die Richtung, bei zunehmender Konzentration schwimmen sie dagegen zielgerichteter zum Ort der höheren Konzentration. Sie zeigen ein gleiches Verhalten in Bezug auf die Sauerstoffkonzentration und auf Licht (vgl. Cypionka, „Grundlagen der Mikrobiologie“, 3. Aufl., Springer 2006, S. 33f.)

Aus dem Verhalten kann man ableiten, dass die Bakterien zeitlich auflösen können, ob die Konzentration geringer oder stärker wird. Sie können also Änderungen in den Umweltbedingungen feststellen, indem sie einen vorherigen Zustand auf irgendeine Weise speichern. Schon allein dadurch erkennt man das Vorhandensein eines informationsverarbeitenden Prozesses. Die Mikroben zeigen zudem ein Bedürfnis (= Neigung ein Ziel zu verfolgen), zum Ort der höheren Futter- oder Sauerstoffkonzentration zu schwimmen.

Es kann aber auch vorkommen, dass zwei unterschiedliche Bedürfnisse nicht miteinander vereinbar sind. Beispielsweise kann die höhere Sauerstoffkonzentration entgegengesetzt vom Ort der höheren Futterkonzentration liegen. Zwischen den beiden Orten, an denen je ein anderes Bedürfnis befriedigt wird, gibt es eine Stelle, an der die Bewertung, welcher Reiz stärker ist, gleich ausfällt. Der Mikrobe muss sich entscheiden, welchem Reiz sie nachgeht, d.h., zu welchem Ort sie schwimmen soll. Die Entscheidung kann nicht determiniert fallen, weil vorausgesetzt wird, dass die Stärke der Reize von der Mikrobe gleich bewertet wird. Wir haben es in diesem Fall mit einer nicht determinierte Entscheidung zwischen Handlungsalternativen zu tun. Es ist die Entscheidung in die eine oder in die andere Richtung zur Befriedigung eines Bedürfnisses zu schwimmen.

Zusammenfassend gilt: Im Verhalten der Mikroben kann man einen informationsverarbeitenden Prozess erkennen, der bei Änderungen der Konzentration verschiedener Stoffe, also der Umweltbedingungen, eine nicht determinierte Entscheidung zwischen Handlungsalternativen trifft, die zum zielgerichteten Verhalten zur Befriedigung von Bedürfnissen führt. Das bedeutet: Mikroben zeigen primäres Bewusstsein. – Klaus-Dieter Sedlacek

Buchtipps:

 

Besondere Fähigkeiten bei Roboter gefunden: Er hat Bewusstsein

Wissenschaftler der Universität Bielefeld haben bei dem von ihnen entwickelten Roboter besondere Fähigkeiten gefunden: Diese deuten darauf hin, dass der Roboter ein Bewusstsein entwickelt hat.

Für Menschen ist es normal: Taucht ein Problem auf, denken sie über unterschiedliche mögliche Handlungsschritte nach, erproben in Gedanken deren Konsequenzen und entscheiden sich dann für eine Vorgehen. Seit Anfang 2011 arbeiten Forscher der Universität Bielefeld daran, dass auch Roboter dieses Probehandeln durchführen können.

Um ihr Ziel – einen Roboter der Probehandeln kann – zu erreichen, haben die Forscher ein reaktives System auf Insektenbasis entwickelt. Der Roboter mit Namen Hector ähnelt einer Stabheuschrecke und reagiert auf Umweltreize, er kann also zum Beispiel über einen Stein klettern, wenn dieser im Weg liegt. Das Neue an Hector: Die Forscher haben sein System um kognitive Komponenten erweitert. Der Heuschrecken-Roboter kann so beispielsweise neue Verhaltensweisen erfinden und das Probehandeln erlernen. Dieses vollzieht der Roboter dann, wenn ein Problem auftritt, das das reaktive System nicht lösen kann – dann schaltet sich Hectors kognitives System dazu, sodass der Roboter unterschiedliche Verhaltensweisen durchspielt und überlegt, welche Handlungsoptionen bestehen. Ganz nach dem Motto: Erst denken, dann handeln.

Prof. Dr. Holk Cruse (Bild), Biologe an der Universität Bielefeld, und sein Forschungspartner Malte Schilling haben entdeckt, dass Roboter ein Bewusstsein entwickeln können. Foto: Universität Bielefeld
Prof. Dr. Holk Cruse (Bild), Biologe an der Universität Bielefeld, und sein Forschungspartner Malte Schilling haben entdeckt, dass Roboter ein Bewusstsein entwickeln können.
Foto: Universität Bielefeld

„Der Bau von Roboter Hector ist noch nicht ganz abgeschlossen, aber die Simulation, das heißt sein virtuelles Gegenstück am Computer, ist zu 90 Prozent fertiggestellt“, sagt Professor Dr. Holk Cruse, einer der beteiligten Forscher. „In der Theorie sind wir uns also schon sehr sicher, dass Hector Probehandeln kann.“ Am Projektende soll auch der reale Roboter – der bislang noch nicht vollständig fertiggestellt ist – zeigen können, dass er das Probehandeln beherrscht. „Nachdem wir unser Basisziel erreicht hatten, haben wir geschaut, was der Roboter noch kann. Dabei ergab sich, dass er gewisse emergente Fähigkeiten entwickelt hat, die auf ein Bewusstsein hindeuten“, so Cruse. „Emergent sind Eigenschaften dann, wenn sie nicht in das System eingebaut wurden, schließlich aber trotzdem vorhanden sind.“

Bislang ist die Annahme verbreitet, dass derartige emergente Eigenschaften, zu denen unter anderem die Kontrolle der Aufmerksamkeit und eben auch das Bewusstsein gehören, nur in komplexen Systemen möglich sind. „Unsere Forschung zeigt, dass auch weniger komplexe Systeme höhere Fähigkeiten entwickeln können“, sagt Malte Schilling, Forschungspartner von Holk Cruse. Zu den Aspekten von Bewusstsein, die der Roboter entwickelt hat, zählen unter anderem Intentionen sowie die sogenannte globale Zugänglichkeit. Intentionen bezeichnen Zustände, bei denen das ganze Verhalten einem Ziel – beispielsweise der Futtersuche – untergeordnet ist. Mit globaler Zugänglichkeit ist gemeint, dass Gedächtniselemente zugänglich sind, auch wenn gerade etwas anderes gemacht wird. Beispielsweise ist jemand der läuft, trotzdem in der Lage nachzudenken und nebenbei noch etwas anderes zu machen. „Diese und weitere Aspekte von Bewusstsein, die wir bei Hector finden konnten, sind sozusagen Abfallprodukte der eigentlichen Forschungsarbeit – allerdings sehr interessante“, sagt Cruse. „Sie zeigen, dass wichtige Eigenschaften des Bewusstseins auch bei sehr kleinen Gehirnen, und eben auch in künstlichen Systemen, vorkommen können“, sagt Cruse. (Quelle: idw)

Buchtipps:

Durchbruch bei Quantenteleportation: Quantenbits auf Knopfdruck übertragen

Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist. Quelle: University of Tokyo
Deterministische Quantenteleportation eines photonischen Quantenbits. Jedes Qubit, das von links in den Teleporter fliegt, verlässt den Teleporter rechts mit einem Qualitätsverlust von nur etwa 20 Prozent – ein Wert, der klassisch, d.h. ohne Verschränkung, unerreichbar ist.
Quelle: University of Tokyo

Mithilfe quantenmechanischer Verschränkung räumlich getrennter Lichtfelder ist es Wissenschaftlern aus Tokio und Mainz gelungen, photonische Quantenbits außerordentlich zuverlässig zu teleportieren. Rund 15 Jahre nach den ersten Versuchen auf dem Gebiet der optischen Teleportation ist damit ein entscheidender Durchbruch gelungen.

Der Erfolg des in Tokio durchgeführten Experiments beruht auf einer Hybridtechnik, bei der zwei konzeptionell verschiedene, bisher unvereinbare Ansätze verknüpft werden. „Diskrete, digitale optische Quanteninformation kann dabei kontinuierlich und damit sozusagen auf Knopfdruck übertragen werden“, erklärt Univ.-Prof. Dr. Peter van Loock von der Johannes Gutenberg-Universität Mainz (JGU). Van Loock hat als Physik-Theoretiker die experimentellen Physiker um Akira Furusawa von der Universität Tokio beraten, wie sie den Teleportationsversuch am effizientesten durchführen und eine erfolgreiche Quantenteleportation letztlich auch verifizieren können. Die Forschungsarbeiten wurden in dem renommierten Fachmagazin Nature am 15. August 2013 veröffentlicht.

Die Quantenteleportation ermöglicht den Transfer von beliebigen Quantenzuständen von einem Sender, als Alice bezeichnet, zu einem räumlich entfernten Empfänger, genannt Bob. Voraussetzung ist, dass sich Alice und Bob zunächst einen verschränkten Quantenzustand, z.B. in Form von verschränkten Photonen, über die Distanz teilen. Die Quantenteleportation ist von fundamentaler Bedeutung für die Verarbeitung von Quanteninformation (Quantencomputing) und die Quantenkommunikation. Insbesondere für die Quantenkommunikation gelten Photonen als optimale Informationsträger, da sie eine Signalübertragung mit Lichtgeschwindigkeit ermöglichen. Mit einem Photon kann man ein Quantenbit oder Qubit darstellen – analog zu einem Bit in der klassischen Informationsverarbeitung. Man spricht dann von „fliegenden Quantenbits“.

Erste Versuche zur Teleportation von einzelnen Photonen, die auch als Lichtteilchen bezeichnet werden, gehen auf den Wiener Physiker Anton Zeilinger zurück. In der Zwischenzeit wurden verschiedene Experimente durchgeführt, allerdings stieß die Teleportation eines photonischen Quantenbits mithilfe der herkömmlichen Methoden aufgrund von experimentellen Unzulänglichkeiten und grundsätzlichen Prinzipien an Grenzen.

Der Schlüssel für das Experiment in Tokio ist eine Hybridtechnik. Mit ihrer Hilfe ist es gelungen, experimentell eine vollkommen deterministische Quantenteleportation von photonischen Qubits zu erzielen, bei der die Teleportation mit außerordentlich hoher Zuverlässigkeit erfolgt. Die Genauigkeit der Übertragung liegt bei 79 bis 82 Prozent für vier unterschiedliche Qubits. Außerdem konnten die Qubits selbst bei einem geringen Grad der Verschränkung wesentlich effizienter teleportiert werden als in früheren Experimenten.

Verschränkung-on-Demand durch Lichtquetschung

Der Begriff der Verschränkung geht auf Erwin Schrödinger zurück und bezeichnet den Befund, dass zwei Quantensysteme, beispielsweise zwei Lichtteilchen, einen gemeinsamen Zustand einnehmen und in ihrem Verhalten auf stärkere Weise voneinander abhängen als es klassisch möglich ist. Bei dem Tokioter Experiment wurde durch die Verschränkung von vielen Photonen mit vielen Photonen eine kontinuierliche Verschränkung erzeugt, bei der nicht nur einzelne wenige Lichtteilchen, sondern die kompletten Amplituden und Phasen zweier Lichtfelder miteinander quantenkorreliert sind. Bisherige Experimente hatten dagegen jeweils nur ein einzelnes Photon mit einem anderen einzelnen Photon verschränkt – eine weniger effiziente Lösung. „Die Verschränkung von Photonen hat in dem Tokio-Experiment sehr gut funktioniert – praktisch auf Knopfdruck, sobald der Laser eingeschaltet wurde“, beschreibt van Loock, Professor für Theorie der Quantenoptik und Quanteninformation, den Versuch. Erreicht wurde diese kontinuierliche Verschränkung durch sogenanntes gequetschtes Licht, das im Phasenraum des Lichtfeldes die Form einer Ellipse annimmt. Ist die Verschränkung erzeugt, kann ein drittes Lichtfeld beim Sender angeheftet werden. Von dort können dann im Prinzip beliebige und beliebig viele Zustände an den Empfänger übertragen werden. „In unserem Experiment waren es genau vier ausreichend repräsentative Testzustände, die unter Benutzung der Verschränkung von Alice übermittelt wurden und bei Bob entsprechende Zustände erzeugt haben. Dank der kontinuierlichen Verschränkung ist es möglich, dass die photonischen Qubits deterministisch, also bei jedem Versuch, zu Bob übertragen werden“, ergänzt van Loock.

Frühere Experimente zur optischen Teleportation waren unterschiedlich angelegt und bis heute inkompatibel. Von physiktheoretischer Seite wurde zwar angenommen, dass die beiden unterschiedlichen Ansätze, die diskrete und die kontinuierliche Welt, zu verbinden sind. Dass es nun im Experiment mit der Hybridtechnik tatsächlich gelungen ist, stellt einen technologischen Durchbruch dar. „Jetzt nähern sich die beiden Welten an“, so van Loock.
( Quelle: idw. Veröffentlichung: Shuntaro Takeda et al. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 15. August 2013. DOI: 10.1038/nature12366)
Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Physikprofessor Zeilinger schließt letztes Schlupfloch der spukhaften Fernwirkung

Ein Team um Anton Zeilinger, Professor für Experimentalphysik der Universität Wien und Direktor des Instituts für Quantenoptik und Quanteninformation (IQOQI) der ÖAW, hat einen Versuch mit Photonen durchgeführt, bei dem nun ein wichtiges “Schlupfloch” geschlossen werden konnte.

Wenn wir einen Gegenstand beobachten, dann gehen wir davon aus, dass einerseits seine Eigenschaften schon vor der Beobachtung eindeutig feststehen und dass andererseits diese Eigenschaften unabhängig sind vom Zustand anderer, weit entfernter Objekte. Für Gegenstände unseres Alltags ist dem auch so. Für Quantenobjekte hingegen treffen diese scheinbar selbstverständlichen Annahmen nicht ohne weiteres zu. In den vergangenen 30 Jahren haben zahlreiche Experimente gezeigt, dass das Verhalten von Quantenteilchen – wie Atome, Elektronen oder Photonen – in klarem Widerspruch mit obiger Wahrnehmung stehen kann. Jedoch haben diese Experimente nie über alle Zweifel erhabene Antworten geliefert. Stets war es im Prinzip möglich, dass die beobachteten Teilchen eine Schwäche des Experiments “ausgenützt” hatten. Ein Team um Physiker Anton Zeilinger hat nun einen Versuch mit Photonen durchgeführt und dabei ein wichtiges “Schlupfloch” geschlossen. Die ForscherInnen haben damit den bisher vollständigsten experimentellen Nachweis erbracht, dass und wie die Quantenwelt unserer Alltagserfahrung widerspricht.

Die Quantenphysik liefert ein extrem präzises und fundamentales Werkzeug, um die Welt um uns bis in kleinste Details zu verstehen. Sie ist aber auch Grundlage für die moderne Hochtechnologie: Halbleiter (und damit Computer), Laser, Magnetresonanztomographen und andere Geräte basieren auf quantenphysikalischen Effekten. Dies kann jedoch nicht darüber hinwegtäuschen, dass nach mehr als einem Jahrhundert intensiver Forschung fundamentale Aspekte der Quantentheorie noch nicht vollkommen verstanden sind. Auch heute noch werden aus Laboratorien weltweit – jeder Intuition widersprechende Ergebnisse – gemeldet, die jedoch im Rahmen der Quantentheorie erklärt werden können.

Dem Rätsel der Quantenverschränkung auf der Spur

Die Wiener PhysikerInnen berichten nun aber nicht von einem neuen Effekt, sondern sind einem der grundlegendsten Phänomene der Quantenphysik, der sogenannten “Verschränkung”, tiefer auf den Grund gegangen. Die Konsequenzen der Quantenverschränkung sind verblüffend: Wenn man ein Quantenobjekt misst, das mit einem anderen verschränkt ist, dann, so sagt die Quantentheorie, ist der Zustand eines Teilchens von der Messung, die an dem anderen durchgeführt wird, abhängig. Dies ist auch der Fall, wenn die beiden Teilchen so weit voneinander entfernt sind, dass sie selbst im Prinzip nicht miteinander kommunizieren können (die Kommunikationsgeschwindigkeit ist grundlegend durch die Lichtgeschwindigkeit beschränkt). Eine große Aufgabe ist es, die Vorhersage der gegenseitigen Beeinflussung verschränkter Quantenteilchen in realen Experimenten zu testen.

Auf dem Weg zu einer abschließenden Antwort

Anton Zeilinger und den jungen WissenschafterInnen Marissa Giustina, Alexandra Mech, Rupert Ursin, Sven Ramelow und Bernhard Wittmann ist in einer internationalen Kooperation mit dem National Institute of Standards and Technology (USA), der Physikalisch-Technischen Bundesanstalt (Deutschland) und dem Max-Planck-Institut für Quantenoptik (Deutschland) ein wichtiger Schritt gelungen, um einen endgültigen experimentellen Beweis zu erbringen, dass Quantenteilchen in der Tat mehr können als die klassische Physik ihnen erlaubt. Technologische Verbesserungen gemeinsam mit einem geeigneten Aufnahmeprotokoll ermöglichten den Forschenden, verschränkte Photonen mit einer bisher nicht dagewesenen Effizienz zu detektieren. “Die erzeugten Photonen können sich nicht mehr davor drücken, gemessen zu werden”, bringt es Zeilinger auf den Punkt.

Diese engmaschige Überwachung der Photonen ist wichtig, weil damit ein wesentliches “Schlupfloch” geschlossen wird. Bei bisherigen Experimenten dieser Art blieb stets die Möglichkeit offen, dass die gemessenen Lichtteilchen zwar die Gesetze der klassischen Physik verletzt hatten, dies aber nicht der Fall gewesen wäre, wenn alle im Experiment involvierten Teilchen hätten gemessen werden können. Diese Möglichkeit wird in dem neuen Experiment ausgeschlossen. “Viele Wissenschaftler haben sich bis jetzt gescheut, Experimente mit Photonen durchzuführen, weil diese zu einfach verloren gehen – genau dieses Problem haben wir jetzt im Griff”, erklärt Marissa Giustina, Erstautorin der aktuellen Publikation.

Noch ein Schritt zum krönenden Abschluss

Mit dem neuen Experiment von Marissa Guistina und ihren KollegInnen sind Photonen die ersten Quantenteilchen, für die – zwar nicht in einem einzigen, aber – in mehreren separaten Experimenten jede mögliche Hintertür geschlossen wurde. Die Krönung wäre jedoch noch ein einziges Experiment, in welchem den Photonen durch Mittel der klassischen Physik sämtliche mögliche Wege versperrt werden würde. Ein solches Experiment wäre auch für eine wichtige praktische Anwendung von grundlegender Bedeutung: Die sogenannte Quantenkryptographie beruht auf quantenmechanischen Prinzipien und gilt als absolut abhörsicher. Ein Lauschangriff ist aber im Prinzip möglich, solange “Schlupflöcher” bestehen. Nur wenn diese geschlossen sind, ist ein vollkommen sicherer Austausch von Nachrichten möglich.

“Ein Experiment ohne jedes Schlupfloch”, sagt Zeilinger, “ist eine große Herausforderung. Daran arbeiten einige Gruppen weltweit.” Diese Experimente werden nicht nur mit Photonen versucht, sondern auch mit Atomen, Elektronen und anderen Systemen, die quantenmechanisches Verhalten an den Tag legen. Das Experiment der Wiener PhysikerInnen zeigt aber deutlich das Potenzial, das in Photonen steckt, auf. Dank diesen Fortschritten gehen dem Photon die “Schlupfwinkel” aus und die PhysikerInnen sind näher denn je an einem Experiment, das belegt, dass die Quantenphysik wirklich so sehr gegen unsere Intuition und Alltagserfahrung verstößt, wie dies die Forschungsarbeiten der vergangenen Jahrzehnte nahelegen. (Quelle: idw).

Publikation
Bell violation using entangled photons without the fair-sampling assumption: Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittmann, Johannes Kofler, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, Anton Zeilinger. In: Nature (Advance Online Publication/AOP). April 14, 2013. DOI: 10.1038/nature12012

Buchtipp:
Der Widerhall des Urknalls: Spuren einer allumfassenden transzendenten Realität jenseits von Raum und Zeit

Gehirn: Nachbau des menschlichen Denkorgans geplant

Heidelberg. Das Gehirn nachbauen! Das klingt wie der Gipfel wissenschaftlicher Vermessenheit. Gilt doch das menschliche Denkorgan gemeinhin als komplexeste Gebilde der Natur. “Spektrum der Wissenschaft” beschreibt in seiner September-Ausgabe die beiden vielversprechendsten Wege zu diesem Ziel.

Hier zeigen der Neurologe Henry Markram aus Lausanne und der Physiker Karlheinz Meier aus Heidelberg, wie sie Hirnstrukturen mittels Supercomputer simulieren oder den Nachbau des Gehirns mit konkreten elektronischen Schaltungen bewerkstelligen möchten. Beide Vorhaben der Kunsthirnforscher sind Teil der so genannten europäischen Flaggschiffprojekte, denen am Ende Milliarden Euro an Forschungsförderung winken könnten. Ein virtuelles Gehirn könnte in der medizinischen Forschung als Ersatz für das echte Organ dienen und so etwa neue Erkenntnisse über die Ursachen psychischer Störungen wie des Autismus liefern oder die risikolose Prüfung neuer Psychopharmaka “in silico” ermöglichen. Gehirn: Nachbau des menschlichen Denkorgans geplant weiterlesen

Wissen Schimpansen um das Bewusstsein anderer?

Frei lebende Schimpansen warnen unwissende Gruppenmitglieder häufiger vor einer Gefahr als solche, die bereits alarmiert sind

Viele Tiere stoßen in Gegenwart von Raubtieren oder anderen Gefahren Alarmrufe aus. Dies geschieht häufiger bei Anwesenheit von verwandten oder befreundeten Tieren. Bisher gab es jedoch keine Belege dafür, dass Schimpansen dabei auch den Wissensstand anderer Gruppenmitglieder berücksichtigen. Jetzt haben Forscher am Max-Planck-Institut für evolutionäre Anthropologie in Leipzig und der University of St. Andrews in Großbritannien frei lebende Schimpansen in Uganda beobachtet und dabei herausgefunden, dass diese erkennen, wer über welches Wissen verfügt. Die Schimpansen gaben Alarmrufe zur Warnung vor einer Giftschlange häufiger in Gegenwart von unwissenden als in Gegenwart von bereits informierten Gruppenmitgliedern. Neue Informationen mit anderen zu teilen, ist ein wichtiger Schritt auf dem evolutiven Weg zur Sprache, den der gemeinsame Vorfahre von Mensch und Schimpanse vermutlich bereits vor sechs Millionen Jahren beschritten hat.

Verschiedene Studien zur “Theory of Mind”, dem Wissen um das Bewusstsein anderer, fanden bislang jedoch nur mit Zootieren statt und führten zum Teil zu kontroversen Ergebnissen. Meist war dabei unklar, ob Schimpansen die Aufgabe nicht lösen konnten oder diese nicht verstanden. Ein Problem, das bei frei lebenden Schimpansen in ihrem natürlichen Umfeld nicht besteht.

Catherine Crockford, Roman Wittig und Kollegen beobachten deshalb frei lebende Schimpansen im Budongo Wald in Uganda. Sie konfrontierten die Tiere mit Attrappen gefährlicher Giftschlangen, zwei Gabunvipern und einer Nashornviper. „Diese gut getarnten Schlangen liegen oft wochenlang am selben Fleck. Es lohnt sich also, wenn der Schimpanse, der sie entdeckt, seine Gruppenmitglieder vor der Gefahr warnt”, sagt Catherine Crockford, die an der University of St. Andrews forscht.

Die Forscher beobachteten das Verhalten von 33 verschiedenen Schimpansen, die jeweils eines von drei Schlangenmodellen gesehen hatten. Es zeigte sich, dass Alarmrufe häufiger dann ausgestoßen wurden, wenn der Rufer sich in der Gesellschaft von Gruppenmitgliedern befand, die die Schlange entweder selbst noch nicht gesehen oder frühere Warnrufe nicht gehört haben konnten. „Schimpansen scheinen den Wissensstand anderer zu berücksichtigen und stoßen freiwillig einen Warnruf aus, um die anderen über eine Gefahr zu informieren, von der sie nichts wissen“, sagt Roman Wittig vom Max-Planck-Institut für evolutionäre Anthropologie und der University of St. Andrews. „Gruppenmitglieder, die die Gefahr bereits kannten, wurden seltener informiert“.

Diese Studie belegt erstmals, dass Alarmrufe nicht nur absichtlich, sondern auch häufiger ausgestoßen werden, wenn sich die Zuhörer der Gefahr nicht bewusst sind. „Schimpansen verstehen offenbar, dass sie etwas wissen, was ihr Gegenüber nicht weiß. Sie verstehen ebenfalls, dass sie den anderen informieren können, indem sie eine ganz bestimmte Lautäußerung von sich geben“, so Wittig. Einigen Wissenschaftlern zufolge ist die Fähigkeit zum Bereitstellen von fehlenden Informationen an andere Gruppenmitglieder ein wichtiger Schritt während der Evolution von Sprache: Warum sollte man jemanden über etwas informieren, wenn man nicht vorher erkannt hat, dass derjenige diese Information benötigt? Bisher war nicht klar, wann in der Evolution der Affenartigen (Hominoiden) oder der Menschenartigen (Hominiden) dieser wichtige Schritt gegangen wurde. Der gemeinsame Vorfahre von Mensch und Schimpanse könne diesen Weg möglicherweise vor 6 Millionen Jahren beschritten haben, wie die aktuelle Studie zeigt. (Quelle: idw).

Originalveröffentlichung:
Catherine Crockford, Roman M. Wittig, Roger Mundry, and Klaus Zuberbühler
Wild Chimpanzees Inform Ignorant Group Members of Danger
Current Biology, December 29, 2011

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Wie das Gehirn Geist hervorbringt


Das vernetzte Gehirn.
Forscher analysieren das Verknüpfungsmuster der Nervenzellen im Gehirn, um dessen Arbeitsweise besser zu verstehen.

Wie das Gehirn unseren Geist hervorbringt ist noch immer ein großes Rätsel. Manche Forscher sehen den Grund dafür in der bisher üblichen separaten Untersuchung einzelner Bereiche und Funktionen, die den Blick auf das große Ganze versperrte. Sie halten es für aussichtsreicher, das Gehirn als riesiges Netzwerk miteinander verknüpfter Nervenzellen zu betrachten, und wollen – wie Spektrum der Wissenschaft in seinem Oktoberheft berichtet – aus dem Muster dieser Verknüpfungen seine Funktionsweise erschließen.

Einer von ihnen ist Dietmar Plenz vom National Institute of Mental Health der USA in Bethesda (Maryland). Er und seine Kollegen züchten Hirngewebestückchen in der Größe von Sesamkörnern in Kulturschalen. Mit 64 Elektroden, die sie hineinstechen, registrieren sie dann das spontane Feuern der Nervenzellen. Was sie dabei aufzeichnen, sind Salven schnell aufeinander folgender elektrischer Entladungen, die man als neuronale Lawinen bezeichnet.

Auf den ersten Blick scheint es so, als handle es sich um ein Zufallsmuster. In diesem Fall müssten jedoch winzige und großräumige Lawinen gleich häufig auftreten. Das ist aber nicht der Fall: Plenz und seine Kollegen beobachten kleine Exemplare viel öfter als große. Zeichnet man die Größenverteilung der Lawinen in einem Diagramm auf, ergibt sich eine glatte, abfallende Kurve. Wissenschaftler kennen diesen Kurvenverlauf aus anderen Zusammenhängen – etwa der Intensitätsverteilung von Erdbeben oder dem Muster der Erkrankungsfälle bei einer Epidemie. Er ist ein Merkmal komplexer Netzwerke, die Verbindungen über kurze und weite Distanzen enthalten. Die konkrete Form der Verteilungskurve erlaubt dabei Rückschlüsse auf das genaue Verknüpfungsmuster.

Plenz und seine Kollegen testeten eine Reihe verschieden konfigurierter Modellnetze im Computer, um herauszufinden, welche davon eine ähnliche Verteilung neuronaler Lawinen erzeugte ihre Hirngewebestücke. Die beste Übereinstimmung ergab eine Architektur mit 60 Neuronengruppen, deren Mitglieder alle direkten Kontakt zueinander hatten. Jeder solche “Cluster” war im Durchschnitt mit zehn weiteren verknüpft. Doch dieser Wert schwankte stark: Einige wenige Cluster waren mit vielen anderen verbunden, die meisten aber nur mit sehr wenigen. Wissenschaftler bezeichnen das als “Kleine-Welt-Netzwerk”. Seine Architektur hat zur Folge, dass eine Erregungswelle zwar überwiegend auf den Ursprungscluster beschränkt bleibt, aber über wenige Zwischenstationen auf jeden beliebigen anderen überschwappen kann.

Inzwischen verfolgen Neurowissenschaftler das Ziel, die geschätzten 100 Billionen Verknüpfungen zwischen allen 100 Milliarden Neuronen im Gehirn zu kartieren. Dazu haben die National Institutes of Health 2010 das mit 30 Millionen Dollar dotierte “Human Connectome Project” ins Leben gerufen. An ihm arbeitet auch Olaf Sporns von der Indiana University in Bloomington (USA) mit. Gemeinsam mit Patric Hagmann und dessen Neuroimaging-Gruppe an der Universität Lausanne (Schweiz) hat er Aufnahmen des menschlichen Gehirns mit einer speziellen Methode angefertigt, welche die Nervenfasern sichtbar macht, die verschiedene Regionen der Hirnrinde miteinander verbinden. Die beiden Wissenschaftler wählten annähernd 1000 Regionen aus und kartierten sämtliche Faserstränge zwischen ihnen. Das Ergebnis ähnelte dem Kleine-Welt-Netzwerk, das Plenz in den kleinen Gewebestückchen entdeckt hatte.

Selbst wenn das Konnektom-Projekt erfolgreich sein sollte, bleibt allerdings fraglich, ob die Resultate wirklich klar machen, wie das menschliche Gehirn funktioniert. Wie schwierig die Aufgabe ist, lehrt die Erfahrung mit dem einfachsten im Detail bekannten Nervensystem: dem des Fadenwurms. Es besteht aus genau 302 Nervenzellen, deren Verknüpfungsmuster schon seit 20 Jahren vollständig bekannt ist. Trotzdem weiß immer noch niemand genau, wie dieses simple Netzwerk die Körperfunktionen und das Verhalten des Wurms steuert. (Quelle: Spektrum der Wissenschaft, Oktober 2011)

Buchtipp:
Synthetisches Bewusstsein: Wie Bewusstsein funktioniert und Roboter damit ausgestattet werden können

Beherrscht die “spukhafte Fernwirkung” den Makrokosmos?


Die Gesetze der Quantenmechanik beherrschen nicht nur die Welt der Atome und Elementarteilchen, sondern liegen in größerem Maßstab auch der Natur zu Grunde. Vielleicht machen sich sogar Pflanzen bei der Fotosynthese oder Zugvögel bei der Orientierung typische Quanteneffekte zu Nutze.
Die Quantenmechanik gilt allgemein als Theorie für mikroskopisch kleine Gegenstände – Moleküle, Atome, sub-atomare Teilchen. Doch viele Physiker glauben heute, diese Theorie treffe auf alles zu, ob groß oder klein. In den letzten Jahren haben mehrere Experimente Quantenphänomene auch in makroskopischen Systemen beobachtet, beispielsweise in Salzkristallen.

Vor allem die so genannte Verschränkung, ein typischer Quanteneffekt, kann auch in großen Systemen auftreten – vielleicht sogar in lebenden Organismen. Kandidaten für makroskopische Verschränkungen sind die Fotosynthese der Pflanzen und die Magnetfeldwahrnehmung von Vögeln. Das berichtet der serbo-britische Quantenphysiker Vlatko Vedral von der Oxford University in der Septemberausgabe von Spektrum der Wissenschaft.

Für die Physiklehrbücher ist die Sache klar: Die Quantenmechanik beschreibt die Gesetze des -Mikrokosmos. Sie liefert die Theorie für Teilchen, Atome und Moleküle – während für Billardkugeln, Menschen und Planeten die klassische Physik gelten soll. Irgendwo zwischen Molekülen und Billardkugeln liegt damit eine Grenze, an der das seltsame Verhalten der Quantenobjekte in die vertraute Alltagsphysik übergeht. Doch wo liegt diese Grenze?

Diese Aufteilung der Welt ist womöglich allzu simpel. Heute glauben nur wenige Physiker, dass die klassische Physik den gleichen Rang wie die Quantenmechanik beanspruchen darf; sie ist nur eine nützliche Näherung für eine Welt, die in allen Größenordnungen Quanteneigenschaften aufweist. Dass Quanteneffekte in der Makrowelt schwieriger zu erkennen sind, hat nichts mit Größe zu tun, sondern mit der Art und Weise, wie Quantensysteme wechselwirken. In den letzten Jahren haben Physiker mehrfach experimentell belegt, dass auch in makroskopischen Größenordnungen Quantenverhalten auftreten kann. Beherrscht die “spukhafte Fernwirkung” den Makrokosmos? weiterlesen

Bewusstseinsrätsel gelöst?

Mit mehreren Sensoren und Bedürfnissen ausgestatteter Tribot-Roboter, der als Trägersystem für die Experimente zum synthetischen Bewusstsein diente.

Bewusstsein galt bisher als eines der größten Rätsel der Welt. Ist es eine von Materie unabhängige Geistsubstanz, oder ist es eine Eigenschaft der Materie? Jetzt wurde wohl das Rätsel gelöst und ein synthetisches Bewusstsein erzeugt.

Heute ist es möglich, dem Gehirn praktisch online beim Denken zuzuschauen. Seine Geheimnisse werden Stück für Stück entblättert. Farbige Lichter der aktiven Regionen blitzen auf Beobachtungsschirmen auf, wenn die Versuchspersonen ihre Gedanken schweifen lassen.

Doch gleich, an welcher Stelle die Gedanken ihre Strahlung entfalten, keine der aktiven Regionen kann eindeutig dem Ort des Bewusstseins zugeordnet werden. Bewusstsein zeigt sich nach Überzeugung der meisten Wissenschaftler im Zusammenhang mit der im Gehirn überall stattfindenden Informationsverarbeitung. Und niemand wird heute ernsthaft bestreiten wollen, dass das Gehirn zur Verarbeitung all jener Informationen dient, die zum Input oder Output lebender Systeme gehören.

Information ist bekanntlich übertragbar.

Beispielsweise kann die Information eines elektronisch gespeicherten Emails mit Hilfe eines Druckers auf den Informationsträger Papier übertragen werden. Wenn man nun davon ausgeht, dass das Gehirn ein Trägermedium übertragbarer Information ist, Bewusstsein aber kein solcher Träger, weil es sich an keinem bestimmten Ort lokalisieren lässt, dann muss Bewusst­sein selbst Teil der Informationsverarbeitung, nämlich ein informationsverarbeitender Prozess sein.

Die Software eines informationsverarbeitenden Prozesses kann genauso wie sonstige Information auf andere Trägersysteme übertragen werden und zusammen mit der neuen Hardware wieder einen informationsverarbeitenden Prozess bilden. Das wurde nun ausgenutzt für den Bau eines kleinen Roboters mit synthetischem Bewusstsein. Bewusstseinsrätsel gelöst? weiterlesen

Lässt CERN „tote“ Materie lebendig werden?

Fluktuation im Universum - Bild cc-by-sa Argonne National Laboratory (flickr).jpg

Leben ist gekennzeichnet durch die prinzipielle Unvorhersagbarkeit des Verhaltens. Die Flugbahn eines Steins kann man vorhersagen. Für die Bahn des Vogelflugs gilt das nicht. Doch die Welt toter Materie ist im Kleinen ungeahnt lebendig.

Die Unterschiede zwischen der Welt im Großen und jener in den Dimensionen von Atomen oder kleiner können an einem Beispiel verdeutlicht werden. Ein Pendel der klassischen Physik, wie das Pendel einer alten mechanischen Uhr, hängt für alle Zeiten regungslos senkrecht herunter, wenn die Uhr nicht aufgezogen wird. Nicht so das Pendel von atomarer Größe. Denn in dieser Größenordnung gelten die Gesetze der Quantenmechanik. Danach ist das Pendel immer in Unruhe. Es fluktuiert um die Ruhelage herum, befindet sich jedoch nie exakt an deren Position. Unter Fluktuation versteht man hier eine permanente und zufällige Veränderung des Zustands oder der Lage, sodass man nie genau sagen kann, welche Auslenkung es gerade hat.

Es war kein Geringerer als der Physiker Werner Heisenberg (1901 – 1976), der diesen Umstand im Zusammenhang mit sogenannten Doppelspaltexperimenten entdeckte. In der Wissenschaft ist seine Entdeckung unter dem Namen Unschärferelation bekannt. Heisenberg bekam dafür im Jahr 1932 den Nobelpreis.

Ist Materie beseelt?

Eine der Aussagen der Unschärferelation ist es, dass kein Teilchen einen bestimmten Ort und eine bestimmte Geschwindigkeit gleichzeitig besitzen kann. Würde sich demnach das Pendel am Ort der Ruhelage befinden, könnte es nicht gleichzeitig die Geschwindigkeit null haben. Hätte es andererseits die Geschwindigkeit null, könnte es nicht gleichzeitig am Ort der Ruhelage sein. Die Konsequenz ist, dass das quantenmechanische Pendel weder an einem genau bestimmten Ort zu finden ist, noch eine genau bestimmte Geschwindigkeit besitzt. Es fluktuiert einfach um den Ort der Ruhelage herum und das für alle Ewigkeit. Niemals ist es in Ruhe. Sein Verhalten ist genauso unvorhersagbar, wie man es von etwas Lebendigem gewohnt ist. Kann man daraus auf eine Art Beseeltheit der Materie und der Naturkräfte schließen? Lässt CERN „tote“ Materie lebendig werden? weiterlesen